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Abstract 

Background: Mobile health offers potential benefits to patients and healthcare systems alike. 

Existing remote technologies to measure respiratory rate (RR) have limitations, such as cost, 

accessibility and reliability. Using smartphone sensors to measure RR may offer a potential 

solution. 

Objective: The aim of this study was to conduct a comprehensive assessment of a novel 

mHealth smartphone application designed to measure RR using movement sensors.  

Methods: In Study 1, 15 participants simultaneously measured their RR with the app, and an 

FDA cleared reference device. A novel reference method to allow the app to be evaluated ‘in 

the wild’ was also developed. In Study 2, 165 participants measured their RR using the app, 

and these measures were compared to the novel reference. Usability of the app was also 

assessed in both studies. 

Results: The app, when compared to the FDA-cleared and novel references, respectively, 

showed a mean absolute error (MAE) of 1.65 (SD=1.49) and 1.14 (1.44), relative MAE of 

12.2 (9.23) and 9.5 (18.70) and bias of 0.81 (limits of agreement (LoA) =-3.27-4.89) and 0.08 

(-3.68-3.51). Pearson correlation coefficients were 0.700 and 0.885. 93% of participants 

successfully operated the app on their first use.   

Conclusions: The accuracy and usability of the app demonstrated here show promise for the 

use of mHealth solutions employing smartphone sensors to remotely monitor RR. Further 

research should validate the benefits that this technology may offer patients and healthcare 

systems. 
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Introduction 

Extensive growth in the development and adoption of remote healthcare tools has been seen 

in recent years in response to increasing demand for traditional offerings. Notably, the 

COVID-19 global health pandemic has made salient how these mobile health (mHealth) tools 

may support healthcare systems to manage their patients when resources are pushed to 

breaking point.1-3 As more widely accessible tools can be used by more people - and therefore 

offer greater impact - many mHealth smartphone applications (apps) have been developed, 

due to the high global penetration of smartphones. These systems offer a wide variety of 

services from telemedicine to remote monitoring and self-care, and evidence suggests they 

may produce improved economic4 and health outcomes.5 

 

Respiratory rate (RR) is a fundamental indicator of health status for many health conditions, 

both general and specific to the respiratory system.6-11 As such, mHealth solutions for 

monitoring of RR may offer significant value to patients and healthcare professionals (HCPs) 

alike. Although several such solutions exist, many fall short on various factors. Hardware-

based solutions, including piezoelectric sensors12 pulse oximeters,13 and multi-sensor 

devices,14-15 are typically expensive, vulnerable to limited means of manufacture and 

distribution,16 and may lack interoperability with other health records, which is cited as a 

critical risk to decentralisation of national healthcare systems.17 Software-based solutions 

address limitations of cost, manufacture and distribution; however, they typically employ 

less-stable mechanisms of action. These mHealth apps often use smartphone cameras or 

microphones,18-20 the latter of which have been evidenced to be vulnerable to environmental 

noise at the cost of accuracy and usability.21-22 
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Movement sensors may present a promising alternative software-based solution for mHealth 

RR monitoring. Research indicates that multi-axial accelerometers and gyroscopes - as found 

ubiquitously in modern smartphones - can accurately capture RR based on chest 

movements.23-30 Additionally, due to their mechanism of action, these sensors are 

significantly less affected by environmental noise. Overall, smartphone-based measurement 

of RR provides a potential low cost, and widely available method for RR measurement, both 

in a remote monitoring environment, or in locations where specialised hardware and software 

are not available. 

 

 This article presents an observational assessment of a novel user-centric mHealth 

smartphone app that measures RR using smartphone movement sensors. We first conducted a 

preliminary evaluation of the device and study methods via a small lab-based study, then 

jointly assessed accuracy and usability on a greater scale and ecological valid environment 

via a remote study. Ethical approval was provided by the University of Exeter’s Research 

Ethics Board (application ID eUEBS004088) and all research was conducted in compliance 

with the Declaration of Helsinki. 

Study 1 

Methods 

The preliminary evaluation pursued three aims: (1) to establish the accuracy of the novel 

mHealth smartphone app relative to a reference device cleared by the US Food and Drug 

Administration (FDA), (2) to understand the usability of the mHealth app and (3) to evaluate 

the suitability of a novel reference method that would permit accuracy assessments to be 

conducted via remote and real-world studies. Through a prospective, non-interventional, non-
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randomised study conducted on healthy volunteers, RR estimates provided by the FDA-

cleared reference device were compared to those from the novel mHealth smartphone app 

and the novel reference. 

Measurements 

Novel mHealth smartphone app 

The mHealth app contained a purpose-built user interface (Figure 1). The user is instructed to 

hold their smartphone to their upper-middle chest with the screen facing outwards while 

sitting still and breathing normally for the duration of the 30-second sensor recording. Data is 

captured from the smartphone’s tri-axial gyroscope and interpolated to achieve an even 

100Hz sample frequency. A low-pass Butterworth filter with 0.4 Hz cut-off is applied to 

remove high-frequency noise while retaining activity associated with breathing, typically in 

the 0.16-0.33Hz range (10-20 breaths per minute (BPM)). RR is calculated by performing an 

autocorrelation before normalising the resulting signal. A peak-finding routine then identifies 

prominent peaks corresponding to the cyclical property of breathing movements. The mean 

inter-peak interval (IPI) is then calculated and converted to a ‘per minute’ RR estimation by 

division by 60 (seconds) (Figure 2). 
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Figure 1. Selected wireframes from the user interface of the mHealth app, depicting (from 

left to right) an option given to the user to view operation instructions in video or written 

format, an instruction for the user to hold their smartphone to their chest, a clinical safety 

feature allowing the user to retake a recording if they were disturbed while taking the 

original recording, and feedback given to the user if their recording fails the signal check. 
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Figure 2. Graphical depiction of peak finding following application of an autocorrelation 

method. The grey line shows an example of correlation coefficients for a movement sensor 

(gyroscope) signal correlated with itself at progressive temporal shifts. Black crosses 

indicate prominent peaks corresponding to the cyclical property of breathing movements. 

IPIs are depicted by di. 

 

An additional ‘signal check’ routine assesses whether the signal quality is sufficient to 

accurately derive RR, based on whether the number of autocorrelation peaks or standard 

deviation (SD) of the individual IPIs meet predetermined thresholds identified via 

preliminary bench-testing. If a recording fails the signal check, the user is informed via the 

app’s UI, redirected to the operation instructions and prompted to try again. Passing the 

signal check within three recordings attempts constitutes a successful use of the system, and 

three consecutive signal check failures constitute an unsuccessful use of the system, after 

which the user is instructed to seek support or try again later.  

 

FDA-cleared reference  

The MightySat Rx13, developed by Masimo Corporation, was selected as a reference due to its 

FDA-cleared status, continuous measurement and ease of use. The fingertip pulse oximeter 

derives RR using photoplethysmography (an optical measure of volumetric changes in 

peripheral blood flow). Continuous estimates of RR produced by this reference were 

converted to single weighted averages to facilitate comparison with data derived from the 

mHealth app. 
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Novel reference 

The novel reference method involves identification of repeated cyclical peak-trough 

complexes within smartphone movement sensor signals(Figure 3). Signals of insufficient 

quality to derive RR are considered to fail the reference method. This method is conceptually 

similar to reference methods described in peer-reviewed literature reporting accuracy 

assessments of multiple RR devices, including successful FDA market clearance 

applications.13; 31-33 This method would permit accuracy assessments to be conducted via 

remote and real-world studies without a need for additional hardware, offering significant 

value in terms of research scale, cost and ecological validity via avoidance of observation 

bias.  

 

Figure 3. Graphical depiction of the novel reference method involving visual inspection of 

smartphone movement sensor signals by trained clinical and scientific researchers. The grey 

solid line shows an example of a smartphone movement sensor (gyroscope) signal, with black 

solid arrows depicting nine full repeated cyclical peak-trough complexes. The grey dotted 

line indicates the projected continuation of the movement sensor signal past the end of the 
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recording period, with the grey dashed arrow indicating where a tenth full peak-trough 

complex would end. Hence, the movement sensor signal depicts a total of approximately 9.75 

peak-trough complexes, with the final .75 peak-trough complex indicated by the black dashed 

arrow. 

Participants and recruitment 

Participants were recruited via convenience sampling. All were employees of the mHealth 

app manufacturer. Inclusion criteria included being aged 18 or over and being willing and 

able to follow the study protocol and complete an informed consent form. 

Procedure 

The study took place at the offices of the mHealth app manufacturer. Participants were 

provided with complete information concerning the study procedures and gave written 

informed consent to participate. The FDA-cleared reference device was applied to the 

forefinger of the participant’s left hand. Participants were provided with an iPhone XR with 

the mHealth app installed and received verbal instructions on operating the device: namely, to 

hold the smartphone to their upper middle chest with the screen facing outwards while sitting 

still and breathing normally during the 30-second recording. Participants were instructed to 

capture six recordings, disregarding whether each recording passed or failed the signal check. 

Audiovisual footage was captured during the study and used for offline synchronisation of 

data captured via the mHealth app and FDA-cleared reference. Specifically, this included 

sounds produced by the mHealth app indicating the start and end of the app’s recording 

period and depicting RR estimates displayed on the FDA-cleared reference’s monitor. 

Participation took around 10 minutes per participant. 
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Statistics 

The error of the mHealth app and novel reference relative to the FDA-cleared reference was 

assessed through measures of mean absolute error (MAE), relative MAE and using the 

Bland-Altman method.34 Due to the non-normal distribution of absolute error data, 

confidence intervals for MAE and relative MAE were derived via bootstrapping with 

replacement employing 1000-iterations and a sample size of 100%. The proportion of 

clinically significant errors, defined as an absolute error greater than three breaths per 

minute,35-36 was also calculated. Direct relationships between RR estimates generated through 

the mHealth app, novel reference and FDA-cleared reference were assessed via Pearson 

Product Moment Correlation (PPMC). The usability of the mHealth app was assessed using 

the proportion and position of recordings that failed the signal check. 

Results 

Participants and data 

15 participants took part in Study 1 (9 female), for whom 6 recordings each were collected 

for a total of 90. 26 (28%) mHealth app recordings failed the signal check and were excluded 

from analyses, resulting in a dataset of 64 paired samples. 29 (32%) of recordings failed the 

novel reference method, so were excluded from analyses, resulting in a dataset of 61 paired 

samples.  

Accuracy 

mHealth app versus FDA-cleared reference 

Error results indicated an MAE of 1.65 BPM (SD = 1.49) with a 95% confidence interval 

(CI) of 1.32-2.06. Relative MAE was 12.2% (SD = 9.23) with 95% CI of 10.06 - 14.57. Bias 

(FDA-cleared reference - mHealth app) was 0.81 (SD = 2.08) with limits of agreement (LoA) 

of -3.27 - 4.89, indicating RR underestimation by the mHealth app. 8 comparisons (12.5%) 
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had an absolute error greater than 3 BPM. A Bland-Altman plot indicated error values as a 

function of RR averaged between the reference and mHealth app (Figure 4). PPMC produced 

a coefficient of r(63) = 0.700, p < .000, indicating a high or strong association between the 

reference RR estimates and mHealth app RR estimate37 (Figure 5). 

 

 

 

Figure 4. Bland-Altman plot for RR estimates provided by the mHealth app and FDA-cleared 

reference. The x-axis indicates RR estimates averaged between the mHealth app and FDA-

cleared reference and the y-axis indicates the difference between RR estimates from each 

source (FDA-cleared reference - mHealth app). The solid horizontal line depicts a mean 

difference (bias) of 0 and dashed lines from top to bottom represent the upper limit of 

agreement (4.89), the observed mean difference (bias; 0.81), and the lower limit of 

agreement (-3.27). Marker size is proportional to the number of observations for each 

combination of values.  
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Figure 5. Scatterplot for simultaneous RR estimates provided by the mHealth app (x-axis) 

and FDA-cleared reference (y-axis). The solid line indicates the gradient y=x. Marker size is 

proportional to the number of observations for each combination of values. 

 

Novel reference versus FDA-cleared reference 

Error results indicated that MAE was 1.69 BPM (SD = 1.61) with a 95% CI of 1.23 - 2.22. 

Relative MAE was 12.8% (SD = 11.60) with 95% CI of 9.96 - 15.64. Bias (FDA-cleared 

reference - novel reference) was 0.22 (SD = 2.34) with LoA of -4.36 - 4.79, indicating slight 

RR underestimation by the mHealth app. 9 comparisons (15%) had an absolute error greater 

than 3 BPM. A Bland-Altman plot indicated error values as a function of RR averaged 

between the FDA-cleared and novel references (Figure 6). PPMC produced a coefficient of 

r(59) = 0.701, p < .000, indicating a high or strong association37 (Figure 7). 
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Figure 6. Bland-Altman plot for RR estimates provided by the novel reference and FDA-

cleared reference. The x-axis indicates RR estimates averaged between the novel and FDA-

cleared references and the y-axis indicates the difference between RR estimates from each 

source (FDA-cleared reference - novel reference). The solid horizontal line depicts a mean 

difference (bias) of 0 and dashed lines from top to bottom represent the upper limit of 

agreement (4.79), the observed mean difference (bias; 0.22), and the lower limit of 

agreement (-4.36). Marker size is proportional to the number of observations for each 

combination of values.  
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Figure 7. Scatterplot for simultaneous RR estimates provided by the novel reference (x-axis) 

and FDA-cleared reference (y-axis). The solid line indicates the gradient y=x. Marker size is 

proportional to the number of observations for each combination of values. 

Usability 

14 of a total of 15 participants (93.3%) were able to use the system successfully on their first 

try (Table 1; Figure 8). Specifically, this indicates that they could capture one or more 

recordings that passed the signal check within the first three attempts. All participants were 

able to use the system successfully by the end of their second try.  
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Table 1. Number and proportion of participants able to use the system successfully on 

consecutive attempts in Study 1 (n = 15). 

Use of system, n (%) Recording attempt 

 1st 2nd 3rd Total 

First 11 (73.3) 12 (80.0) 10 (66.7) 14 (93.3) 

Second 12 (80.0) 8 (53.3) 11 (73.3) 15 (100) 

 

 

Figure 8. Line graph indicating the proportion of Study 1 participants who were able to 

generate a recording that passed the signal check on each of six consecutive recording 

attempts. The black dashed line indicates the proportion of individuals who were able to 

generate a recording that passed the signal check by the end of their first use of the system 
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(three consecutive recordings), and the grey dashed line indicates the proportion of 

individuals who were able to do so by the end of their second use of the system. 

Interim conclusion 

Study 1 results indicated strong relationships between the FDA-cleared reference and both 

the mHealth app and the novel reference. Notably, these relationships were highly 

comparable to functional outcomes for alternative FDA-cleared RR monitoring devices.12, 14, 

36, 38 Accordingly, these results supported both continued assessment of the mHealth app and 

application of the novel reference to accuracy analyses in Study 2, as described below. 

Study 2 

Methods 

Study 2 aimed to establish the accuracy of the mHealth app ‘in the wild’ via remote data 

capture, compared to the novel reference validated in the Study 1. The usability of the 

mHealth app was additionally assessed in a larger sample. Measures and statistics were as 

described for Study 1. 

Participants and recruitment 

Participants were recruited via an online research platform, with study enrollment controlled 

to ensure a proportionate distribution of age, gender and smartphone ownership (iOS versus 

Android). Inclusion criteria included being aged 18 or over, having access to a smartphone of 

minimum requirements to download the mHealth app and being willing and able to follow 

the study protocol and complete an informed consent form. As researchers would not monitor 

participants during their participation, additional safety criteria excluded individuals who 

were pregnant, breastfeeding,  had a pacemaker, or a chest or spine problem that could affect 

their breathing. 
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Procedure 

Participants were directed to online documentation containing full information about the 

study procedures before completing an online eConsent procedure. They then completed a 

baseline questionnaire concerning their demographics, including age, sex, ethnicity, height 

and weight, before receiving instructions to download and activate the mHealth app. 

Participants were requested to follow instructions provided within the mHealth app to capture 

10 RR recordings, including recordings that both passed and failed the signal check, before 

completing a System Usability Scale (SUS)39 and providing separate qualitative feedback on 

their experience using the mHealth app. Study-specific procedures took approximately 20 

minutes, for which participants were reimbursed £2.50 through the research platform. 

Results 

Participants and data 

165 participants enrolled in the study, of whom 152 completed the baseline questionnaire 

concerning their demographics (Table 2). Medical conditions reported included asthma 

(respiratory), arthritis and Parkinson’s disease (movement). 5 participants were excluded due 

to significant deviation from the study protocol, resulting in a participant cohort of 160, for 

whom a mode of 11 mHealth app recordings each was captured. 987 recordings passed the 

signal check and were included in accuracy analyses. Recordings were submitted from 64 

unique smartphone models, 46 (71.9%) of which were Android and the rest were iPhone 

models. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2021. ; https://doi.org/10.1101/2021.12.03.21267247doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.03.21267247
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Demographic characteristics for Study 2 participants (n = 152). 

Characteristic Female (n = 67) Male (n = 85) Total (n = 152) 

Age in years, mean 
(SD, range) 

43.5 (14.85, 18-73) 40.7 (14.70, 19-69) 41.9 (14.78, 18-73) 

Weight in kg, mean 
(SD, range) 

70.2 (19.45, 47-
159) 

87.9 (22.31, 52-
203) 

80.1 (22.08, 47-
203) 

Height in m, mean 
(SD, range) 

1.66 (0.108, 1.45-
2.16) 

1.78 (0.660, 1.56-
1.93) 

1.73 (1.061, 1.45-
2.16) 

BMI in kg/m2, mean 
(SD, range) 

25.4 (6.28, 17.8-
58.4) 

27.7 (6.80, 17.4-
62.5) 

26.7 (6.65, 17.4-
62.7) 

Ethnicity, n (%) 

      White 57 (85.1) 72 (84.7) 129 (84.9) 

      Asian 4 (6.0) 7 (8.2) 11 (7.2) 

      Black 3 (4.5) 2 (2.4) 5 (3.3) 

      Mixed/multiple 3 (4.5) 4 (4.7) 7 (4.6)  

Medical conditions, n (%) 

      Respiratory 
disorder 

9 (13.4) 7 (8.2) 16 (10.5) 

      Movement 
disorder 

2 (3.0) 0 (0) 2 (1.3) 

      Cognitive 
disorder 

0 (0) 0 (0) 0 (0)  

Accuracy 

Error results indicated an MAE of 1.14 BPM (SD = 1.44) with a 95% CI of 1.02 - 1.26. 

Relative MAE was 9.5% (SD = 18.70) with 95% CI of 8.38 - 10.72. Bias (novel reference – 

mHealth app) was 0.08 (SD = 1.84) with LoA of -3.68 - 3.51, indicating slight RR 

underestimation by the mHealth app. 61 comparisons (6.2%) had an absolute error greater 

than 3 BPM. A Bland-Altman plot indicated error values as a function of RR averaged 

between the reference and mHealth app (Figure 9). PPMC produced a coefficient of r(986) = 

0.855, p < .000, indicating a high or strong association37 (Figure 10). 
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Figure 9. Bland-Altman plot for RR estimates provided by the mHealth app and novel 

reference. The x-axis indicates RR estimates averaged between the mHealth app and novel 

reference and the y-axis indicates the difference between RR estimates from each source 

(novel reference - mHealth app). The solid horizontal line depicts a mean difference (bias) of 

0 and dashed lines from top to bottom represent the upper limit of agreement (3.51), the 

observed mean difference (bias; 0.08), and the lower limit of agreement (-3.68). Marker size 

is proportional to the number of observations for each combination of values.  
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Figure 10. Scatterplot for simultaneous RR estimates provided by the mHealth app (x-axis) 

and novel reference (y-axis). The solid line indicates the gradient y=x. Marker size is 

proportional to the number of observations for each combination of values. 

Usability 

149 (93.1%) of a total of 160 participants who captured mHealth app recordings were able to 

use the system successfully on their first try (Table 3; Figure 11). 155 (96.9%) did so by their 

second try. 
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Table 3. Number and proportion of participants able to use the system successfully on 

consecutive attempts in Study 2 (n = 160). 

Use of system, n (%) Recording attempt 

 1st 2nd 3rd Total 

First 102 (63.8) 117 (74.1) 119 (77.3) 149 (93.1) 

Second 102 (66.2) 104 (68.4) 105 (70.0) 155 (96.9) 
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Figure 11. Line graph indicating the proportion of Study 2 participants who were able to 

generate a recording that passed the signal check on each of ten consecutive recording 

attempts. The black dashed line indicates the proportion of individuals who were able to 

generate a recording that passed the signal check by the end of their first use of the system 

(three consecutive recordings), and the grey dashed line indicates the proportion of 

individuals who were able to do so by the end of their second use of the system. 

 

The mean SUS score was 73.2 (SD = 5.39). Of the sub-scales, each scored between 0 and 4, 

those most agreed with by participants were: I would imagine that most people would learn to 

use this system very quickly (3.2), I thought the system was easy to use (3.1) and I felt very 

confident using the system (3.0). The lowest scoring, indicating participant disagreement, 

were: I think that I would need the support of a technical person to be able to use this system 

(0.5) and I needed to learn a lot of things before I could get going with this system (0.8). 
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Discussion 

Principal findings 

To the authors’ knowledge, this is the first study to assess at scale a user-operated novel 

mHealth smartphone application designed to capture a user’s RR using smartphone 

movement sensors, considering both accuracy and usability in an ecologically valid study 

environment. Outcomes for the mHealth app were highly comparable to results published for 

medical devices available on the market today (Table 4). In addition, as changes in breathing 

rate greater than 3 BPM may indicate clinical deterioration35-36, observations that error values 

for the mHealth app were typically less than this threshold suggest the device may carry low 

clinical risk. Study 2 revealed a small cluster of substantial overestimation errors (5-10 BPM) 

for lower RRs (8-14 BPM). Although this observation was not found in the Study 1, this may 

be due to the smaller sample size in that analysis. The nature of these overestimations is 

unclear based on the present analyses. Overestimation of RR carries clinical risk with regard 

to both underdiagnosis of bradypnea (low RR) and overdiagnosis of tachypnea (elevated RR) 

that may lead to clinical decision making based on misinformation, although it should be 

noted that RR is rarely used in isolation to inform clinical decision making. Future research 

should seek to identify and mitigate the cause of these errors.  
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Table 4. Comparison of mHealth app results to alternative devices available on the market 
today. 

Comparison MAE (SD, 
95% CI) 

Relative MAE 
(SD, 95% CI) 

Bias (SD, 
LoA) 

Correlation 
coefficient 

mHealth app 

 Compared to FDA-
cleared reference 

1.65 (1.49, 
1.32 - 2.06) 

12.2 (9.23, 
10.06 - 14.57) 

0.81 (2.08, -
3.27 - 4.89) 

0.700 

 Compared to novel 
reference 

1.14 (1.44, 
1.02 - 1.26) 

9.5 (18.70, 
8.38 - 10.72) 

0.08 (1.84, -
3.68 - 3.51) 

0.885 

Respirasense (PDM Solutions) 

 Compared to 
capnography12 

- - 0.38 (N/A, 
N/A, -1.0 - 1.8) 

- 

 Compared to manual 
count12 

- - -0.70 (N/A, 
N/A, -4.9 - 3.5) 

- 

 Compared to 
electrocardiogram36 

- - -0.41 (1.79, -
0.73 - -0.08, -
3.9 - 3.1) 

0.84 

 Compared to manual 
count36 

- - -0.58 (2.5, -
1.04 - -0.12, -
5.5 - 4.3) 

0.78 

BioStamp nPoint 
(MC10) compared to 
capnography14 

1.3 (2.1, 
N/A) 

- -0.29 (N/A, 
N/A, -5.17 - 
4.59) 

0.697 

Rad-87 (Masimo) 
compared to 
capnography38 

- 10 (9, 7-13) - - 

 

Concerning usability, most participants could successfully operate the mHealth app on their 

first or second use of the system. Although no industry standards for successful operation 

exist, results observed here appeared to be broadly similar to values that could be estimated 

from available literature regarding other physiological measurement mHealth apps, which 

were typically in the range of 95% or higher.40-42 Subjective usability outcomes were also 

promising, with an overall SUS score well above the industry average of 68.43 Study 2 

revealed a general trend of high signal check pass rates for later sequential recording 
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attempts, suggesting that participants found it easier to capture RR recordings the more they 

used the mHealth app. Although this learning effect was not observed in the Study 1 results, 

this may be due to observer bias and a small sample size within that study setting. This 

observation holds promise for improved usability with long-term use of the mHealth app, 

although it may indicate greater clinical risk during early use of the system. Future research 

may seek to steepen the learning curve to minimise clinical risk. 

 

Strengths of the present study include the application of a remote study design that lends 

ecological validity to the results and selective recruitment to ensure a heterogeneous 

participant cohort, which suggests good generalisability of the results. In addition, the 

inclusion of usability assessment allows a holistic perspective on the mHealth app to be 

generated. In all, these results hold promise for the use of smartphone movement sensors as a 

viable means of remote RR monitoring. Software-based mHealth may offer cost and 

scalability benefits compared to hardware-based monitoring. Additionally, movement sensors 

may better protect RR signal quality than alternative devices that use microphone and camera 

sensors, as these are vulnerable to noise from environmental light and sound that is difficult 

to control. These benefits suggest that RR monitoring based on smartphone movement 

sensors may support healthcare systems to care for their patients when they are outside of the 

clinic better than currently available alternatives.  

Study limitations 

As only healthy participants were recruited, it is also unclear how the observed results may 

extrapolate to healthcare patients who would be likely real-world users of the mHealth app - 

particularly those with abnormal breathing rates and patterns due to a respiratory condition. 

Participants both from Study 1 (employees of the mHealth app manufacturer) and Study 2 

(members of an online research community) were likely to be technologically confident and 
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may have therefore been predisposed to successfully operating the mHealth app. Future 

research should seek to incorporate individuals of low technical literacy and target end-users 

with relevant medical conditions to better understand these results' generalisability.  

 

Concerning methodology, the FDA-cleared reference used in Study 1 has its own 

measurement error.13 Hence, error estimates presented here are, in fact, an unknown 

combination of errors associated with the FDA-cleared reference and mHealth app versus 

true RR. The Study 2 reference also underwent only limited validation in Study 1 and should 

be assessed more rigorously. Future research may wish to apply a wider range of reference 

methods, including gold and industry-standard references, to reduce the vulnerability of the 

mHealth app to shortcomings of any single reference.  

 

Additionally, the present research design does not directly address potential benefits the 

mHealth app may offer if applied in a healthcare setting. Although expectations that moving 

health assessments outside of a clinical setting via mHealth technologies will improve 

healthcare economics have been somewhat supported by literature,4 clinical evidence 

suggests that mHealth technologies are highly heterogeneous in their ability to improve 

health outcomes.44-45 Suggestions that mHealth may help to overcome social, economic and 

geographical barriers to healthcare are also yet to be validated.46-48 Future research should 

seek to understand the clinical, economic and social outcomes associated with real-world use 

of the mHealth app.  

Conclusions 

Decentralised healthcare technology holds the potential to offer clinical and economic 

benefits to patients, HCPs and healthcare systems. Breathing is an important indicator of 

health, and although solutions for remote RR monitoring exist, many entail significant 
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shortcomings that may limit their ability to capitalise on potential benefits of mHealth. 

Results from the present study hold promise for the use of smartphone movement sensors as a 

robust means for remote RR monitoring. However, future research should address residual 

questions and risks associated with the technology identified in this article and seek to 

validate the impact of similar technologies as applied in the real world. 
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