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Assembled BSI contigs and binned contigs from stool metagenomic sequences were profiled for 727 

antibiotic resistance genes (ARGs) with the Comprehensive Antibiotic Resistance Database 728 

(CARD) and the Resistance Gene Identifier (RGI) using default parameters [77]. 729 

 730 

Determining strain specificity of BSI isolates and stool metagenome assemblies 731 

To compare bacterial strains in multiple samples, including gut metagenomes which may have 732 

multiple strains of the same species present, we used inStrain v1.0.0 [31]. Sequencing reads from 733 

multiple samples were mapped against assembled BSI genomes using BWA [62]. Pairs of 734 

samples with >50% coverage breadth at a depth of at least five reads were compared to analyze 735 

SNPs and determine average nucleotide identity (ANI) between the samples.  736 

 737 

Data availability 738 

All sequencing data sets from the current study have been deposited in the Sequence Read 739 

Archive under the National Center for Biotechnology Information (NCBI) BioProject ID 740 

PRJNA787952 at http://www.ncbi.nlm.nih.gov/bioproject/787952 741 

 742 

Statistics  743 

Statistical analysis and graphical presentation methods 744 

Taxonomic abundance plots, antibiotic time course, and vancomycin-polymyxin B dosage graphs 745 

were created using GraphPad Prism version 9.1.2 for macOS, GraphPad Software, San Diego, 746 

California USA, www.graphpad.com, and the ggplot2 package v3.3.3 [78] with code modified from 747 

[20] and [79].  Comparisons by treatment group were performed using Fisher's exact test (for 748 

binary variables), Wilcoxon rank-sum test (for continuous variables), or Wilcoxon signed-rank test 749 

(for paired continuous variables) for comparison of baseline versus two-weeks post-HSCT within 750 

patients.  The Wilcoxon rank-sum and Wilcoxon signed-rank tests were adjusted using a false-751 

discovery rate (FDR) 0.05.  Cumulative incidence curves of BSI were compared using the Gray’s 752 
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test with adjustment for the competing risk of death.  Alpha and beta diversity were calculated 753 

using the vegan package v2.5-7 [67], and compared with the Wilcoxon rank-sum test and 754 

corrected using an FDR of 0.05. Analysis of Similarity (ANOSIM) statistic after 999 permutations 755 

was done for comparison of beta-diversity for patients with healthy sibling samples to compare. 756 

Plots were generated using R as previously reported [20, 27].  Relative abundance plots of 757 

specific taxonomic groups were generated using Animalcules R interface [80].  Figure 1 and 758 

graphical abstract created with BioRender.com 759 

 760 

Study approval 761 

The trial was approved by the institutional review board (IRB) under the IRB of Dana-Farber 762 

Cancer Institute (DFCI) (Protocol #15-394 approved Oct. 2015; principal investigator: J.S.W.), 763 

was performed at Boston Children’s Hospital (BCH) and DFCI.  IRB protocol was open to patient 764 

entry March 2016 through September 2019. Informed consent for the patient (if ≥18 years), parent 765 

(if <18 years), or legally authorized representative, was obtained prior to any specimen collection.  766 

Full protocol available at DFCI. Trial is registered under ClinicalTrials.gov Identifier: 767 

NCT02641236. 768 

  769 
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Figure 1. Study design. A total of 20 patients undergoing allo-HCT were randomized to two arms, 10 
patients in the Gut Decontamination (GD with vancomycin-polymyxin B) and 10 patients in the no-GD 
arm.  The GD arm received Vancomycin-polymyxin B, given three times daily, with dosing based on body 
surface area and analyzed as intention-to-treat (Supplemental Table 1).  GD was given starting day -5 
through neutrophil engraftment which is variable depending on the patient (median neutrophil engraftment 
day +25, see Supplemental Figure 2). The no-GD arm had the same stool and blood collection time 
points and did not receive oral Vancomycin-polymyxin B.  Closed black circles are time of stool collections 
including pre-transplant, weekly until engraftment, and monthly until day +100.  An additional cohort of 
two healthy sibling donors serve as a stool control comparison group (Supplemental Fig. 8).  For immune 
reconstitution studies, blood samples (red circles) were collected at pre-transplant, 2 weeks, monthly for 
the first 3 months, then months 6, 9, 12, 18, and 24 (red circle with right arrow).   
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Figure 2. Shannon diversity is similar between the GD and no-GD groups based on intention-to-
treat analysis at the species taxonomic level.  Samples from patients undergoing GD (red) and no-GD 
(blue). 
(A) Shannon diversity over time analyzed at the species level using local polynomial regression fitting 
(LOESS-locally estimated scatterplot smoothing of the mean Shannon diversity) showing similarity 
between the two groups.  
(B) Shannon diversity of individual patients from pre-transplant (before GD antibiotics) to 2 weeks post 
HCT connected with a line. Boxes shown are the median with hinges at the 25% and 75%.  All 
comparisons not significant (see Supplemental Table 4 for details). 
N=10 subjects GD arm, N=10 subjects no-GD arm. 
Comparison at the genus level (see Supplemental Figure 6 and Suppl. Tables 3 and 4) is also not 
significant (ns). 
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Figure 3. Immune reconstitution. Blood samples at pre-transplant, monthly for the first 3 months, then 

months 6, 9, 12.  Shown are the median values  interquartile range, along with the number of patients 

sampled at each time point below each graph.  (A) CD4+ Th cells, (B) Treg:Tconv (C) CD8+ Tc cells, (D) 
CD4+ Tconv naïve cells, (E) CD19+ B-cells, ** p=0.016, (F) CD56+CD3- natural killer (NK) cells. 
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Figure 4. Cumulative incidence of BSI during the first 100 days of transplant.  Patients are separated 
by treatment group with GD (dashed red line, N=10 subjects) and no-GD (solid blue line, N=10 subjects).  
Of the 6 patients with a BSI, 5 occurred within the first 31 days; one patient in the no-GD arm had BSI on 
day +85 relative to their first transplant (on day +6 of their second transplant). p=0.0483, Gray’s test. 
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Figure 5. Bacterial abundance in the gut around the time of BSI.  Multiple pathogens are present in the 
gut around the time of the BSI.  Days relative to the course of the transplant on shown on the X-axis, (from 
top to bottom on the Y-axis) antibiotic administration, alpha (Shannon) diversity, relative abundance of 
microbes in the stool samples at the genus taxonomic level (with organisms listed by color according to the 
key at the lower left), and relative abundance in the gut of the BSI-causing organism with the date of the BSI 
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shown as an asterisk (*). Note: Y-axis is a different scale between abundance plots for focused organisms 
found in the BSI. 
 
(D) Patient C22 received two transplants and had low abundance of Rothia dentrocariosa in the gut during 
the first transplant; Rothia was not detectable in the gut after day +15 of the first transplant. 
Antifungal and antiviral medications shown in supplemental figure 12.  Information on patients C03 and C11 
may be found in Supplemental Figure 10.   
Abbreviations: Azithro = Azithromycin, Cipro = Ciprofloxacin, Clinda = Clindamycin, Levo = Levofloxacin, 
Mero = Meropenem, PipTazo = Piperacillin / Tazobactam, TMP/SMX = Trimethoprim / Sulfamethoxazole 
(cotrimoxazole) 
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Table 1. Patient baseline characteristics 

  
GD 

 (N=10) 
No GD 
(N=10) 

All 
(N=20)  

  N % N % N % p-value 

Age at transplant (years), median 
(range) 13.4 (8.0-24.4) 18.7 (7.1-24.6) 15.2 (7.1-24.6) 

0.44 

Patient sex                                                                  0.18 

Male                                3 30 7 70 10 50   

Female                              7 70 3 30 10 50   

Primary disease                                   0.41 

ALL                                 4 40 4 40 8 40   

AML            1 10 4 40 5 25   

MDS                    2 20 0 0 2 10   

Anemia/Red Cell Disorder                                 3 30 2 20 5 25   

Conditioning Regimen Intensity                                1.0 

Myeloablative                       8 80 9 90 17 85   

Non-Myeloablative                   2 20 1 10 3 15   
HLA Molecular typing 
(A,B,C,DRB1,DQB1)                                    0.19 

Matched Related                   5 50 1 10 6 30   

Mismatch Related 0 0 1 10 1 5  

Matched Unrelated                     2 20 5 50 7 35   

Mismatch Unrelated                  3 30 3 30 6 30   

Patient or Donor CMV serostatus           0.35 

Positive 5 50 8 80 13 65   

Patient/Donor Sex Mismatch       1.0 

F → M 2 20 2 20 4 20  

Graft Source                                                         1.0 

Bone Marrow            9 90 10 100 19 95   

Cord 1 10  0  0 1 5  
GVHD Prophylaxis 

CsA 
CsA/MTX +/- methylprednisone 
CsA/MMF 

1 
8 
1 

10 
80 
10 

0 
9 
1 

0 
90 
10 

1 
17 
2 

5 
85 
10 

 
 
 

 
Abbreviations: GD = gut decontamination, ALL = acute lymphoid leukemia, AML = acute myeloid 
leukemia, MDS = myelodysplastic syndrome, HLA = human leukocyte antigen, CMV = cytomegalovirus, 
GVHD = graft-versus-host disease, CsA = cyclosporine, MTX = methotrexate, MMF = mycophenolate 
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Table 2. Exploratory comparison of clinical outcomes by randomized treatment arm 

  GD (N=10) No GD (N=10)   

  N % N % p-value 

Diarrhea in first 7 days post-HCT 4   40       4   40       1.0 

Grade ≥ 2 Acute GVHD                                1 10 3 30  0.58 

Grade 2                            1 10 0 0   

Grade 3-4 0 0 3 30  

Bacteremia in first 100 days post-HCT  1  10       5    50     0.14 

BSI episodes: 1  8  0.09 

     Gram positive episodes *                              1   5*    

     Gram negative episodes ^ 0   3^     

Graft failure                             1 10 1 10 1.0 

Relapse of malignant disease #  3 of 7  2 of 8  ND 

1- year RFS: 73±11.4 (n=15 total)      

OS at 1 year 10 100  10 100 ND 

p-value based on Wilcoxon rank-sum test (Mann-Whitney U test).  
Diarrhea defined as >3 stools per day. 
*One patient with 2 separate bloodstream infections (BSI) with MRSA 89 days apart, one patient with 
Rothia dentocariosa and Enterococcus faecium, one patient with Staphylococcus epidermidis. 
^One patient with E. coli, one patient with Leclercia adecarboxylata, one patient with Klebsiella oxytoca 
(same patient who had two MRSA x2) 
# For malignant diseases at 1-year post-HCT, N=7 for GD arm, N=8 for no-GD arm. 
ND- Not done, as study was not designed or powered for comparison of OS and PFS 
Abbreviations: BSI = bloodstream infection, MRSA= methicillin resistant Staphylococcus aureus, RFS = 
relapse- free survival, OS = overall survival 
 
 
 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 17, 2021. ; https://doi.org/10.1101/2021.12.16.21267940doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.16.21267940
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. InStrain results comparing assembled BSI isolates to gut metagenomic samples 
 

Subject Arm Organism 
Day of BSI 
relative to 
transplant 

Day of 
stool 

sampling 

Coverage 
(%) 

popANI 
(%) 

population 
SNPs 

conANI 
(%) 

C03 B 
Leclercia 
adecarboxylata 

22   
not enough 
coverage 

      

C04 B 

MRSA 
(Staphylococcus 
aureus) * 

5 12 99.996 100 0 99.9988 

Klebsiella oxytoca  18 18 98.4936 100 0 99.9966 

MRSA 
(Staphylococcus 
aureus) * 

94 12 99.9964 99.9999 2 99.9993 

C10 B E. coli 8 -4 94.79 99.7124 13303 99.7124 

        1 99.86 100 0 99.9952 

        6 98.42 99.9954 227 99.2153 

        14 99.75 100 0 99.9933 

        20 96.87 99.9996 21 99.987 

        25 99.51 99.9998 19 99.99 

        32 99.96 100 0 99.9947 

C11 A 

Lysinibacillus 
fusiformis  

31 

  
not enough 
coverage       

(also called 
Bacillus fusiformis) 

          

C20 B 
Staphylococcus 
epidermidis * 

23   
BSI isolate contaminated; unable to 
perform analysis 

  

C22(B) B 

Rothia 
dentocariosa  

6 (2nd 
Transplant) 

  
not enough 
coverage 

      

Enterococcus 
faecium  

20 (2nd 
Transplant) 

-3 
not enough 
coverage       

        1 
not enough 
coverage       

        5 
not enough 
coverage       

        15 
not enough 
coverage       

        23 99.9826 99.9999 1 99.9985 

        26 99.971 99.9999 1 99.9986 

        35 99.0468 99.9999 1 99.995 

        40 99.9925 99.9999 2 99.998 

        57 99.9818 99.9999 1 99.9987 

        61 99.9849 99.9999 1 99.9989 

        68 99.9373 99.9999 1 99.9987 

        
3  (2nd 

Transplant) 
99.97 99.9999 1 99.9986 

        
11 (2nd 

Transplant) 
99.9884 99.9999 1 99.9987 

        
20 (2nd 

Transplant) 
99.9747 99.9999 1 99.9987 
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26 (2nd 

Transplant) 
99.9797 99.9999 1 99.9987 

        
38 (2nd 

Transplant) 
99.9859 99.9999 1 99.9982 

        
45 (2nd 

Transplant) 
99.9228 99.9999 1 99.9985 

        
60 (2nd 

Transplant) 
99.9763 99.9999 2 99.8463 

 
Three BSI episodes were non-mucosal barrier injury (non-MBI) pathogens, (defined by the National 
Healthcare Safety Network (NHSN) criteria of the CDC, Jan 2021) including S. aureus (twice in the same 
patient C04 separated by 89 days) and S. epidermidis in patient C20, are labeled with an asterisk (*). 
Abbreviations: population average nucleotide identity (popANI), single nucleotide polymorphisms (SNPs), 
and consensus ANI (conANI).  
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