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Abstract 

Previous studies have used Benford’s distribution to assess whether there is 

misreporting of COVID-19 cases and deaths. Data inaccuracies provide false 

information to the media, undermine global response and hinder the preventive 

measures taken by countries worldwide. In this study, we analyze daily new cases and 

deaths from all the countries of the European Union and estimate the conformance to 

Benford’s distribution. For each country, two statistical tests and two measures of 

deviations are calculated to determine whether the reported statistics comply with the 

expected distribution. Four country-level developmental indexes are also included, the 

GDP per capita, health expenditures, the Universal Health Coverage index, and full 

vaccination rate. Regression analysis is implemented to show whether the deviation 

from Benford’s distribution is affected by the aforementioned indexes. The findings 

indicate that only three countries were in line with the expected distribution, Bulgaria, 

Croatia, and Romania. For daily cases, Denmark, Greece, and Ireland, showed the 

greatest deviation from Benford’s distribution and for deaths, Malta, Cyprus, Greece, 

Italy, and Luxemburg had the highest deviation from Benford’s law. Furthermore, it 

was found that the vaccination rate is positively associated with deviation from 

Benford’s distribution. These results suggest that overall official data provided by 

authorities are not confirming Benford’s law, yet this approach acts as a preliminary 

tool for data verification. More extensive studies should be made with a more thorough 

investigation of countries that showed the greatest deviation. 
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Introduction 

The pandemic of COVID-19 has affected the life of millions of people 

worldwide. Due to rapid contagiousness of the virus (Hafeez et al., 2020), nearly every 

country employed measures against the virus’ spread, such as national lockdowns and 

restrictions of typical activities. The pandemic showed that statistical and machine 

learning modelling procedures can potentially predict the number of new cases or 

deaths for a given country (Cássaro & Pires, 2020; Niazkar & Niazkar, 2020; Neto et 

al., 2020). The accurate forecast of the infection curve can facilitate government’s 

measures towards the suppression of the growth rate. However, in order to accurately 

predict or model COVID-19 spread, reliable and valid data should be collected from 

authorities. The recent pandemic of COVID-19 raised issues about data collection and 

handling. Media reports have questioned whether the statistics provided by countries 

are trustworthy (Kilani, 2021). Several studies have questioned the accuracy of 

government data and had linked data manipulation with transparency and democracy 

indexes (Adsera, Boix & Payne, 2003; Magee & Doces, 2015; Rozenas & Stukal, 

2019).  

Previous studies, in different fields, have applied Benford’s distribution (or law) 

analysis to detect fraudulent and manipulated data. Specifically, for COVID-19, it was 

found that deaths were underreported in the USA (Campolieti, 2021), while in China 

no manipulation was found (Koch & Okamura, 2020). A study for Japan also showed 

deviation from Benford’s distribution (Lee, Han & Jeong, 2020). Furthermore, it was 

found that countries with higher values of the developmental index are less likely to 

deviate from Benford’s law (Balashov, Yan & Zhu, 2021). This study applies Benford’s 

law to detect the first digit deviations of the announced cases and deaths from the 

expected frequencies in the European Union (EU). We further investigate whether the 
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deviation present for each country, is associated with four developmental indexes, the 

GDP per capita, health expenditures (% of GDP), the Universal Health Coverage Index 

and full vaccination rate. 

 

Methods 

Sample 

The public COVID-19 data of the European Union, regarding daily cases and 

deaths were exported from the European Centre for Disease Prevention and Control 

(ECDC) and consisted of observations between 2nd of March to the 20th of December 

2021 (N = 8820). ECDC’s Epidemic Intelligence team collects and refines daily data 

of new cases and deaths associated with COVID-19, based on reports from health 

authorities worldwide. Apart from COVID-19 data, we included the gross domestic 

product per capita (GDPc), the healthcare expenditures of countries as percentage of 

GDP (HGDP), and the Universal Health Coverage Index (UHC) from the World Bank 

(https://data.worldbank.org/). Finally, we included the full COVID-19 vaccination rate 

as of the 16th of December 2021, obtain from ECDC.  

 

Benford’s distribution 

Benford's law (or law of prime digits) is a probability distribution for 

determining the first digit in a set of numbers. It was formally proposed in 1938, after 

an early work by the mathematician Simon Newcomb, by the physicist Frank Benford, 

who claimed that in natural and unrestricted data sets, the probability of each digit 

appearing is given by the formula: 

 

𝑃(𝑑) = 𝑙𝑜𝑔10 (
1 + 𝑑

𝑑
) , 𝑑 = 1,2, . . . ,9. 
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Based on Benford’s distribution, the probabilities for each number d as the first digit 

are presented in Table 1. 

 

Table 1. Probabilities of the digit in the first position 

Digit 1 2 3 4 5 6 7 8 9 

p .301 .176 .125 .097 .079 .067 .058 .051 .046 

Note: The probabilities are rounded to 3 decimal places. 

 

The most common application of the law is in Economics, where it has already 

been considered as a tool for checking tax validity and detecting fraud (Nigrini, 1996; 

Durtschi, Hillison & Pacini, 2004; Tam Cho & Gaines, 2007). More recent studies have 

used Benford’s law to investigate whether COVID-19 data provided by countries are 

accurate (Kilani, 2021; Silva & Figueiredo Filho, 2021; Campolieti, 2021; Koch & 

Okamura, 2020) and if the deviation from Benford’s distribution could be affected by 

developmental indexes (Balashov, Yan & Zhu, 2021).  

 

Goodness-of-fit 

First, in order to investigate to which extent, the observed cases and deaths 

conform to Benford’s law’s expected frequencies, two goodness-of-fit tests were 

applied, the chi-squared (χ2) goodness-of-fit test and Kolmogorov-Smirnov (K-S). The 

chi-squared test statistic is given by: 

 

𝜒2 =∑
(𝑂𝑖 − 𝐸𝑖)

2

𝐸𝑖

9

𝑖=1

, 
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where the index i is the digit, and 𝑂𝑖 and 𝐸𝑖 are the observed and expected frequencies 

of the i-th digit, respectively. The degrees of freedom for this test are equal to 8, and 

the critical value is 𝜒𝑎;8
2 = 15.507 for the significance level set at 𝑎 = 0.05; thus, any 

value of the statistic greater than the critical value would imply significant deviation 

from the expected distribution. However, in large samples, the interpretation of 

significance should be avoided, as the test has enough power to detect even small 

deviations from the expected distribution (Lin, Lucas & Shmueli, 2013). To accompany 

the results of the chi-squared test, Cramer’s V was calculated along with 95% bootstrap 

CI for an estimate of the effect size. The Kolmogorov-Smirnov D statistic is commonly 

used for comparing empirical with theoretical continuous distributions, but it can also 

be used with integers. The statistic is given by: 

 

𝐷 = s𝑢𝑝
𝑖=10𝑘−1,…,10𝑘−1

|∑(𝑂𝑗 − 𝐸𝑗)

𝑖

𝑗=1

| ⋅ √𝑛. 

 

Both chi-squared and D statistics are greatly affected by sample size, hereby we 

included two measures that are not affected by large sample sizes, namely the Euclidean 

distance (ED) in the nine-dimensional space (Tam Cho & Gaines, 2007) given by: 

 

𝐸𝐷 = √∑(𝑃𝑂𝑖 − 𝑃𝐸𝑖)2
9

𝑖=1

, 

 

and Mean Absolute Distance (MAD) given by: 
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𝑀𝐴𝐷 =
∑ |𝑃𝑂𝑖 − 𝑃𝐸𝑖|
9
𝑖=1

9
, 

 

where 𝑃𝑂𝑖 and 𝑃𝐸𝑖 are the observed and expected proportions of the first digit, 

respectively.  

 

Regression analysis 

The two measures of deviation (ED and MAD) were used as the dependent 

variables in two regression models, with independent variables the gross domestic 

product per capita (GDPc), the healthcare expenditures of countries as percentage of 

GDP (HGDP), the Universal Health Coverage Index (UHC) and the full COVID-19 

vaccination rate (Vac), to examine whether the distance observed from Benford’s 

distribution could be associated with those predictors. Instead of relying in OLS 

estimates for the parameters of the model, bootstrap estimates have been calculated due 

to the small sample size of countries (N = 27) leading to more robust results. With 

bootstrap, we selected 10000 samples with replacement of the initial size, as the original 

sample, and each time we estimated the OLS coefficients of the parameters; hence, 

creating the sampling distribution of each coefficient along with 95% bootstrap CIs 

(Davison & Hinkley, 1997).  

 

Results 

The results of the goodness-of-fit tests along with the two measures of 

deviations are presented in Table 2. For almost countries, except for Bulgaria, Croatia, 

and Romania, significant deviations were found for both cases and deaths. For daily 

cases, Denmark, Ireland and Greece were associated with the highest chi-squared 
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statistics and this was also confirmed by the two distance measures (Figure 1 and 2). 

Regarding deaths, Cyprus, Italy, and Greece had the highest chi-squared statistics and 

distance measures. The K-S D statistic in most cases came in agreement with the chi-

squared test. 

 
Table 2. Goodness-of-fit statistics and distance measures across countries for new cases and deaths associated 

with COVID-19 

 Cases Deaths 

 χ2 D ED MAD χ2 D ED MAD 

Austria 30.49*** 2.45*** 1.905 0.032 13.29 1.57** 1.361 0.018 

Belgium 24.19** 1.33* 1.846 0.022 45.99*** 1.90*** 2.53 0.038 

Bulgaria 12.00 0.90 1.072 0.016 12.43 0.90 1.262 0.020 

Croatia 8.00 0.90 1.202 0.018 13.46 0.85 1.148 0.020 

Cyprus 7.31 1.30* 1.03 0.016 75.12*** 6.36*** 3.051 0.060 

Czech Republic 16.87* 1.73*** 1.746 0.024 17.14* 3.03*** 1.643 0.023 

Denmark 110.34*** 4.37*** 3.589 0.057 40.05*** 4.61*** 2.034 0.040 

Estonia 15.62* 1.01 1.3 0.021 20.31** 6.30*** 1.681 0.033 

Finland 25.56** 3.15*** 1.74 0.031 30.25*** 7.23*** 1.625 0.038 

France 36.51*** 1.49** 2.32 0.036 7.71 0.67 1.041 0.017 

Germany 5.62 0.61 0.917 0.015 24.29** 1.14 2.005 0.029 

Greece 77.20*** 2.33*** 3.389 0.050 54.84*** 3.52*** 3.108 0.045 

Hungary 15.71* 3.43*** 1.13 0.018 33.79*** 4.08*** 2.273 0.041 

Ireland 99.48*** 2.58*** 3.075 0.054 10.08 11.90*** 0.798 0.025 

Italy 10.08 0.44 1.11 0.018 60.58*** 2.71*** 3.303 0.045 

Latvia 31.05*** 1.59** 1.732 0.027 5.89 2.51*** 1.081 0.015 

Lithuania 4.62 0.38 0.694 0.011 22.68** 1.44** 1.886 0.028 

Luxembourg 21.66** 4.35*** 1.876 0.030 30.77*** 10.96*** 2.347 0.055 

Malta 15.29* 1.31* 1.25 0.020 50.94*** 11.90*** 2.966 0.079 

Netherlands 61.24*** 1.37* 2.926 0.047 12.49 0.47 0.925 0.016 

Poland 29.73*** 2.03*** 1.932 0.032 25.43** 2.04*** 1.755 0.027 

Portugal 17.74* 1.78** 1.952 0.024 25.89** 1.79*** 1.811 0.030 

Romania 9.61 0.76 1.036 0.014 11.17 0.90 1.32 0.018 

Slovakia 9.22 1.02 1.003 0.016 28.22*** 4.42*** 1.66 0.029 

Slovenia 17.37* 1.02 1.154 0.019 12.47 3.65*** 1.524 0.021 

Spain 18.94* 5.25*** 1.492 0.028 7.16 5.25*** 1.256 0.018 

Sweden 17.87* 1.95*** 1.219 0.022 19.32* 2.04*** 1.525 0.025 

*** p <.001, ** p < .01, * p <.05 
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Figure 1. Mean Absolute Distance across countries for a) cases and b) deaths. 

 
Figure 2. Euclidean Distance across countries for a) cases and b) deaths. 

 

The bootstrap estimates and 95% bootstrap CIs of the regression analysis for 

the two measures of deviation are presented in Table 3. In order to avoid having small 

coefficients, GDP per capita has been log-transformed and the other three predictors 

were divided by 100.  Regarding new cases, no predictor was found to significantly 

affect either MAD or ED. Vaccination rate was positively associated with deviation 

from Benford’s distribution in new cases (0.076, 95% CI [0.020, 0.144]) and deaths 
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(3.415, 95% CI [1.175, 6.286]), indicating that countries with a higher full vaccination 

percentage tend to deviate more from Benford’s law. 

Table 3.  Bootstrap estimates and 95% CIs for Mean Absolute Deviation and Euclidean Distance 

from Benford’s distribution 

  Cases Deaths 

  Estimate 95% Bootstrap CI Estimate 95% Bootstrap CI 

MAD 

HGDP -0.059 (-0.374, 0.232) -0.324 (-0.688, 0.089) 

GDPc 0.007 (-0.004, 0.021) -0.003 (-0.024, 0.012) 

VAC 0.020 (-0.014, 0.065) 0.076 (0.020, 0.144) 

UHC 0.016 (-0.054. 0.083) -0.049 (-0.159, 0.051) 

ED 

HGDP -1.820 (-20.07, 16.970) -8.060 (-25.532, 12.456) 

GDPc 0.261 (-0.486, 1.024) -0.590 (-1.467, 0.208) 

VAC 1.612 (-1.220, 4.445) 3.415 (1.175, 6.286) 

UHC 1.645 (-2.461, 5.704) 0.293 (-3.872, 4.853) 

 
 
Discussion 

 
This study aimed to examine the validity of COVID-19 data from EU using 

Benford’s law. Data of daily new cases and deaths were collected by ECDC for the 

period of the 2nd of March 2021 and 20th of December 2021. Also, four country-level 

indexes were collected, the GDP per capita, the health expenditure as GDP percentage, 

the Universal Health Coverage index and the full vaccination rate. Two goodness-of-

fit tests were applied, the chi-squared test and the Kolmogorov-Smirnov test, and two 

measures of deviation were estimated, the Euclidean distance and Mean Absolute 

distance. Bulgaria, Croatia and Romania were not deviating from Benford’s law for 

both new cases and deaths. Regarding daily cases, Cyprus, Germany, Lithuania, and 

Slovakia were in line with Benford’s distribution, while Denmark, Greece and Ireland, 

showed the greatest distance from Benford’s distribution. Regarding deaths, France, 

Ireland, Latvia, Netherlands, Slovenia and Spain matched Benford’s law and Malta, 

Cyprus, Greece, Italy and Luxemburg had the highest distance from Benford’s law. The 

results from the regression analysis suggested that the full vaccination rate was 
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positively associated with non-conformity with Benford’s law, where countries with 

the highest vaccination percentage exhibited greater deviation. 

The results of this study imply that the deviation from Benford’s law is not 

associated with country’s economy, which was suggested by earlier findings (Hollyer, 

Rosendorff & Vreeland, 2011). However, the effect would possibly be more apparent 

by including developing with developed countries (Judge & Schechter, 2009). 

Deviations from Benford’s distribution are a preliminary step for obtaining evidence 

for data manipulation; it is suggested that for specific economies that showed the 

greatest deviations, further studies could be made validating data reported by 

authorities. Additional parameters can be included, such as lockdown restrictions, 

preventive measures, and regional statistics and indicators. 
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