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Abstract  

Quantifying heterogeneity in Alzheimer’s disease (AD) risk is critical for individualized 
care and management. Recent attempts to assess AD heterogeneity have used 
structural (magnetic resonance imaging (MRI)-based) or functional (Aβ or tau) imaging, 
which focused on generating quartets of atrophy patterns and protein spreading, 
respectively. Here we present a computational framework that facilitated the 
identification of subtypes based on their risk of progression to AD. We used 
cerebrospinal fluid (CSF) measures of Aβ from the Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) (n=544, discovery cohort) as well as the National Alzheimer's 
Coordinating Center (NACC) (n=508, validation cohort), and risk-stratified individuals 
with mild cognitive impairment (MCI) into quartiles (high-risk (H), intermediate-high risk 
(IH), intermediate-low risk (IL), and low-risk (L)). Patients were divided into subgroups 
utilizing patterns of brain atrophy found in each of these risk-stratified quartiles. We 
found H subjects to have a greater risk of AD progression compared to the other 
subtypes at 2- and 4-years in both the discovery and validation cohorts (ADNI: H 
subtype versus all others, p < 0.05 at 2 and 4 years; NACC: H vs. IL and LR at 2 years, 
p < 0.05, and a trend toward higher risk vs. IH, and p < 0.05 vs. IH, and L risk groups at 
48 months with a trend toward lower survival vs. IL). Using MRI-based neural models 
that fused various deep neural networks with survival analysis, we then predicted MCI 
to AD conversion. We used these models to identify subtype-specific regions that 
demonstrate the largest levels of atrophy-related importance, which had minimal 
overlap (Average pairwise Jaccard Similarity in regions between the top 5 subtypes, 
0.25+0.05 (+ std)). Neuropathologic changes characteristic of AD were present across 
all subtypes in comparable proportions (Chi-square test, p>0.05 for differences in 
ADNC, n=31). Our risk-based approach to subtyping individuals provides an objective 
means to intervene and tailor care management strategies at early stages of cognitive 
decline. 
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Introduction 

The projected cost of caring for tens of millions of individuals who have Alzheimer’s 
disease (AD) worldwide is going to exceed trillions of dollars over the next few decades 
(Anonymous 2020). Financial estimates, however, cannot measure the physical, health, 
emotional and psychological strain of AD on family members and caregivers. There is a 
pressing need to identify persons at risk of progressing to AD from subclinical AD or 
mild cognitive impairment (MCI), as they may benefit the most from early interventions 
and management. Importantly, as disease-modifying therapies are undergoing 
regulatory scrutiny (Knopman et al. 2021; Robinson 2021), it becomes increasingly 
important to identify those who would benefit from such interventions. 
 
Not all persons with MCI develop AD. To this end, several novel frameworks have been 
constructed to identify individuals with normal cognition or MCI who will progress to AD 
using both imaging (Ding et al. 2019; Iddi et al. 2019; Lin et al. 2018; McRae-McKee et 
al. 2019) and cerebrospinal fluid (CSF) biomarkers (Buchhave 2012; Fagan et al. 2007; 
Li et al. 2016; Lista et al. 2014; Michaud et al. 2015). Studies have also focused on 
subtyping AD at fixed points in time based on structural and functional imaging (ten 
Kate et al. 2018; Vogel et al. 2021). Finally, Young et al. (2018) introduced a technique 
that modeled AD across static subtypes and dynamically over time. While these studies 
have underscored the importance of characterizing AD heterogeneity, structure- or 
function-based subtyping does not always translate to precise identification of patients 
who manifest with AD. One needs to rather pursue this task using a bottom-up strategy 
wherein the subtyping is defined based on the disease outcome itself. This would 
enable better tracking of disease progression and quantifying an individual’s make-up at 
their symptomatic origins, followed by binning them as rapid or slow progressors as well 
as non-progressors. We contend that a risk-based strategy of subtyping AD using an 
instantaneously observed biomarker (i.e., CSF) would allow for the identification of 
patients who are likely to progress to AD. CSF levels of amyloid-β (Aβ) have been 
widely used to predict progression to AD (Anonymous ; Blennow et al. 2010; Heister et 
al. 2011; Lista et al. 2014; Michaud et al. 2015; Visser et al. 2009). While these fluid-
based measures have substantial inter-lab variability, standardized datasets, such as 
that of the Alzheimer's Disease Neuroimaging Initiative (ADNI), maybe more reliable 
(Lista et al. 2014). CSF-based subtyping could enable precise targeting of patients who 
would benefit from novel therapeutic agents such as biologics, allowing physicians to 
intervene before their patients experience potentially irreversible changes in their 
cognition (Blennow et al. 2010; Heister et al. 2011; Lista et al. 2014; Michaud et al. 
2015; Visser et al. 2009). By mapping these highly standardized CSF datasets to their 
corresponding MRIs, we could apply more robust deep learning techniques to predict 
risk in outside datasets, which would be challenging to do with CSF biomarkers alone. 
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We fused deep learning with classical survival analysis to integrate spatial information 
from MRIs and temporal information and estimate precise forecasts of progression from 
MCI to AD. Recently, survival methodologies have been integrated into deep learning, 
including Cox proportional hazard-type models (Katzman et al. 2018; Kim et al. 2019; 
Mobadersany et al. 2018; Wulczyn et al. 2021; Zhu et al. 2016) and more flexible 
variants such as Nnet-survival, which do not require the proportional hazards 
assumption (Gensheimer and Narasimhan 2019; Zhang 2020). We hypothesized that 
models that combine flexible survival prediction in conjunction with convolutional neural 
networks and minimally processed T1-weighted MRI that utilize region-specific gray 
matter volumes would be ideal for measuring the predictive value of each of these risk-
based subtypes. Using this rich framework, we (1) performed subtyping of persons 
based on a well-identified and standard measure of progression to AD (i.e., CSF Aβ); 
(2) used this stratification to identify patterns of atrophy that characterize each subtype; 
(3) established the utility of this stratification scheme by training a machine-learning 
model on our data that forecasts progression from MCI to AD in a granular fashion; and 
finally (4) utilized neuropathology as a reference standard to confirm a diagnosis of AD. 
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Methods 

Study population and data selection 
Data were collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database for training, internal validation, and internal testing, and from the National 
Alzheimer’s Coordinating Center (NACC) for external validation. 
 
ADNI cohort 
ADNI comprises a multi-center, longitudinal study with an overall goal of facilitating the 
development of novel therapeutics by identifying biomarkers that identify and portend 
progression of AD. Thus far, there have been 4 separate phases of ADNI. For this 
dataset, visits for all subjects were selected from the person registry with a last user 
date of April 9, 2020; this includes subjects enrolled in all different phases of ADNI, 
including ADNI 1, ADNI GO, ADNI2, and ADNI 3. General requirements for all phases 
included persons between 55-90 years old, a partner able to be present for collateral, a 
Geriatric Depression Scale less than 6, and fluency in one of Spanish or English. Mild 
cognitive impairment (MCI) was defined by ADNI similarly across all 4 phases. To 
qualify as MCI, consistent criteria included the following: a person had to have 1) a 
complaint about some aspect of cognition; 2) mini-mental state exam (MMSE) score > 
24 and a clinical dementia rating (CDR) equal to 0.5 with preserved daily function; and 
crucially, 3) some measured memory loss based on a Logical Memory test, adjusted for 
years of education. Persons had to have the amnestic domain affected to be enrolled. 
To meet criteria for AD, a person had to have a CDR > 0.5, MMSE < 26, an abnormal 
Logical Memory test, and meet criteria for AD based on NINCDS-ADRDA criteria for 
probable AD (McKhann et al. 1984). 
 
ADNI pre-processing 
To group together visits for persons from different data files, we merged visit data using 
as merge codes the person ID (‘RID’), and the visit codes (‘VISCODE’ and ‘VISCODE2’, 
where available). Visits labeled as ‘f’, ‘nv’, ’uns1’, and ‘tau’ were excluded from 
consideration. Diagnoses were established for persons using ‘DXCURREN’, 
‘DXCHANGE’, ‘‘DXCHANGE’, and ‘DIAGNOSIS’ fields from the diagnosis summary file, 
corresponding to phases of the study ‘ADNI1’, ‘ADNIGO’, ’ADNI2’, and ‘ADNI3’, while 
confirmation of a diagnosis of dementia due to AD was confirmed with the ‘DXAD’ field 
for ADNI1, and the ‘DXDDUE’ field for the remainder of the phases. Data from baseline 
and screening visits were combined, taking the baseline diagnosis result and other 
baseline assessments first, and filling in the remainder of the data with assessments 
conducted exclusively at a screening visit. From the collected data, visits where persons 
had a 3 Tesla T1-weighted MRI scan (between 2.7 and 3.1 Tesla), CSF data collected, 
and a diagnosis of mild cognitive impairment (either late or early mild cognitive 
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impairment where specified), as made by clinicians using multimodal criteria specified 
by ADNI, were identified. The first such visit was identified for each person.  
 
ADNI image selection 
Raw MRI images on the ADNI database were queried using the keyword arguments 
*MP*RAGE* and *SPGR*, corresponding to magnetization-prepared rapid gradient-
echo and spoiled gradient-recalled echo, respectively. Magnet strengths between 2.9 
and 3.1 were queried. Once downloaded, images were first filtered by the desired date 
for each person’s MCI visit. Then, the Mayo Clinic quality control information was used 
to further inform which image to use. If there was more than a single image at a given 
visit for each person, images were selectively kept using the following criteria in the 
following order of importance: being fully sampled (i.e. the image description did not 
contain the phrases “SENSE”, “ACCEL”, or “GRAPPA”); receiving a “pass” on the Mayo 
Clinic quality control sheet where this information was available; being taken at the most 
recent date; being chosen in the Mayo Clinic quality control sheet as “selected”; and 
finally, if there was still more than a single scan remaining, the image with the highest 
image ID, which generally corresponded to the latest image obtained in a series, was 
taken. If at any point application of these criteria led to removal of all scans for a given 
subject, the step was skipped to keep as many scans as possible (for example, if a 
subject only had accelerated MRI scans, accelerated MRI scans were used for that 
subject). Overall, 49 persons were selected from ADNI1 (45 at the baseline visit, 1 each 
at month 60, 96, 108, and 120), 113 from ADNIGO (112 at the baseline visit, 1 at month 
24), 321 from ADNI2 (309 at baseline visit, 11 at month 24, and 1 at month 48), and 59 
from ADNI3 (all at baseline visit), yielding 544 total participants (as described later, 1 
subject was removed from analysis due to poor image co-registration). Following an 
analysis of patient demographics and clustering of patients into different anatomical 
subtypes (Figures 1 and 2), 540 participants were randomly selected for the remainder 
of the study for the number of participants to be evenly divided when conducting the 5-
fold cross validation for our deep-learning models. This image selection is illustrated in 
Supplementary Figure 1. 
 
ADNI image curation for AD-visits 
An analogous process was used for Alzheimer’s Dementia visits (Fig. 3). Visits were 
selected where during the first visit where a patient was diagnosed with Alzheimer’s 
Dementia, an MRI at this date was also available. At this point, a similar image selection 
criterion was used as described in ADNI image selection. In sum, 123 patients in the 
ADNI cohort had an AD visit that corresponded to their MCI visit, though only 120 
patients had scans that were not corrupted during download and were used for further 
analysis. 
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ADNI image curation for pre-training 
Finally, for pre-training our deep-learning models, we constructed a dataset consisting 
of MRIs from unused patients in the ADNI cohort. These consisted of all 3-Tesla MRI 
images, IR-(F)SPGR and MP-RAGE, that we obtained at our collection date in the ADNI 
dataset, for patients that were not used for the main part of the study. Images that did 
not have diagnoses at the time of the visit were excluded. Image curation and metadata 
pre-processing for ADNI is shown in Supplementary Figure 1 for reference. 
 
NACC cohort 
The NACC database hosts a Uniform Data Set (UDS) comprised of longitudinal data, 
collected from persons in National Institute on Aging Alzheimer’s Disease Research 
Centers (ADRCs), each with its own protocol for enrollment, and each with its own 
protocol for diagnosis of disease (a team of physicians versus a single physician). 
Diagnoses for MCI and AD are primarily made based on clinician judgement. MCI 
persons are defined as those with preserved day to day function, though with a concern 
from the person, person’s partner, or physician about the person’s cognition and 
impairment in at least one cognitive domain. Dementia is diagnosed by a measured and 
clinically determined progressive decline in cognitive ability with impacted day-to-day 
function, in addition to impairment in at least one of 5 cognitive domains. AD is 
determined by clinical judgment based on available data. 
 
Subjects in our study were selected from a data freeze on December 12, 2020. For 
each subject, visits where the subject had mild cognitive impairment (amnestic or non-
amnestic, single or multiple domain) were identified. Out of all visits for each patient 
who carried a diagnosis of mild cognitive impairment, the visit that was closest to a date 
at which they had a 3T, T1-weighted MRI was kept. If the time between the clinical visit 
and MRI was longer than 6 months, the patient was dropped from consideration. CSF 
values were assigned to the nearest diagnostic visit provided the visit occurred within +6 
months. CSF values in the NACC dataset were all obtained via an ELISA assay method 
(total of 21 samples).  
 
Metadata for each of the T1-weighted scans were used to select which T1-weighted 
MRI to use out of the several MRIs available for each visit. Only three-dimensional, 
original, SPGR or MP RAGE images were used. Their single smallest dimension had to 
be at least 80 voxels. If a person had fully sampled scans, these were selected in place 
of any accelerated scans such as GRAPPA or SENSE. Finally, if there was more than a 
single image left for a person, an image collected that met the criteria was selected at 
random but with preference to the most recently acquired scans. Image curation and 
metadata pre-processing for NACC is shown in Supplementary Figure 2 for reference. 
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Image registration, normalization, and segmentation 
Images were parcellated utilizing SPM 12 software version 7771, CAT12.7 version 1728 
and MATLAB version 2020a Update 4, and an overall outline of the processes are 
demonstrated in Supplementary Figure 3. Images were batch processed using the 
following methodology. First, MRIs were centered such that the center of each scan was 
located at the image origin. This was accomplished using a script generously provided 
by Dr. Landau and Alice Murphy of the Helen Wills Neuroscience Institute at University 
of California, Berkeley. 
 
At this point, images were further processed in one of two ways, depending on the deep 
learning pipeline that was to follow. 
 
For the multi-layer perceptron model, a parcellation pipeline that utilized CAT12.7 
(Computational Anatomy Toolbox, http://www.neuro.uni-jena.de/cat/) was used in order 
to determine normalized gray matter (GM) volumes for pre-specified regions of the 
brain. These normalized GM volumes were then used as input for the multi-layer 
perceptron model. In order to obtain these normalized gray matter volumes, recentered 
MRIs were first batch processed using CAT12 segmentation with the default 
parameters. The Neuromorphometrics atlas was used for volumetric analysis (from 
MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling, using MRIs from 
the OASIS project, labeled data provided by Neuromorphometrics, Inc. 
(http://Neuromorphometrics.com/) under academic subscription); the original atlas was 
constructed from brains originally obtained from OASIS (https://www.oasis-brains.org/). 
This resulted in 544 gray matter volumes for the ADNI dataset and 508 gray matter 
volumes for the NACC dataset. Gray matter volumes were averaged across 
hemispheres. These volumes were normalized by dividing by the total intracranial 
volume, yielding normalized gray matter volumes. Normalized gray matter volumes are 
referred to simply as gray matter volumes throughout the main text of the manuscript. 
The regions corresponding to ventricles were removed for further analysis (CSF, 3rd 
ventricle, 4th ventricle, inferior lateral ventricle, and lateral ventricle). 
 
For other models, we used a standard SPM12 (Statistical Parametric Mapping, 
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/) pipeline which consisted of co-
registering and masking each brain using the following steps: 1. Segmentation of each 
brain into gray matter, white matter, and CSF; 2. Bias-correction of each brain; 3. 
Normalization of each bias-corrected brain into MNI (Montreal Neurological Institute) 
space using the deformation field obtained from (1); 4. Masking each brain by 
thresholding the sum of the gray matter, white matter, and CSF probability atlases at a 
value of 0.2, and taking the pointwise product of the normalized brain and the 
thresholded, normalized atlas. The outputs were saved as 64-bit floating point numbers 
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in Nifti files. During the quality control process, we found the brain of 1 subject to be 
poorly registered. This subject was removed from all analyses. 
 
Empirical survival analyses and demographics plotting 
For survival analyses, the lifelines package was relied upon extensively (Davidson-Pilon 
2019). The class KaplanMeierFitter was used to plot empirical Kaplan-Meier plots, 
CoxPHFitter was used to compute proportional hazard tests, and the function 
survival_differences_at_fixed_point_in_time_test was used to compute differences in 
survival at different time points. Seaborn was used extensively for scatter plots and 
violin plots as well (Waskom 2021), and Scipy was used to compute Kruskal-Wallis 
tests, Chi-square tests, and Mann-Whitney U tests (Virtanen et al. 2020). Bar plots were 
created using pandas version 1.0.1.  
 
Subtype analysis 
Centroid computation 
Subtyping patients was performed as follows. As has been argued by Buchhave (2012), 
levels of Aβ-42 have been shown to change up to 10 years prior to a diagnosis of 
Alzheimer’s Disease. We therefore divided CSF values for all cases in the ADNI cohort 
by Aβ quartile to risk-stratify each case into high-risk, intermediate-high risk, 
intermediate-low risk, and low-risk categories corresponding to the lowest concentration 
of CSF Aβ through the highest concentration of CSF Aβ, respectively. The gray matter 
volumes for each region for each participant in each of these subtypes were then 
obtained. For each region across all subtypes, the mean and standard deviation of the 
gray matter volume in that region was computed. Gray matter volumes for each brain 
region were Z-scored to the mean and standard deviations of that respective brain 
region. In order to obtain centroids for each subtype, Z-scored gray matter volumes 
were averaged across all brains in the ADNI cohort preliminarily sorted into each of the 
4 subtypes, for a total of 4 centroids. Centroids were computed using the entire 544 
patient ADNI dataset. 
 
Subtype assignment 
In order to assign final subtypes, ADNI and NACC brain regions were all Z-scored using 
the respective region means and region standard deviations obtained as specified 
above. Spearman’s correlation coefficient was then calculated between each brain and 
each of the 4 subtype centroids. The subtype corresponding to the highest correlation 
coefficient was assigned as the subtype for that patient. Subtypes were assigned in the 
same way for the images obtained at the AD visit. To plot the Sankey Diagram 
demonstrating changes in subtype over time (Figure 2B), we utilized the python library 
plotly (https://plotly.com/). Brains were plotted using Nilearn (https://nilearn.github.io). 
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In order to compute statistics to compare differences in normalized gray matter volumes 
between different regions and between different subtypes, we utilized a linear mixed-
effects model in the package lme4 version 1.1-27.1 in R, and performed post-hoc 
analysis using lmerTest version 3.1-3 in R. The model was constructed as: 
 
Equation 1: log(GMV-min(GMV) + 1) ~ 1+Region*Subtype + (1|RID) 
 
where GMV is normalized gray matter volume, RID is the individual subject identifier, 
and Region and Subtype are self-explanatory. A log transformation was taken to reduce 
the skewness of the data, and a constant shift of the data was applied to make the data 
positive before taking a log transform. Diagnostics can be seen in Supplementary 
Figure 6. We utilized the least squares mean estimate for each brain region provided by 
lsmeans in lmerTest to rank GMV. A Dunn-Sidak correction was applied to examine 
pairwise comparisons between subtypes both in terms of overall gray matter volume 
and in terms of region-specific gray matter volume. 
 
Assignment of parcellated regions to lobe 
Regions were assigned to lobes as designated in the CAT12 Neuromorphometrics Atlas 
assignments, with several exceptions. Specifically, regions in the frontal, parietal, and 
occipital lobe were each grouped together. The temporal lobe was split into mesial and 
non-mesial temporal lobe, where the mesial temporal lobe consisted of the entorhinal 
area, parahippocampal gyrus, hippocampus, and amygdala. The remainder of the area 
designated as “subcortical” was divided into subcortical and regions in the basal 
ganglia. Another linear mixed-effects model was constructed here for analysis as 
follows: 
 
Equation 2: log(GMV-min(GMV) + 1) ~ 1+Lobe*Subtype + (1|RID) 
 
Deep learning framework 
Multi-layer perceptron 
A multi-layer perceptron was utilized to predict a person’s risk of AD progression over 
time. The data was split in a 3:1:1 fashion (training:validation:testing), and 5-fold cross 
validation was used in order to ensure that each subject was used as test data exactly 
once, validation data exactly once, and training data three times. Normalized gray 
matter volume was utilized as input for this model. The model was repeated after adding 
age, MMSE score, and age together with MMSE score. Finally, a model was 
constructed with the only input being the three CSF biomarkers. 
 
The model architecture consisted of a batch-normalization layer, followed by dropout, 
batch-normalization and leaky rectified linear-unit layers. This output was fed into a final 
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linear layer and then to a sigmoid layer, which computed the marginal probabilities of 
survival in each of the three time bins: 0-24 months following the MCI visit, 24-48 
months following the MCI visit, and 48-108 months following the MCI visit, all left-side 
inclusive. The model was saved when it had a lower total survival loss on the validation 
set. Please see Survival Loss in the appendix. Then, the model was tested on the 
external dataset, NACC. As the concordance index was highest for the simplest model 
(only parcellated brain regions) and the Brier score was comparable to the other 
models, this simpler model was used for testing. 
 
To evaluate the success of the model, two statistics were computed: the concordance 
index (concordance_index_censored) and the Brier score (integrated_brier_score). The 
concordance index compares pairs of subjects and computes the proportion of pairs 
where our prediction of survival (i.e., which of the subjects “out-survives” the other) 
matches ground truth. To compute the concordance index, we calculated the predicted 
probability of survival at 24 months and used this to compare the predicted versus 
actual survival of two subjects. The Brier score is a statistic that measures the 
difference in survival for an individual against their predicted survival, and so measures 
bias of our predictions. These statistics were computed using scikit-survival (Pölsterl 
2020). Using the marginal probabilities of survival, we can compute the overall 
probabilities of survival by taking the product of the marginal probabilities of surviving 
each of these time bins. Survival was interpolated for plotting using quadratic spline 
interpolation (Scipy). 
 
Survival convolutional neural network 
A modified convolutional neural network with survival loss function was trained to 
predict the risk of progression for patients in a time-based manner. As a result of the 
different loss function, it is referred to as the survival convolutional neural network 
(SCNN) in our work. In this model, 3D convolution is used to handle the volumetric MRI 
scans of size (121, 145, 121). The network contains 5 convolutional layers, each layer’s 
kernel size is set to be 3, with a stride of 1 and no padding. Batch normalization is 
applied throughout the 5 layers to prevent instability during training, and to decrease the 
number of epochs needed to achieve optimal state. After the normalization step, a leaky 
rectified linear unit is utilized as the activation function. Following this, a max-pooling 
layer of size 2 is attached to retrieve the most important features from previous output. 
In addition to L2 normalization (weight=0.01), dropout layers (probability=0.3) are also 
used to boost the robustness of the network. Finally, we flatten the output and apply 
fully connected layers for the final prediction of risks. Before training, we initialize the 
weights using the default initializer (Kaiming Uniform method). During the training, we 
feed the model with a batch size of 10 and use the stochastic gradient descent (SGD) 
optimizer with a learning rate of 0.01. Additionally, we calculated weights for each 
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training sample based on their class frequency. The structure is visualized in 
Supplementary Figure 4. 
 
Similar to the previous settings for experiments, the same datasets were used, as well 
as the (3:1:1) train:valid:test split (on ADNI dataset). NACC is again used as the 
external testing dataset. During training, the model is saved whenever it has a better 
concordance index on the validation set. Besides the concordance index, we also 
calculated the Brier score on all datasets for evaluation purposes. These two scores 
give assessments of accuracy (concordance index) in addition to calibration (Brier 
score). Multiple experiments with different parameters are made to achieve the best 
results; some of the most representative experiments are provided in the table. 
 
Survival vision transformer 
Transformers have been a hot topic recently and have been applied to various areas on 
different tasks. The vision transformer, for example, is one such application that is 
designed primarily for image-based tasks. In our work, we explored the vision 
transformer’s performance on 3D image handling in predicting the AD progression risk. 
Similar to the structure in (Dosovitskiy et al. 2020), we first split the 3D scan into smaller 
volumes of size (64, 64, 64), resulting in a number of patches, which is then sent into 
the mapper (linear mapper or convolutional mapper) to map into vectors with a 
dimension of 200. These vectors are then concatenated with a learnable class variable 
and encoded with relative locations using a positional encoder. The transformer will 
then take these vectors as input. The layers of the transformer are similar to the original 
structure: the input vectors will first be normalized and then used by multiple self-
attention layers to compute the weighted sum, where the weights for each of them are 
based on the pairwise similarity between each element of the inputs; after that, the 
values will come with a skip-connection (which adds the original value to the computed 
values) and will be normalized again before being sent into the feed-forward layers. The 
outputs of these layers will come with skip-connection again. After the transformer, we 
append a multi-layer perceptron unit as the decoder to perform the risk prediction task. 
The structure is presented in Supplementary Figure 5. 
 
We used the same data for training, validation, and testing -- same split, same bins, and 
same seeds for establishing a fair comparison. An SGD optimizer was used again when 
updating the weights, though with a smaller learning rate of 0.005. The dropout was set 
to 0.25, and the batch size was 5 (other sizes did not influence the results significantly). 
The weights were initialized using the Kaiming Uniform method as in the SCNN. We 
listed the 2 most representative results for SViT. In general, we observed that SViT 
performed worse than the SCNN. 
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SHAP Value Computation 
SHaply Additive exPlanations (SHAP) values were utilized in order to determine the 
contribution of each input feature (normalized gray matter volume) to the predicted 
survival of each patient. SHAP values have been widely utilized (Lundberg et al. 2018; 
Verburg et al. 2021) in order to provide a measure of inference to machine-learning 
models. In our case, the DeepLIFT algorithm was used in order to compute a linear 
approximation whereby SHAP values are computed as the product of the 
backpropagated gradient for each feature, multiplied by the difference between the 
initial feature value and its expected value. For each fold, training data was used as the 
background data in order to compute the expected values for each feature. We used the 
deepexplainer method from the SHAP package to compute our values 
(https://github.com/slundberg/shap)). 
 
Atrophy-Related Importance 
SHAP values were sorted based on their Spearman correlation coefficients with Z-
scored gray matter volumes. The regions with the 5 highest correlation coefficients for 
each subtype were selected for further analysis and plotted in Figure 5. We term these 
regions as having the largest atrophy-related importance, as their importance varies 
most directly with their normalized gray matter volume. To assess differences in the 
average SHAP values for these top regions within each subtype, we used a linear 
mixed effects model (lme4 package in R). Our model was specified as: 
 
Equation 3:  
log ����	 
 min����	� � 1� ~ 1 � ������� � �1|������� ���  � �1|��� ! "�# $!�  
 
Therefore, we assessed the impact of a patient’s Subtype on the SHAP value, 
controlling for subject ID in addition to the region of the brain for each datapoint. A log 
transform was taken to stabilize the variance of the data. Brain overlays of each top 
atrophy-related region were plotted using the plot_stat_map function from the Nilearn 
package (https://nilearn.github.io). Finally, the circlize package in R was used to plot 
chord diagrams (Gu et al. 2014) in conjunction with the viridis package for colorization. 
To construct the chord diagrams, we obtained the union of the regions with the 5 top 
values of atrophy-related importance for each of the subtypes, totalling 11 regions. We 
determined the partial correlation coefficients between SHAP values for each of these 
11 regions for each subtype and plotted the 3 regions with the highest partial correlation 
coefficients, and 3 regions with the lowest partial correlation coefficients. The centrality 
of each region, as measured by the sum of the absolute values of all incident edge 
partial correlations, determined the width of each region. The width of each edge was 
determined by the magnitude of the connection’s partial correlation coefficient. 
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Neuropathological analysis 
For the pathology analysis, we utilized sunburst plots from the plotly library, and 
performed this analysis only for our NACC data. Due to the relatively small numbers of 
patients available, we consolidated pathological classifications. For cortical atrophy, we 
grouped together moderate and severe atrophy as “high”, and mild atrophy as “low”. A 
similar method was utilized for Hippocampal Atrophy. For BRAAK staging, Stages 0-2 
were considered “Low”, while Stages 3 or above were considered “high” stages. For 
ADNC scores, “Not AD” and “Low” probability of AD were considered “lower” probability, 
whereas “Intermediate” and “High” probabilities were grouped as “higher” probabilities 
of AD. for CERAD scores, C0-C1 were considered “low” scores, whereas C2-C3 were 
considered “high” scores. Lobar Atrophy was only scored as Present or Absent, so 
these were not grouped any further. The total numbers of patients with pathology data 
were between 31 and 46 for each of these 4 types of pathology. 
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Results 
Demographic analysis 
NACC and ADNI data were heterogeneous, where subjects in the NACC database 
progressed to AD more rapidly than those in the ADNI dataset (p<0.005) (Fig. 1A). The 
more rapid progression from MCI to AD in NACC was associated with lower MMSE 
scores at baseline when pooled compared to ADNI (p<0.001). In both datasets, lower 
MMSE scores was associated with more rapid progression to AD. Interestingly, the 
average age in the NACC cohort was higher than that of the ADNI cohort (p=0.03), 
though older age generally corresponds to lower rates of AD progression. 
 
The CSF biomarker findings from the ADNI dataset were similar to those found in many 
previous studies. Aβ42 levels are higher in persons who take longer to progress to AD, 
and t-tau and p-tau are lower in persons who take longer to progress to AD. Also of note 
is the large variability in these CSF values within and between datasets, which could 
reflect person as well as collection variability. NACC and ADNI cohorts did not differ in 
persons in terms of number of ApoE4 alleles, sex, and proportions of subjects 
progressing to AD within 2, 4, and greater than 4 years. 
 
Patterns of risk-based subtypes during MCI to AD conversion 
Mean z-scored gray matter volumes (GMVs) of various brain regions of interest (ROIs) 
were calculated as described in the methods for each of the 4 subtypes: high (H), 
intermediate-high (IH), intermediate-low (IL), and low (L). GMVs were found to be highly 
correlated within subtypes over time and less correlated with different subtypes (H vs H, 
Spearman correlation: ρ=0.85, p<0.001; IH vs IH: ρ=0.73, p<0.001; IL vs IL, ρ=0.70, 
p<0.001; L vs L, ρ=0.87, p<0.001). H and IH subtypes had the greatest amount of 
atrophy throughout the brain in comparison to IL and L subtypes (Fig. 3A, Linear mixed-
effects model, IL vs H, Z = 8.3, p<0.001; IL vs IH, Z=7.1, p<0.001; L vs IH, Z=10.8, 
p<0.001; H vs L, Z=12.8, p<0.001). The H subtype showed the greatest amount of 
atrophy in the medial temporal lobe at both initial and final timepoints (Figs. 3A & 3C). 
This finding correlated with persons of the H subtype having high risk of progression to 
AD. 
 
We found the subtypes to be robust and consistent across time from the initial MCI 
diagnosis to progression to AD (Fig. 3A). Persons tended to demonstrate brain atrophy 
in similar patterns to remain in the same subtype. Overall, the H subtype was the most 
stable, with 59/60 high risk MCI subjects transitioning to high risk at time of progression 
to AD. Interestingly, almost all conversions of risk subtypes were to higher risk 
subtypes, with only 1 subject each transitioning from H to IH and from IH to IL. The L 
subtype was the most labile, with 9/18 transitioning to higher risk subtypes.  
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In subgroup L, z-scored normalized GMVs in the occipital lobe and temporal lobe (both 
medial and overall) were relatively large compared most other lobes (OL vs Cingulate, 
Basal Ganglia, Parietal Lobe, and Subcortical Area, all p < 0.05; medial temporal lobe 
vs Parietal Lobe, Subcortical Area, Frontal Lobe, Basal Ganglia, Cingulate, all p < 0.05 
[linear mixed-effects model, p-values adjusted via Dunn-Sidak method, degrees of 
freedom asymptotic due to large sample size]). In subtype H, the normalized GMV of 
the occipital lobe was only significantly larger than that of the hippocampus (p < 0.05). 
Subtype IL demonstrated a larger normalized GMV in the cingulate cortex compared 
with the rest of the cohort (Cingulate cortex vs Temporal lobes (medial and other), 
subcortical regions, occipital lobe, insula, all p < 0.05; vs Frontal lobe, Parietal lobe p> 
0.05), and local decreases in the occipital lobe and temporal lobe compared with the 
other subtypes. Subtype H demonstrated a profound decrease in normalized GMV in 
the medial temporal lobe relative to other lobes (comparisons vs all other lobes, p < 
0.05). Of course, we must interpret these relative changes within the context of a global 
decrease in gray matter atrophy amongst patients with the highest risk of AD. 
 
Distribution of risk-based subtypes 
We identified 4 subgroups of MCI patients that demonstrated distinct progression 
projections to AD. GMVs for subjects in each subgroup were found to be high correlated 
between NACC and ADNI (Fig. 3A). We calculated the risk of progression from MCI to 
AD for each subtype in ADNI and NACC at various timepoints after being diagnosed 
with MCI (Fig. 3B). In the ADNI dataset, high-risk subjects were found to have a 
significantly greater risk of AD progression compared with intermediate-high risk 
subjects at times 24mo and 48mo (X2(1)=7.02, p=0.008, X2(1)=4.84, p=0.028). While 
intermediate-high and intermediate-low subjects did not initially differ in progression risk 
at time 24mo, they were found to have different progression risk when assessed at 
48mo (X2(1)=5.59, p=0.018). Intermediate-low and low risk subjects were found to have 
significantly different progression risk profiles at both 24mo (p=0.0016) and 48mo 
(p=0.028) after MCI diagnosis. Interestingly, the differences in progression risk seemed 
to decrease as time progressed to 96mo after diagnosis. Risk of progression was found 
to be significantly different when comparing the higher risk subtypes (high, intermediate-
high) with lower risk subtypes (intermediate-low, low) at 96mo. 
 
Similar differences in progression were found with the NACC dataset. As with ADNI 
subjects, high risk subjects had significantly greater probability of progression than 
intermediate-low (p=0.006) and low risk (p=0.002) subjects at 24mo. Curiously, high 
and intermediate-high risk subjects only demonstrated significant differences in risk 
profiles starting at time 48mo (p=0.002), while only showing a strong trend towards 
significance at time 24mo (p=0.08). Additional significant differences in risk were found 
only between high and intermediate-low and low risk subjects at 48mo. Overall, all but 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.21267495doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.08.21267495
http://creativecommons.org/licenses/by-nc-nd/4.0/


the highest risk subtype tended to cluster together in terms of progression risk in NACC 
in contrast with ADNI.  
 
Spatial signatures of risk-based subtypes 
We extracted the top 5 brain regions with normalized GMVs most positively correlated 
with their respective SHAP values from our MLP model for each subtype (Fig. 5A). In 
other words, we selectively identified regions where the importance of a region was 
most dependent on its input. In subtype L, we found the region importance to be on 
average more positive for the top 5 regions in contrast with more negative importance in 
subtype H; specifically, we found SHAP values for subtype H to be significantly lower 
than those in subtypes IL (z=-3.008, p=0.0157) and L (z=-7.609, p<0.0001) for the 
regions under investigation. H and IH subtypes did not differ in terms of average SHAP 
values (z=-1.034, p=0.8835). SHAP values in IH were significantly smaller than in L (z=-
6.593, p<0.0001) and in IL compared to L (z=-3.848, p=0.0007), indicating that the 
regions with the strongest relationship to their input values in these groups indicated a 
below average risk for progression. 
 
In terms of region-specific findings, GMV of the superior temporal gyrus (STG) was 
strongly related to the contribution of this region to AD risk across all subtypes, though 
only a single edge emanates from this node over all three chord diagrams, in the 
intermediate-high risk group (Fig. 5Cii). Here, the importance of the STG, an area of the 
brain that contributes to language, appears inversely related to the importance of the 
superior frontal gyrus, which is related to behavior (Cajanus et al. 2019). The inferior 
temporal gyrus and angular gyrus were in the top 5 regions for both H and IH subtypes. 
In addition, their importance was highly correlated as shown in Fig. 5C, and they 
demonstrated a direct, positive connection in the IH subtype and a connection 
separated by a single node, the fusiform gyrus, in the H subtype. Finally, the amygdala 
was an independent predictor of risk in three out of the four subtypes, and had the 
highest centrality in subtypes L and IL, the 4th highest in subtype IH, and 2nd highest in 
subtype H. Therefore, not only is amygdala GMV an important positive predictor of 
survival itself in most subtypes, but its relationship with other important regions is a 
feature shared by these subtypes. On average, subtypes shared regions with a 
similarity of 0.25+0.05 (Jaccard similarity, mean + standard deviation). 
 
Deep learning models 
We trained multiple deep learning probabilistic risk prediction models to predict 
progression of MCI to AD using both ADNI (internal dataset) and NACC data (external 
dataset). We compared the performance of these models based on concordance 
indices (CI) and Brier scores (BS). Higher CI and lower BS correlate with increased 
prediction accuracy of probabilistic risk prediction models. The highest performing 
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model on our external dataset was the SCNN model utilizing transfer learning and some 
fixed layers, with a CI of 0.681 and BS of 0.095 (Table 1). While the base SCNN 
seemed to have a comparable CI to the SCNN with transfer learning and 2 unfrozen 
layers when evaluated on our internal dataset, transfer learning helped to increase the 
CI of the SCNN model between 10-19% and to decrease the BS between 24-34% on 
the external dataset. We saw a similar pattern with our traditional CNN models, where 
transfer learning helped increase the progression prediction accuracy from 0.72 to 0.98. 
 
Models incorporating the vision transformers did not perform well compared to the other 
tested models. These models had the lowest concordance indices and highest Brier 
indices when tested on both the internal and external datasets. In terms of performance 
on the internal dataset, the MLP models were among the highest performers. In fact, the 
MLP model utilizing GMVs resulted in the highest concordance index on the internal 
dataset of 0.87 while the MLP model using normalized GMVs, age, and MMSE scores 
resulted in the lowest BS of 0.068. The greatest benefit in decreasing the BS was 
observed when we added either age or MMSE to the MLP. Allowing the MLP to use 
both age and MMSE together did not seem to make as much of a difference in 
performance and it decreased the CI compared to the MLP using only MMSE. 
 
Pathological confirmation of results 
Interestingly, of the patients who we were able to obtain pathology for in our validation 
cohort (NACC), no measures of AD-related pathology differed between subtypes, and 
the proportions of patients who progressed to AD versus those who remained MCI were 
similar in patients with pathology available (Chi-square tests for independence, all p > 
0.05). We used ADNC as an aggregate measurement of Alzheimer’s Disease 
neuropathology (it is a composite of characteristic amyloid plaques (APs), neurofibrillary 
tangles (NTs), and neuritic plaques (NPs), the latter two of which translate to BRAAK 
staging (NFTs), CERAD score (NPs)) (Montine et al. 2012). Only 8/39 patients with data 
for ADNC demonstrated no AD, and of these only 25% were diagnosed as clinically 
having AD. 
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Discussion 

We demonstrated that (1) patterns of gray matter volume in risk-based subtypes 
are stable over time, (2) gray matter volume in pre-established risk-based subtypes 
correlates with similar patterns of GM volume loss in an external dataset, (3) both MLPs 
and sCNNs, and to a lesser extent sViTs, that are trained on GM volumes, are able to 
recapitulate the risk determined empirically in these datasets (ADNI and NACC), and (4) 
risk-based subtypes demonstrate distinct patterns of region significance, as defined by 
a strong positive correlation between SHAP value and gray matter volume.  
 Although choosing Aβ-42 as a marker for progression risk was theoretically 
justified (Buchhave 2012), it was unclear the extent to which different brain regions 
would distinguish themselves in different risk-based subtypes, and it was also unclear 
whether or not we would be able to capture distinct patterns of GM volume loss with this 
methodology or whether or not we would be capturing different stages of the same 
underlying process. Persons in the ADNI dataset with a screening-visit diagnosis of MCI 
were specifically selected to have symptoms of amnesia.  As up to this point anatomical 
subtyping has demonstrated great success in differentiating patients with different areas 
of cognitive impairment (Murray et al. 2011; Varol et al. 2017), it was a strong possibility 
that by limiting our initial dataset primarily to patients with shared deficits in this 
cognitive domain, we would only isolate a single anatomical subtype at different points 
in time instead of multiple anatomical subtypes. We demonstrate that at least partially, 
these risk-based subtypes are distinct anatomically in terms of relative region size as 
they remain largely stable over time. While overall, persons in the higher risk groups 
demonstrate more global atrophy than those in the lower risk groups, each subtype has 
specific regions and lobes that have higher or lower volumes of gray matter when 
normalized to intracranial volume. 
 Mapping risk subtypes to the validation dataset by clustering based on GM 
volume centroids recapitulated broadly the survival curves in our subtyping scheme, 
with the highest risk patients progressing more rapidly to AD. Furthermore, our models 
were able to capture the survival curves of patients in both with good overall 
discrimination and calibration. Interestingly, our MLP model that utilized only normalized 
GM volumes from regions defined from an atlas significantly outperformed all SCNNs 
and SViTs in terms of Concordance Index and Brier Score on the training dataset 
(ADNI). However, on validation data, SCNNs that used transfer learning and fixed 
layers shared comparable CIs and Brier Scores that were superior to that of the MLP. 
Given that these models generalized comparably to the MLP and require less human 
input i.e., prior specification of brain regions, SCNNs could be a powerful tool to forecast 
AD progression and classify persons into higher or lower risk groups. 
 In order to infer the contributions of different brain regions to predicting the risk of 
progression to AD, we performed a SHAP analysis on our MLP model, highlighting 
regions whose importance was most dependent on the underlying GM volume, a 
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measure we denote as atrophy-related importance. This is an intuitive measure 
capturing the idea that brain regions with larger underlying normalized gray matter 
volumes are more important for model predictions. If we know that the hippocampus is 
very large for a patient that is otherwise high-risk, this might more strongly inform the 
model than knowledge about a lobe of the cerebellum. Regions classically associated 
with AD showed strong atrophy-related importance across most subtypes, such as the 
amygdala (3/4 subtypes) (Poulin et al. 2011). Previous studies have highlighted the 
importance of amygdaloid degeneration. Mizuno and others found that atrophy of the 
amygdala correlated with overall memory performance in a dose-dependent manner 
(Jack et al. 1997; Mizuno et al. 2000). Our finding of the amygdala having high atrophy-
related importance strongly supports these previous findings that the amygdala plays a 
crucial role in the early stages of AD development. The superior temporal gyrus, a 
center associated with language which has been shown to demonstrate atrophy and 
decreased activity in patients with AD (Harasty et al. 1999; Peters et al. 2009). Our 
finding of the importance of atrophy in the angular gyrus in progression to AD in the 
higher risk subtypes is also well known in the literature (Hirao et al. 2005; Karas et al. 
2008). In particular, we found atrophy in the inferior temporal gyrus (ITG) to also be 
associated with higher risk of progression to AD. Synaptic loss in the ITG has been 
shown to occur in the earliest stages of AD progression, with amnestic MCI patients 
having up to 36% fewer synapses in this region compared to normal controls and lower 
verbal fluency scores on neuropsychological testing (Scheff et al. 2011). PET imaging 
has also revealed strong associations between increased FTP signal in the ITG and 
accelerated rates of cortical thinning (Scott et al. 2020). Our observations of atrophy in 
the ITG increasing risk of AD progression are consistent with these previous findings. 
 Pathological findings confirmed that we were, indeed, successful in subtyping 
and modeling patients with confirmed AD. AD pathology is evident prior to the onset of 
AD symptoms, and so we were even able to confirm AD pathology in our 
heterogeneous cohort of AD progressors and non-progressors, with no differences in 
patients with AD pathology between different subtypes. 
 Risk-based subtyping could be critical to paving a new way forward for 
physicians and pharmaceutical companies to provide targeted therapy for patients with 
mild cognitive impairment who would benefit from early intervention. The most well-
established method of establishing risk of progression to AD is via measurement of CSF 
biomarkers such as Aβ, measurements have substantial between-lab variability. For 
example, even centers in the highly curated NACC dataset do not determine CSF 
values in a uniform fashion. In addition, obtaining CSF data is invasive and while in 
general lumbar punctures are low-risk procedures, they can lead to bleeding and 
infection. The strength of our method here is that we utilize MRI, a widely available, 
non-invasive investigation technique, which can risk-stratify people based on a highly 
standardized set of CSF data, map risk groups to imaging, and utilizing deep-learning 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 9, 2021. ; https://doi.org/10.1101/2021.12.08.21267495doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.08.21267495
http://creativecommons.org/licenses/by-nc-nd/4.0/


methodologies, map risk to external datasets (NACC). Other groups have subtyped 
patients based on maximizing anatomical differences between brains; here, we 
maximize differences in risk and use anatomical differences to propagate this risk 
stratification to external datasets. Therefore, our method is a simple, extensible 
methodology that is best utilized to forecast differences in risk between different patients 
with AD. 
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Figure and table captions 

Figure 1. Study population. Summary statistics of clinical and demographic 
parameters of persons from the Alzheimer’s disease neuroimaging initiative (ADNI) and 
National Alzheimer's coordinating center (NACC) cohorts are shown. (A) Kaplan-Meier 
survival curves with 95% confidence intervals computed for our two populations (ADNI: 
n=544, 390 right-censored; NACC: n=508, 378 right-censored). Survival (time to 
progression from mild cognitive impairment to Alzheimer’s disease) was approximately 
the same for both cohorts at 24 months (X2(1)=0.06, p=0.80) though survival in the 
ADNI group exceeded that of the NACC group at 48 months (X2(1)=14.56, p<0.005, n= 
544 total observations, 390 right-censored observations for ADNI, n= 508 total 
observations, 378 right-censored observations for NACC). B. Differences in age (i) and 
mini-mental status exam score (ii) for persons in the NACC and ADNI datasets. MMSE 
scores in the > 4 year and censored groups exceeded that in the < 2 years groups in 
the ADNI dataset, while MMSEs in the censored group exceeded both <2 year and < 4 
year groups (Kruskall-Wallis test, H=39.8, df=3, p=1.1e-08; Dunn test post-hoc with 
Bonferroni correction: < 2 years vs censored, p < 0.01; < 4 years vs censored, p=0.016; 
<2 years vs > 4 years, 0.018). This suggests a general pattern of higher MMSE scores 
corresponding with longer time-to-progression. In addition, censored persons 
demonstrated similar MMSE scores as the > 4 year group (p=1). The NACC cohort 
demonstrated a similar trend, with MMSE scores in the censored group exceeding 
those in the < 2 year group (Kruskal-Wallis test, H=9.93, df=3, p=0.019; n<2 years=112, 
n<4 years=34, n>4 years=21, nCensored=33, nmissing=266, 12, 0, and 30, respectively; Dunn 
post-hoc with Bonferroni-correction, p=0.017) and MMSE scores in the >4 year group 
approaching significance relative to the <2 year group (p=0.074). Overall, the NACC 
cohort demonstrated lower MMSE scores than the ADNI cohort (w=72597.5, p=1.2e-12, 
nADNI=544, nNACC=200, nmissing,NAC=308, nmissing,ADNI=0). Persons in the ADNI group were 
also, on average, younger than the NACC group (Wilcoxon rank-sum test, w=127436, 
p=0.029, nNACC=508, nADNI=544). In both datasets, the age of persons in the censored 
group trended toward being the youngest out of all groups, though no groups 
demonstrated differences when controlled for multiple comparisons in ADNI (Kruskal-
Wallis test, H=9.06, df=3, p=0.028, n<2 years=390, n<4 years=55, n>4 years=37, nCensored=62) 
and only the comparison between the <4 year group and the control group 
demonstrated a significant difference in the NACC cohort (Kruskal-Wallis test, H=25.8, 
df=3, p=1.05e-05, n<2 years=378, n<4 years=46, n>4 years=21, nCensored=63; <4 years vs 
Censored: p=0.00026). C. Concentration profiles of three different CSF biomarkers in 
the two cohorts. Statistics not computed for the NACC dataset due to the large amount 
of missing data. For t-tau, persons in the > 4 year group and censored group 
demonstrated larger concentrations (Kruskal-Wallis test, H=71.0, df=3, p=2.65e-15, n<2 

years=390, n<4 years=55, n>4 years=37, nCensored=62; > 4 years vs < 2 years, p=0.043, >4 
years vs <4 years, 0.026, censored vs <2 years, p=1.71e-09, censored vs <4 years, 
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p=1.49e-09). A similar pattern was observed for p-tau (Kruskal-Wallis test, H=79.4, 
df=3, p=4.06e-17, n<2 years=390, n<4 years=55, n>4 years=37, nCensored=62; > 4 years vs < 2 
years, p=0.042, >4 years vs <4 years, 0.023, censored vs <2 years, p=1.73e-10, 
censored vs <4 years, p=1.29e-10). For Aβ, we observed similar CSF concentrations for 
<2 year, <4 year, and >4 year groups, while the censored groups demonstrated 
relatively higher levels (Kruskal-Wallis test, H=61.8, df=3, p=2.4e-13, n<2 years=390, n<4 

years=55, n>4 years=37, nCensored=62; censored vs <2 years, p=4.4e-08, censored vs <4 
years, p=3.5e-08). D,E,F. There were no differences in distributions of sex (X2(3)=1.33, 
p=0.25), APOe4 status (X2(3)=4.37, p=0.11), or proportion of persons in each of the 
progression groups between the two datasets (X2(3)=4.18, p=0.24). 

Figure 2. Patterns of risk-based subtypes during MCI to AD conversion. A. Mean 
z-scored gray matter in different brain regions for high (H), intermediate-high (I-H), 
intermediate-low (I-L), and low (L) risk subtypes (n=120 patients with both MCI and AD 
visits). How “hot” each region is signifying the z-scored, normalized gray matter volume 
for that subregion over all subjects in that subtype. The mean z-scored gray matter 
volumes show high correlation within-subtypes over time, and less correlated with other 
subtypes (H vs H, ρ=0.94, p=2.4e-31; I-H vs I-H, ρ=0.73, p=2.5e-12; I-L vs I-L, ρ=0.74, 
p=1.7e-12; L vs L, ρ=0.61, p=4.1e-08). B. A Sankey plot demonstrating flow from 
subtypes at each person’s MCI visit (left) to subtypes at each person’s AD visit (right). 
The plurality of persons from each subtype transitioned to the same subtype at their AD 
visit based on gray matter volume (59/60 high risk persons, 19/29 intermediate-high risk 
persons, 9/13 intermediate-low risk persons, and 9/18 low risk persons). C. When 
grouped by lobe assignment, subtypes demonstrate similar levels of normalized gray-
matter atrophy in characteristic regions at both the MCI and AD time points (nADNI=540, 
nADNI, AD=120). 

Figure 3. Distribution of risk-based subtypes. A. Gray matter volumes for persons in 
each sub-group are highly correlated across subtypes (Spearman’s correlation 
coefficient, high-risk subtype in ADNI vs high-risk subtype in NACC, ρ=0.85, p=7.5e-20; 
intermediate-high risk in ADNI vs intermediate-high risk in NACC, ρ=0.73, p=2.5e-12; 
intermediate-low risk in ADNI vs intermediate-low risk in NACC, ρ=0.70, p=8e-11; ADNI 
low-risk vs NACC low-risk, ρ=0.87, p=2.7e-21). Hotter colors indicate larger z-scored, 
normalized gray matter volumes, z-scored to the mean and standard deviations of each 
region in the complete ADNI dataset (n=544). Z-scores were thresholded at a value of 
0.3. B. Survival curves for persons in each of the subtypes in the ADNI and NACC 
dataset, compared at time points 24, 48, and 96 months. In the ADNI dataset, the high-
risk subtype demonstrates a higher risk of progression to AD than the intermediate-high 
risk subtype at times t=24 months and t=48 months (X2(1)=7.02, p=0.008, X2(1)=4.84, 
p=0.028 (Benjamini-Hochberg corrected)). Intermediate-high risk and intermediate-low 
risk subtypes do not differ in risk of progression at t=24 months (X2(1)=1.71, p=0.19) but 
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do differ at 48 months (X2(1)=5.59, p=0.018). Intermediate-low and low-risk subtypes 
differ at both 24 and 48 months (X2(1)=10.0, p=0.0016; X2(1)=4.81, p=0.028). In the 
NACC dataset, the high-risk subtype demonstrates a higher risk of progression to AD at 
time t=24 months than both intermediate-low risk and low risk subtypes (X2(1)=7.50, 
p=0.018, X2(1)=9.85, p=0.010), and a trend to higher risk of progression to AD than the 
intermediate-high risk subtype (X2(1)=2.96, p=0.13). At time t=48 months, the high-risk 
subtype demonstrates a higher risk of progression than the intermediate-high risk and 
low risk subtypes (X2(1)=9.49, p=0.0062; X2(1)=13.8, p=0.00020), and a strong trend 
compared with the intermediate-low risk subtype (X2(1)=4.71, p=0.060) Intermediate-
high risk and intermediate-low risk subtypes do not differ in risk of progression at t=24 
months (X2(1)=1.71, p=0.19) but do differ at 48 months (X2(1)=5.59, p=0.18). 
Intermediate-low and low-risk subtypes differ at both 24 and 48 months (X2(1)=10.0, 
p=0.0016; X2(1)=4.81, p=0.028). Intermediate-high, intermediate-low, and low risk 
subtypes did not demonstrate differences from one another at any time points. 

Figure 4. Schematics of deep learning frameworks. A. A schematic of a multilayer 
perceptron (MLP). Images were normalized to MNI space and segmented using CAT12, 
and gray matter volumes were obtained and normalized to the total intracranial volume 
for each subject. These values were fed into a multilayer perceptron with two fully 
connected layers and used to predict the marginal probability of survival up to 24, 48, 
and 108 months. A survival-convolutional neural network (S-CNN) was also 
constructed, with details in Supplementary Figure 4. This took as input the full, skull-
stripped and normalized MRIs and was used to predict a similar output. Finally, a 
survival-vision transformer was constructed for comparison, with the same input and 
outputs as the S-CNN. B. An exemplar comparison of empirical survival curves (Kaplan-
Meier estimate) and predicted survival curves (interpolated in 1-month increments using 
the marginal probabilities of survival from each model) for the high-risk subtype in the 
ADNI cohort. The MLP recapitulates the empirical survival curve best of all three 
models, as seen in Table 1. 

Figure 5. Spatial signatures of risk-based subtypes. Mean SHAP values from the 
multi-layer perceptron model across all 3 survival bins for the NACC dataset, and chord 
diagrams demonstrating large partial correlation coefficients between different regions. 
A. The 5 regions with the largest atrophy-modulated importance are plotted here for 
each subtype. Larger SHAP values correspond to more importance for that brain region 
in terms of predicting the average marginal probability of survival across the three time 
bins (0-24 months, 24-48 months, and > 48 months), and hotter values correspond to 
larger gray matter volume (broken down into percentiles). SHAP values are on average, 
larger, for the top 5 regions in the low-risk subtype, which correspond to higher gray 
matter volumes and lower marginal probabilities of progression (i.e., higher probabilities 
of survival). SHAP values are, at the same time, smaller, for the top 5 regions in the 
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high-risk subtype, corresponding to more largely negative SHAP values and 
correspondingly lower probabilities of progression. (Mixed-effects model, main effect of 
high-risk subtype vs intermediate-high risk subtype, z=-1.034, p=0.88; high risk subtype 
vs intermediate-low risk subtype, z=-3.008, p=0.0157; high risk vs low-risk subtype, 
p<0.001, Dunn-Sidak corrected for multiple comparisons). B. Brain masks with heat 
map overlays corresponding to average SHAP values across all individuals from each 
subtype for each of the top five regions highlighted in (A).  C. Chord diagrams 
demonstrating subtype-specific signatures. Each edge represents a partial correlation 
coefficient between SHAP values between regions represented in (A). The 3 largest and 
3 smallest partial correlations are displayed for each subtype. Red edges correspond to 
positive relationships, and blue edges correspond to negative relationships. Edge width 
corresponds to the magnitude of the partial correlation coefficient. Strong positive partial 
correlations between hippocampus and amygdala SHAP values are seen in all chord 
diagrams. Aside from this relationship, the remainder of the top relationships remain 
largely distinct. 

Figure 6. Subtype-specific associations with post-mortem data. Pathology at time 
of autopsy does not differ between the 4 risk-based subtypes (cortical atrophy: 
X2(3)=0.23, p=0.97; hippocampal atrophy: X2(3)=1.22, p=0.75; lobar atrophy: 
X2(3)=1.54, p=0.67; BRAAK stage: X2(3)=0.89, p=0.83; ADNC: X2(3)=7.21, p=0.065; 
CERAD score, X2(3)=3.39, p=0.34). 
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Supplementary figures 

Table S1. Summary statistics for both the NACC and ADNI cohorts that correspond to 
the figures in Figure 1. In summary, t-tau and p-tau tended to be larger in groups where 
patients progressed more rapidly to AD, while Aβ tended to be smaller in these groups. 
There were no differences between the number of APOE alleles in the average ADNI 
versus NACC person, and genders were also equally distributed between the two 
cohorts. NACC patients were in general older and had lower MMSE scores. 
 
Figure S1 A flow chart demonstrating the process of collecting and collating metadata 
from the ADNI cohort and aligning the metadata with images.  
 
Figure S2 A flow chart demonstrating the process of collecting and collating metadata 
from the NACC cohort and aligning the metadata with images. 
 
Figure S3 A flow chart demonstrating the two different image-processing pipelines. On 
the right side, we utilized a pure SPM12 pipeline in order to bias-correct and skull-strip 
brains to be used by the S-ViT model and S-CNN models. On the left, we obtained gray 
matter volumes corresponding to each region of the Neuromorphometrics atlas utilizing 
CAT12.7.  
 
Figure S4 Figure of the survival convolutional neural network (S-CNN). Each 
convolutional layer (upper part) is composed by convolving and pooling operations, as 
well as dropouts. After 5 convolutional layers (middle part), the outputs were flattened 
and passed through a dense layer for final prediction. Before training, the network’s 
parameters will be initialized using a pre-trained CNN’s weights for knowledge transfer 
(lower part), which is trained using a different set of inputs and labels. The loss of the S-
CNN is replaced by survival loss mentioned earlier. 
 
Figure S5 Figure of the survival vision transformer (S-ViT). The upper left figure is the 
self-attention, where multiple is combined concurrently in the lower left part (multi-head 
self-attention). The input was first divided into separate non-overlapping patches and 
passed through a mapper, and the resulting vectors were appended with an extra 
learnable variable before being sent into the positional embedder. The resulting vectors 
were sent into the multi-head self-attention mentioned earlier, followed by a multi-layer 
perceptron. After several iterations, outputs were sent into a dense layer for final 
prediction. Like the S-CNN, the loss of the S-ViT was also replaced by the survival loss. 
 
Figure S6 A figure demonstrating model diagnostics for the linear mixed-effects models 
utilized in this study. A. Variance in the residuals between different subtypes (i) is 
similar across all 4 subtypes. In the Q-Q plot (ii), there is divergence of the distribution 
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of the residuals from a normal distribution at the tails. In (iii), it appears that the values 
of the residuals are mostly independent of fitted values. Subplot B. corresponds to 
Equation 1 and demonstrates similar findings, here showing consistent variance 
between different regions (i) and subtypes (ii). Subplot C. is an analogous plot that 
corresponds to Equation 2. 
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Table 1. 

 

Layers Loss Accuracy CI_ADNI CI_NACC BS_ADNI BS_NACC Note 

SCNN 2 Surv N/A 

0.742 ± 
0.058 

0.572 ± 
0.039 

0.228 ± 
0.036 

0.143 ± 
0.028  

SCNN_T ~ ~ ~ 0.765 ± 
0.068 

0.631 ± 
0.038 

0.259 ± 
0.037 

0.108 ± 
0.013 

Transfer 
learning 

SCNN_T_F ~ ~ ~ 0.729 ± 
0.067 

0.681 ± 
0.002 

0.177 ± 
0.023 

0.095 ± 
0.005 

last layer 
unfrozen; ~25% 

faster 

SCNN_T_F ~ ~ ~ 0.766 ± 
0.078 

0.638 ± 
0.025 

0.358 ± 
0.010 

0.104 ± 
0.002 

last 2 layers 
unfrozen 

CNN 3 CE 0.72 N/A N/A N/A N/A 

 

CNN_P 5 ~ 0.98 ~ ~ ~ ~ 
 

SCNN_5 ~ Surv N/A 

0.787 ± 
0.020 

0.654 ± 
0.016 

0.187 ± 
0.038 

0.142 ± 
0.013  

SCNN_5_T ~ ~ ~ 0.784 ± 
0.027 

0.642 ± 
0.015 

0.186 ± 
0.070 

0.137 ± 
0.013  

SCNN_Res ~ ~ ~ 0.603 ± 
0.016 

0.505 ± 
0.003 

0.232 ± 
0.015 

0.149 ± 
0.014  

ViT N/A ~ 0.72 N/A N/A N/A N/A 

 

SViT_Conv ~ ~ N/A 

0.693 ± 
0.042 

0.570 ± 
0.021 

0.301 ± 
0.043 

0.166 ± 
0.012 

Best of Conv 

SViT_Linear ~ ~ ~ 0.697 ± 
0.049 

0.579 ± 
0.049 

0.291 ± 
0.013 

0.166 ± 
0.051 

Best of Linear 

MLP_PV ~ ~ ~ 0.869 ± 
0.025 

0.673 ± 
0.008 

0.076 ± 
0.020 

0.126 ± 
0.007  

MLP_C ~ ~ ~ 0.764 ± 
0.059 

N/A 

0.169 ± 
0.049 

N/A 

 

MLP_PVA ~ ~ ~ 0.854 ± 
0.030 

~ 0.071 ± 
0.018 

~ 
 

MLP_PVM ~ ~ ~ 0.866 ± 
0.030 

~ 0.072 ± 
0.017 

~ 
 

MLP_PVAM ~ ~ ~ 0.858 ± 
0.035 

~ 0.068 ± 
0.018 

~ 
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Demographic table 
Gender NACC ADNI 
Progression category Female Male All Female Male All 
<2 years 30 33 63 26 36 62 
<4 years 23 23 46 24 31 55 

≥4 years 8 13 21 15 22 37 

Censored 184 194 378 177 213 390 
All 245 263 508 242 302 544 

 
Apoe NACC ADNI 
Progression category 0 1 2 All 0 1 2 All 
<2 years 22 21 9 52 17 36 9 62 
<4 years 25 16 3 44 21 23 11 55 

≥4 years 10 7 4 21 18 15 4 37 

Censored 168 76 18 262 230 122 38 390 
All 225 120 34 379 286 196 62 544 

 
Age (years) NACC ADNI 
Progression category <2 years <4 years ≥4 

years 

Censored <2 years <4 years ≥4 

years 

Censored 

count 63 46 21 378 62 55 37 390 
mean 75.54 77.02 77.38 71.06 72.5 73.47 74.49 71.55 
std 8.00 10.89 10.05 10.75 7.33 7.19 7.02 7.72 
min 59 38 56 27 55 57 60 55 
25% 70.5 72.5 73 65 69.25 69.5 69 66 
50% 76 79 78 73 74 74 75 71 
75% 80 84 84 78.75 76 78 79 77 
max 94 93 95 96 87 87 88 91 

 
MMSE NACC ADNI 
Progression category <2 years <4 years ≥4 

years 

Censored <2 years <4 years ≥4 

years 

Censored 

count 33 34 21 112 62 55 37 390 
mean 25.39 26.68 27.29 26.65 26.63 27.51 27.95 28.17 
std 2.41 2.21 1.65 2.70 1.96 1.63 1.56 1.76 
min 21 21 23 17 23 24 24 19 
25% 24 26 27 25 25 26 27 27 
50% 25 27 27 28 26 27 28 29 
75% 28 28 28 29 28 29 29 29 
max 29 30 30 30 30 30 30 30 

 
Aβ42 (pg/mL) NACC ADNI 
Progression category <2 years <4 years ≥4 

years 

Censored <2 years <4 years ≥4 

years 

Censored 

count 6 3 3 9 62 55 37 390 
mean 367.5 406 454 576.44 751.89 713.29 914.87 1180.63 
std 76.01 90.52 174.16 224.42 335.75 252.65 465.76 600.83 
min 276 345 300 352 267.2 316.1 408.4 291.1 
25% 315 354 359.5 436 561.35 562.9 568.6 696.68 
50% 356 363 419 476 645.6 684.7 779.8 1057.5 
75% 430.75 436.5 531 674 909.2 808.3 1086 1587 
max 460 510 643 1065 1997 1795 2477 3331 

 
t-tau (pg/mL) NACC ADNI 
Progression category <2 years <4 years ≥4 

years 

Censored <2 years <4 years ≥4 

years 

Censored 

count 6 3 3 9 62 55 37 390 
mean 727 709.33 607.67 519.44 353.52 374.73 296.75 250.96 
std 289.87 452.92 435.26 334.01 128.40 154.85 155.43 112.16 
min 483 274 274 217 101.2 130.7 125 93.85 
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25% 570.75 475 361.5 283 257.63 265.3 193.7 174.73 
50% 611 676 449 447 328.65 340.7 277.5 228.9 
75% 772.75 927 774.5 565 456.6 453.9 334.2 295.23 
max 1273 1178 1100 1225 670.1 816.9 811.7 851.8 

 
p-tau (pg/mL) NACC ADNI 
Progression category <2 years <4 years ≥4 

years 

Censored <2 years <4 years ≥4 

years 

Censored 

count 6 3 3 9 62 55 37 390 
mean 60.5 78.67 61.33 56.89 35.44 38.16 28.93 23.72 
std 4.55 55.47 34.93 31.41 14.62 17.72 16.84 12.83 
min 52 32 30 24 8.72 11.79 9.22 8 
25% 59.75 48 42.5 35 23.99 25.27 17.74 15.62 
50% 62 64 55 48 32.41 34.01 27.88 20.22 
75% 63.5 102 77 71 45.89 49.29 33.56 27.71 
max 64 140 99 127 74.45 92.08 82.04 103 
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