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Abstract 

 

COVID-19 has been associated with many neurological complications including stroke, delirium and 

encephalitis. Furthermore, many individuals experience a protracted post-viral syndrome which is 

dominated by neuropsychiatric symptoms, and is seemingly unrelated to COVID-19 severity. The 

true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated 

host inflammatory responses appear to be a key driver of severe COVID-19 more broadly. 

 We sought to investigate the dynamics of, and relationship between, serum markers of brain injury 

(neurofilament light [NfL], Glial Fibrillary Acidic Protein [GFAP] and total Tau) and markers of 

dysregulated host response including measures of autoinflammation (proinflammatory cytokines) 

and autoimmunity. Brain injury biomarkers were measured using the Quanterix Simoa HDx platform, 

cytokine profiling by Luminex (R&D) and autoantibodies by a custom protein microarray.  

During hospitalisation, patients with COVID-19 demonstrated elevations of NfL and GFAP in a 

severity-dependant manner, and there was evidence of ongoing active brain injury at follow-up 4 

months later. Raised NfL and GFAP were associated with both elevations of pro-inflammatory 

cytokines and the presence of autoantibodies; autoantibodies were commonly seen against lung 

surfactant proteins as well as brain proteins such as myelin associated glycoprotein, but reactivity 

was seen to a large number of different antigens. 

Furthermore, a distinct process characterised by elevation of serum total Tau was seen in patients at 

follow-up, which appeared to be independent of initial disease severity and was not associated with 

dysregulated immune responses in the same manner as NfL and GFAP.  
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Introduction 

COVID-19 has been associated with several neurological complications including stroke and immune-

mediated disorders such as Guillain-Barré syndrome and autoimmune encephalitis.1 Furthermore, 

up to a third of infected individuals experience a protracted post-viral syndrome following COVID-19 

which is potentially of CNS origin given the dominance of neuropsychiatric symptoms such as fatigue 

and subjective cognitive difficulties .2–4 While the occurrence of physical brain injury is overt in some 

COVID-19-associated neurological syndromes such as stroke and encephalitis, a number of studies 

have suggested that brain injury can occur in the context of COVID-19 even in the absence of a clear 

concomitant neurological diagnosis. However,  the mechanism that might drive this process requires 

further attention. 5–15 In COVID-19 disease, exaggerated host inflammatory responses appear to be a 

key driver of severe disease, and the most effective established therapies for systemic COVID-19 aim 

to attenuate this response.16,17 Initial attention focused on the innate immune system as a key 

driver, and emerging evidence also suggests a significant role for dysregulated adaptive immune 

responses.18 This combined maladaptive response is reminiscent of that seen in a spectrum of 

immune-mediated diseases – which extend from autoinflammatory to autoimmune in nature - 

described in non-COVID-19 settings.19 

Here, we seek to investigate markers of a dysregulated immune host response, including surrogates 

of autoinflammation (proinflammatory cytokines) and autoimmunity (autoantibodies), and how they 

correlate with biomarkers of brain injury. 

 

Methods 

Study populations 

Patients admitted to Cambridge University Hospital, UK with PCR-proven COVID-19 were identified 

between March 2020 and March 2021. Providing research personnel were available, all patients 

admitted to Cambridge were approached for consent, either in the acute phase, or at follow-up visit. 

The cohort of patients recruited from Cambridge were supplemented by a convenience sample of 

PCR-proven COVID-19 patients from Sahlgrenska University Hospital, Sweden (February – March 

2020); previously included in a prospective sampling study.20  Written consent was gained from 

either patients themselves, or from their legal representatives where they lacked capacity to 

consent. Where written consent could not be gained due to restrictions on hospital visiting, legal 

representatives were consulted by telephone. This study was approved by the Swedish Ethical 

Review Authority (2020–01771) and the East of England – Cambridge Central Research Ethics 

Committee (17/EE/0025); via the Cambridge Biomedical Research Centre). Healthy controls were 

recruited through the Cambridge Biomedical Research Centre (prior to the COVID-19 pandemic) and 

all provided written consent (17/EE/0025). Data from a small positive control group consisting of 

patients with acute traumatic brain injury were included as a reference for the magnitude of brain 

injury biomarker elevations (REC 97/290). 

Procedures 

Serum samples were collected at up to three timepoints from admission (acute [0-14 days], subacute 
[15–70 days] and convalescent [at outpatient follow up; >80 days). The samples were aliquoted, 
labelled with pseudoanonymised identifiers, and frozen immediately at -70oC. Samples from Sweden 
were then shipped on dry ice to the University of Cambridge.  
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Demographic and clinical information 

Demographic, clinical and laboratory information was recorded by the clinical team at the time of 

admission; Short Form Health Survey 36 (SF36)21 was completed in patients recruited to Cambridge 

University Hospital who returned for follow-up after their attendance to hospital. Patients were 

stratified into three groups of severity based on the treatment needed in the acute phase (Mild: no 

supplemental oxygen was required, Moderate: supplemental oxygen was required, Severe: invasive 

mechanical ventilation was required). 

Brain injury biomarker measurement 

Neurofilament light, glial fibrillary acidic protein, total tau, and ubiquitin C-terminal hydrolase L1 

concentrations were quantified in serum at the University of Cambridge using the Neurology 4-PLEX 

A assay run on an HD-X Analyser (Quanterix, Billerica, MA, USA). As per previous experience, UCH-L1 

levels were predominantly around the lower level of quantification, with high coefficients of 

variance between replicates, and therefore were excluded from analysis. Five samples taken from 

patients within 3 days of severe traumatic brain injury were also assayed to provide a frame of 

reference for magnitude of changes seen. 

Protein microarray autoantibody profiling 

Autoantibody screening was performed using a custom central nervous system protein microarray 

based on the HuProtTM (version 4.0) platform.22,23 The microarray was devised in collaboration with 

Cambridge Protein Arrays Ltd. (Cambridge, UK) and CDI laboratories (Puerto Rico) to detect 

autoantibodies predominantly directed against central nervous system antigens (n = 51), but also to 

a number of blood-brain barrier (n = 5) and other tissue-specific (n = 94, covering organ systems 

including lung, heart and coagulation) antigens, as well as spike and nucleocapsid antigens (full 

antigen list detailed in Supplemental Figure 1). The microarrays consist of a glass microscope slide 

with a thin nitrocellulose coating, printed with quadruplicate spots of recombinant yeast-expressed 

whole proteins. Each slide accommodates up to 12 individual serum samples. Samples from healthy 

controls and patients with COVID-19 were randomly distributed across the slides to mitigate against 

experimental variation.   

The slides were blocked in 2% BSA/ 0.1% PBS-Tween overnight at 4oC, washed, and then incubated 

with 200 μl of 1:1000 diluted serum at room temperature for two hours. The slides were washed 

again, incubated at room temperature for two hours with fluorophore-conjugated goat anti-human 

IgM-μ chain-Alexa488 (Invitrogen, Carlsbad, CA, USA, Cat. No. A21215) and goat anti-human IgG-Fc-

DyLight550 (Invitrogen Cat. No. SA5-10135) secondary antibodies, washed, and then scanned using a 

Tecan LS400 scanner and GenePix Pro v4 software, with the output being median fluorescence value 

of the quadruplicate spots for each protein.  

Cytokine Profiling 

Serum concentrations of TNFα, IL-1β, IL-6, IL-10 and IFN-γ were quantified using by multiplexed 

particle based flow cytometry on a Luminex 200 analyser using xPonent Software (R&D Systems / 

Luminex) according to manufacturer’s recommendations. The population reference ranges derived 

for clinical use with this assay were utilised. Sensitivities / minimum detectable doses as indicated by 

the manufacturer are: IFN-γ (0.04 pg/ml); IL-1β (0.08 pg/ml); IL-6 (0.14 pg/ml); IL10 (0.21 pg/ml); 

TNFα (0.29 pg/ml). 
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Statistical Analysis 

Continuous descriptive data are presented using median and interquartile range, and categorical 

variables using number and percentage. Unpaired two-group comparisons were assessed using 

Mann-Whitney U tests, paired two-group comparisons with Wilcoxon Matched-Pairs Signed Rank 

tests and categorical comparisons with the Chi-squared statistic. Multiple t-tests were used to 

generate volcano-plots, with a false-discovery rate set to 1%. Comparisons between more than two 

groups were undertaken using Kruskal-Wallis test with post-hoc Dunn’s multiple comparison test. 

Correlations between continuous variables were assessed using Spearman’s rank correlation co-

efficient, and where multiple correlations were assessed within an experiment, Bonferroni 

correction was used to determine the appropriate level of significance. Principal component analysis 

was used as a dimension reduction technique to identify inflammatory cytokine profiles. All analyses 

were performed using GraphPad Prism Version 9.2.0. 

Protein microarray data analysis 

As previously described,23 antibody binding was determined by measuring the median fluorescence 

intensity (MFI) of the four quadruplicate spots of each antigen; this value was then normalised by 

dividing it by the median MFI value of all antigens for that sample. These normalised values were 

then transformed into Z scores based on the distribution derived for each antigen from the healthy 

control cohort. A positive autoantibody “hit” was defined as an antigen where Z>3. 

 

Results 

Study Populations 

For brain injury biomarker analysis, 250 samples (from 175 patients; 122 from Cambridge and 53 

from Gothenburg, at up to three time-points), and control samples from 59 age-matched healthy 

individuals were obtained. The 122 patients from Cambridge represented ~7% of a total of 1666 

patients admitted over the study period. Comparisons of the study population with the overall 

admitted population are shown in Supplementary Figure 2.  Overall, there was no difference in age 

between patients and controls (51 [35-61] vs. 50 [32-62], but a larger proportion of males in the 

patient group (93 [53%] vs 21 [35%]; p = 0.02). Of the patients, 70 (40%) had mild disease, 72 (41%) 

moderate disease and 33 (19%) severe disease. The median (IQR) timings of the samples post-

admission were: acute = 7 (3 – 10) days, subacute = 31 (26 – 35) days, and convalescent = 122 (109 – 

136). A subset of these patients underwent autoantibody and cytokine profiling. Graphical 

description of these cohorts is shown in Supplementary Fig. 2.     

Neurofilament-light (NfL) and glial fibrillary acidic protein (GFAp) rise acutely in a severity-

dependant manner, whilst elevated serum total tau concentrations are seen in the convalescent 

period irrespective of severity 

In patients with COVID-19, serum concentrations of NfL and GFAP were raised in a severity-

dependant manner at both the acute and subacute timepoints; there was no systematic difference 

between serum total tau concentrations between patients and controls (Fig. 1A&B, Supplementary 

Table 1).  

The temporal dynamics, in 67 patients who provided longitudinal samples, showed that both GFAP 

and NfL tended to fall with time, although NfL rose in some patients between the acute and 

subacute timepoints, presumably as a result of its longer half-life (Fig. 1D; Supplementary Fig. 3A). 
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Unusually, serum total tau concentrations were significantly higher than controls at the convalescent 

timepoint (0.95 [0.75 – 1.15] vs. 0.72 [0.60 – 1.04] pg / ml, p = 0.003; Fig. 1D & E). 

At the convalescent timepoint, serum GFAP concentrations were no higher than controls 

irrespective of disease-severity, but serum NfL concentrations persisted at levels which were higher 

in patients who had developed moderate and severe COVID-19 compared with controls (Fig. 1C, 

Supplementary Table 1). The elevation of serum total tau concentration did not vary with severity, 

and indeed after correction for multiple comparisons only patients who had developed mild disease 

remained significantly higher than controls (Fig. 1C, Supplementary Table 1).  Convalescent levels of 

both NfL and GFAP concentrations correlated with paired samples taken at the 15-42 day timepoint 

(ρ = 0.69, p = 0.0008 and ρ = 0.82, p < 0.0001 respectively), but total Tau did not (ρ = 0.27, p = 0.02), 

suggesting that the residual elevations of NfL and GFAP are reflective of events occurring during the 

acute illness, whereas the subsequent elevation of total Tau appears to be independent from any 

acute effects.  

 

To explore the relationship between elevations of convalescent brain injury biomarkers and clinical 

outcomes, we studied correlations with the eight components of the SF-36. High serum NfL 

concentrations appeared to correlate most strongly with worse scores (notably: physical functioning 

[ρ = - 0.52, p = 0.03], general health [ρ = - 0.48, p = 0.05] and role functioning – emotional [ρ = - 0.53, 

p = 0.02]). The relationship between serum total tau concentrations and SF-36 domains, however, 

was very different, with higher concentrations seemingly associating with better scores, particularly 

in the emotional components (emotional wellbeing [ρ = 0.56, p = 0.02] and energy/ vitality [ρ = 0.56, 

p = 0.02]; Fig. 1F). None of the above comparisons withstood adjustments for multiple comparisons, 

however.  

 

While the number of patients in this cohort with specific neurological syndromic diagnoses were 

small (mononeuritis multiplex n = 3, opsoclonus myoclonus n = 1, and peripheral neuropathy with 

concurrent encephalopathy n = 1), these patients appeared to have higher brain injury biomarker 

levels, with one patient showing biomarker levels an order of magnitude higher than other patients.  

However, numbers were too small to draw definitive inferences (Supplementary Fig. 3B).  

Autoantibodies against a wide range of tissues are seen in COVID-19, particularly in severe 

disease, and associate with a proinflammatory cytokine profile 

The data were first assessed for any group-wise differences in reactivity to self-antigens between 

patients with COVID-19 and controls; volcano plots showed that not only did COVID-19 patients 

demonstrate clear IgG reactivity to SARS-CoV-2 spike protein and nucleocapsid, but also to 

surfactant protein A (SFTPA1), a lung surfactant protein, mutations of which result in pulmonary 

fibrosis (Fig. 2A).24 This increased reactivity was seen in both subacute and convalescent samples 

(Fig. 2B); reactivity to SFTPA1 in the subacute samples was stronger in patients with moderate and 

severe disease than in either those with mild disease or healthy controls (Fig. 2C). The presence of 

this autoantibody has not been previously described in COVID-19; furthermore, we have not 

detected it in cohorts of patients with traumatic brain injury (unpublished data), suggesting that it is 

not a common finding in critically ill patients more generally. No increased IgM reactivities were 

seen to any antigen in subacute COVID-19 samples compared with controls, but there was higher 

IgM reactivity to both spike protein and HLA-DRA in the convalescent samples. 
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While the group level comparisons provided information about pervasive autoantibody responses 

that were common across patients, this approach was less useful in identifying autoantibody 

responses which were found in a minority of patients but were still biologically interesting. 

Autoantibody profiles of the groups were therefore compared by assessing the number and targets 

of positive autoantibody hits to specific target antigens. COVID-19 patients had higher numbers of 

both IgG and IgM autoantibody hits than healthy controls, which peaked at the subacute timepoint, 

but remained elevated in the convalescent samples (Fig. 2D&E). Patients with moderate or severe 

disease had higher numbers of autoantibody hits than those with mild disease at the subacute 

timepoint (Fig. 2F&G), and the number of IgM and IgG autoantibodies an individual had were related 

(ρ = 0.32, p = 0.01).  

Autoantibodies to many different antigens were seen, but some were seen more frequently (Fig. 

2H). Anti-myelin associated glycoprotein (MAG) was the most commonly detected IgG autoantibody, 

seen in 9.6% COVID-19 samples but not seen in any healthy controls, followed by surfactant protein 

A (SFTPA1), which was detected in 8.8% patients, and again not seen in healthy controls (Frequency 

of positive autoantibody hits in control and COVID-19 cohorts shown in Supplementary Table 2). 

No specifically characteristic autoantibody was seen in the five patients with syndromic neurological 

diagnoses. 

Elevations in serum cytokine concentrations were seen in the subacute samples, particularly IL-6, 

TNFα and IL-10, but many patients demonstrated concentrations persisting above the normal range 

in the convalescent samples. (Fig. 2I). There was substantial covariance between all cytokines other 

than interferon gamma (Fig. 2J), but principal component analysis demonstrated the three canonical 

pro-inflammatory cytokines driving PC1 (Fig. 2K; note that the proinflammatory cytokines generate a 

negative eigenvector [Fig. 2L]). Patients with moderate and severe disease demonstrated higher 

concentrations of proinflammatory cytokines (Fig. 2M). The number of both IgG and IgM hits 

correlated with an elevated proinflammatory cytokine response (PC1 from principal component 

analysis vs. IgG: ρ = -0.33, p = 0.01, PC1 vs. IgM: ρ = -0.30, p = 0.02).  

Magnitude of autoantibody and pro-inflammatory cytokine response associates with high serum 

markers of brain injury 

To understand whether there was a relationship between inflammatory profiles and brain injury 

biomarkers, we compared brain injury biomarker levels with cytokines and autoantibody responses. 

At the subacute timepoint, serum GFAP and NfL concentrations positively correlated with both the 

number of IgG hits and increased proinflammatory cytokine responses (GFAP and NfL vs. IgG hits: ρ = 

0.26, p = 0.03 and ρ = 0.38, p = 0.001 respectively [Fig. 3A&B]; GFAP and NfL vs. cytokine PC1 ρ = -

0.53, p < 0.0001 and ρ = -0.65, p < 0.0001 respectively), but there was no such relationship between 

serum total Tau concentration and number of IgG hits or cytokine response (ρ = 0.02, p = 0.90 and ρ 

= 0.17, p = 0.2). The number of IgM hits also correlated with serum NfL concentration (ρ = 0.33, p = 

0.006), but not with GFAP or total Tau (ρ = 0.20, p = 0.10, and ρ = 0.07, p = 0.57 respectively). The 

relationship between brain injury biomarkers and the top 10 most frequently detected 

autoantibodies was investigated; after Bonferroni correction, serum NfL concentrations were 

associated with the Z score of IgG autoantibodies against NfL, SFTPA1 and MYBPHL (ρ = 0.35, p = 

0.002, ρ = 0.38, p = 0.001 and ρ = 0.41, p = 0.0005 respectively), but none of the top 10 

autoantibodies retained significance against serum GFAP or total Tau concentrations after correcting 

for multiple comparisons.  

In the convalescent period, the number of IgG hits once again correlated with serum NfL 

concentrations (ρ = 0.48, p = 0.002; Fig. 3C), but not GFAP or total tau (ρ = 0.12, p = 0.46, ρ =  -0.08, p 
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= 0.63 respectively). The relationship between brain injury biomarkers and cytokine profiles seen in 

the acute phase was replicated in convalescent patients, with elevations in proinflammatory 

cytokines associating with raised NfL and GFAP, but not total tau (PC1 vs. NfL: ρ = -0.55, p < 0.0001; 

GFAP: ρ =  -0.26, p = 0.05; total Tau ρ = -0.1, p = 0.43).  

IgM autoantibodies in the convalescent phase are associated with elevation of brain injury 

biomarkers, especially Tau 

At the convalescent timepoint, however, there was an association between number of IgM hits and 

all brain injury biomarkers, particularly total Tau (GFAP: ρ = 0.45, p = 0.004; NfL: ρ = 0.50, p = 0.001; 

total Tau: ρ = 0.51, p = 0.0007; Fig. 3D). To investigate this relationship further, patients were 

dichotomised into either high IgM responder (>3 IgM hits) versus low IgM responder (<3 IgM Hits) 

groups, and the levels of brain-injury biomarkers compared. Serum concentrations of all three 

biomarkers were higher in the high IgM responder group, but again total Tau was the most highly 

significant difference (GFAP: 58.2 [32.6 - 87.05] vs. 37.8 [23.8 – 43.1], p = 0.03; NfL: 7.5 [5.2 – 16.5] 

vs. 4.6 [3.0 – 8.1], p = 0.026; total Tau: 1.1 [0.9 – 1.3] vs. 0.8 [0.7 – 0.9], p = 0.001; Fig. 3E).  

 

Discussion 

The aim of this study was to examine how frequently brain injury occurred in COVID-19, both acutely 

and in convalescence, and whether elevated brain injury biomarkers were associated with a 

dysregulated host inflammatory response. We demonstrated that brain injury biomarkers are 

elevated in a severity-dependent manner in the acute phase, and that these elevations are 

associated with both raised pro-inflammatory cytokines and the presence of autoantibodies. When 

patients were followed up (~four months post-admission), there was evidence that this 

immunological dysregulation had not fully resolved and was associated with serum markers of 

ongoing active brain injury (namely neurofilament light-chain), albeit to a lesser degree than in the 

acute illness. In addition, in convalescent patients, there appeared to be a second, separate, process, 

which was characterised by a different pattern of serum brain injury biomarkers (more specifically 

elevation of total Tau), which were not related to initial COVID-19 severity or pro-inflammatory 

cytokine levels but were associated with the presence of IgM autoantibodies. We observed 

autoantibody responses to many different targets (most commonly lung surfactant protein A1 and 

myelin associated glycoprotein), but the particular target of the autoantibody did not seem to relate 

to the presence of brain injury; rather, it seemed that the more diverse the autoantibody repertoire 

generated (reflecting a more generalised immune response), the more significant the degree of 

brain injury.  

Our data confirms and extends previous studies investigating brain injury biomarkers in COVID-19, 

which have suggested that blood NfL concentrations are elevated in acute COVID-19 infection, and 

associate with severity of illness and therefore poor outcome.5–15 A longitudinal cohort study by 

members in our collaboration, demonstrated that serum NfL and GFAP levels had returned to 

baseline by six months following admission,7 suggesting that the persistent elevation in NfL at four 

months in our cohort is capturing the end of this period of active brain injury. The late elevations in 

total Tau seen in our cohort, however, are novel, as there is no precedent in the COVID-19 literature 

for this. Elevated serum total Tau concentrations have been described in patients with tauopathies 

such as Alzheimer’s Disease and Frontotemporal dementia,25 and serum concentrations associate 

with trajectory of cognitive decline in these conditions.26,27 Larger cohorts will be required to 

accurately delineate the association between late elevated total Tau and clinical outcome, however 
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the lack of association between initial disease severity and subsequent total Tau elevation is 

tantalising: if replicated, this may represent an accessible biomarker to explore the basis of the 

protracted neuropsychological sequelae that occurs in a substantial minority of people infected with 

SARS-CoV-2.   

It is well recognised that viral infections can trigger autoantibody production, both low-affinity 

polyreactive species, as well as higher-affinity specific species such as anti-cardiolipin antibodies.28,29 

This phenomenon has been replicated in COVID-19, with a number of studies describing the 

presence of autoantibodies to a plethora of targets including “traditional” rheumatological 

autoantibodies as well as less clinically established autoantibodies such as those targeting type 1 

interferons.30–35 The role of these autoantibodies is largely unknown.  Although they appear to occur 

more commonly in severe illness, they may well simply represent an epiphenomenon of tissue 

damage (perhaps even a useful mechanism for debris clearance).  However, it has been suggested 

that autoantibodies to certain targets (such as interferons) may predispose to severe disease,36 and 

it appears that immune-complex formation is a potent driver of secondary immune cell activation in 

COVID-19.37 

The associations seen in our data between brain injury biomarkers and dysregulation of both innate 

and adaptive immune responses may represent autoinflammatory and autoimmune mechanisms 

that drive neurological injury.  The well-documented impact of immune modulatory treatments in 

preventing severe COVID-19 provides strong evidence that a substantial component of the acute 

pathophysiology of COVID-19 relates to an unbridled and dysregulated host response, rather than 

damage caused directly by the virus. Our data suggest that brain injury occurring during acute 

COVID-19 may also result from similar mechanisms, and provide a plausible mechanistic basis for 

these manifestations, given the scant evidence to support direct viral invasion of the brain by SARS-

CoV-2.1  

Our data do not define causality between the immunological parameters and the presence of brain 

injury. In the acute phase, both may be influenced by additional factors that drive severe disease.  

Indeed, the immunological changes may be occurring in response to tissue injury, rather than 

causing it. However, given the growing evidence of the detrimental effects of excess inflammation in 

COVID-19 more broadly, it is plausible that the elevation of brain injury biomarkers is driven by a 

maladaptive host response.38  This may be the result of neuroinflammation per se,39–42 or 

inflammatory injury to the cerebrovascular bed, which subsequently results in microvascular 

ischaemic brain injury.43–46  Similar considerations may apply to the convalescent phase of illness, 

where the association of IgM autoantibodies with serum Tau could represent a persisting 

immunological dyscrasia driving brain injury.  The relative specificity of Tau at this phase of the 

illness may represent tissue specificity of the process (Tau is a dendritic and axonal marker).  

It should be noted that this study does not contain a disease control group consisting of patients 

with alternative respiratory infections, such as influenza, to determine to what degree the brain 

injury biomarkers and immunological changes are seen in other comparable conditions. A single 

small study suggested that patients with bacterial pneumonia displayed higher blood markers of 

brain injury than patients with COVID-19,9 and we hypothesis that the processes described in this 

paper are likely to be relevant to severe illness more broadly. This being the case, the lessons learnt 

from COVID-19 may serve to help mitigate against the neurological sequelae of severe illness in the 

future.47 

In conclusion, we have demonstrated that markers of brain injury are associated with dysregulated 

immunological responses in COVID-19, and that there may be a separate late process irrespective of 
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initial disease severity which is characterised by elevated serum total Tau concentrations and the 

presence of IgM autoantibodies.  
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Figure 1. Serum brain injury biomarker concentrations in patients with COVID-19. A-C) Dotplots 

showing the effect of COVID-19 disease severity on brain injury biomarkers at the acute, 

subacute and convalescent timepoints; representative levels from five patients with acute severe 

traumatic brain injury (TBI) included as a reference for magnitude of elevation. D) Temporal 

changes in serum GFAP, NfL and Tau concentrations. E) Elevated serum total Tau concentrations 

at the convalescent timepoint in COVID-19. F) Correlation matrix of brain injury biomarkers and 

SF36 quality of life measure components 

HC = healthy controls, nCOV = COVID-19, TBI = traumatic brain injury, CNS = central nervous 

system complication, PNS = peripheral nervous system complication. Multiple group comparisons 

are by Kruskal-Wallis test with post-hoc Dunn’s multiple comparison test; two-group unpaired 

comparisons are by Mann-Whitney U test, and paired by Wilcoxon matched-pairs signed rank 

test; correlations are by Spearman’s rank.  
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Figure 2. Autoantibody profiling in COVID-19. A&B) Volcano plots of groupwise comparisons in 

autoantibody profiles between COVID-19 patients and controls C) Relationship between disease severity 

and anti-SFTPA1 IgG autoantibodies D&E) Temporal profiles of IgG and IgM autoantibody responses F&G) 

Effect of disease severity on number of IgG and IgM autoantibody “hits”. H) Top ten most frequently 

detected autoantibodies across all samples. I) Comparison of cytokine profiles at the subacute and 

convalescent timepoints, with normal range shown by hatching. J) Correlation matrix between measured 

subacute cytokines K) Loadings plot from principal component analysis demonstrating the contributions of 

proinflammatory cytokines to PC1 L) Comparison in subacute proinflammatory cytokine response between 

mild and moderate / severe disease. Volcano plots use multiple Mann-Whitney U tests with a false-

discovery rate set to 1%; Multiple group comparisons are by Kruskal-Wallis test with post-hoc Dunn’s 

multiple comparison test; two-group unpaired comparisons are by Mann-Whitney U test, correlation matrix 

is by Spearman’s rank 
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Acute (n = 48) Subacute (n = 123) Convalescent (n = 79)

GFAP HC 42.2 [32.2 - 68.6] 42.2 [32.2 - 68.6] 42.2 [32.2 - 68.6]

GFAP Mild 55.3 [43.7-113] 34.5 [27.5 - 70.5] 42.15 [26.2 - 79.2]

GFAP Mod 143.5 [64.6-259] 54.3 [40.7 - 80.7] 55.8 [44.9 - 104.0]

GFAP Severe 98.1 [87.3 - 208.5] 82.2 [64 - 165.9] 41.9 [34.5 - 74.6]

NfL HC 5.5 [3.6 - 10.4] 5.5 [3.6 - 10.4] 5.5 [3.6 - 10.4]

NfL Mild 8.2 [2.6 - 15.9] 4.2 [2.8-9.1] 4.8 [3.0 - 10.0]

NfL Mod 19.2 [11.1 - 30.7] 10.1 [5.1 - 16.0] 10.4 [6.9 - 18.0]

NfL Severe 30.6 [14.3 - 81.3] 45.6 [30.8-98.7] 10.8 [7.4 - 19.4

Tau HC 0.72 [0.60 - 1.04] 0.72 [0.60 - 1.04] 0.72 [0.60 - 1.04]

Tau Mild 0.78 [ 0.65 - 1.21] 0.80 [0.66 - 1.03] 0.95 [0.75 - 1.11]

Tau Mod 0.74 [0.49 - 1.10] 0.39 [0.18 - 0.73] 0.90 [0.71 - 1.27]

Tau Severe 0.68 [0.33 - 1.02] 0.94 [0.68 - 1.24] 0.91 [0.73 - 1.27]

Supplementary Table 1. Brain injury biomarker data. Values shown are median [IQR]. 

HC = healthy controls (n = 59); Mild (n = 70), Mod (Moderate; n = 72), and Severe (n = 33) relates to severity of COVID-19. 

Figure 3. Relationship between serum brain injury biomarkers and autoantibody profiles. 

A&B) Correlation between number of IgG hits and serum GFAP and NfL concentrations at 

the subacute timepoint. C) Correlation between number of IgG hits and serum NfL 

concentrations at the convalescent timepoint. D) Correlation between number of IgM hits 

and serum total Tau concentrations at the convalescent timepoint. E) Comparison of 

convalescent serum brain injury biomarker concentrations between patients with high 

IgM responses (>3 IgM hits Z>3) versus those with low IgM responses (<3 IgM hits Z>3). 

Two-group unpaired comparisons are by Mann-Whitney U test, correlations are by 

Spearman’s rank 

 

Supplementary Table 1. Brain injury biomarker data. Values shown are median [IQR].  

HC = healthy controls (n = 59); Mild (n = 70), Mod (Moderate; n = 72), and Severe (n = 33) 

relates to severity of COVID-19. 
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Supplementary Figure 2. Demographic and sample details of patients and controls for 

both biomarker quantification and autoantibody profiling experiments.  
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Supplemental Figure 3. A) Spaghetti plot displaying temporal profiles of NfL in patients who 

contributed longitudinal samples B) Comparison of brain injury biomarkers between those patients 

with severe COIVD-19 who developed syndromic neurological diagnoses (mononeuritis multiplex n = 

3, opsoclonus myoclonus n = 1, peripheral neuropathy with concurrent encephalopathy n = 1) versus 

those who did not.  
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Name % Controls Z >3 % COVID Z > 3 Name % Controls Z >3 % COVID Z >  3

ACE 2.6 0.8 ACE 0.0 5.6

ACTA1 2.6 0.8 ACTA1 2.6 0.8

ADAMTS13 2.6 0.0 ADAMTS13 1.3 0.0

AGER 0.0 0.0 AGER 1.3 2.4

AGTR1 1.3 0.0 AGTR1 2.6 0.0

ANKRD23 2.6 0.0 ANKRD23 0.0 0.0

ANXA4 1.3 0.0 ANXA4 2.6 1.6

ANXA5 1.3 0.0 ANXA5 1.3 1.6

APOH 1.3 0.0 APOH 2.6 0.8

APP 1.3 0.0 APP 1.3 0.0

BSG 2.6 0.0 BSG 1.3 6.4

CD74 1.3 0.0 CD74 1.3 5.6

CDH1 1.3 0.8 CDH1 2.6 0.8

CDH13 1.3 0.0 CDH13 1.3 4.0

CDR2 2.6 0.0 CDR2 2.6 0.0

CEACAM1 1.3 0.0 CEACAM1 0.0 3.2

CEACAM5 2.6 0.0 CEACAM5 1.3 0.8

CENPB 1.3 0.0 CENPB 2.6 0.8

CENPH 3.9 0.8 CENPH 0.0 1.6

CHRM2 1.3 0.8 CHRM2 0.0 1.6

CHRNA10 1.3 0.8 CHRNA10 1.3 7.2

CHRNA9 0.0 1.6 CHRNA9 0.0 5.6

CLDN5 0.0 2.4 CLDN5 0.0 0.8

COL1A1 2.6 3.2 COL1A1 1.3 0.0

COL1A2 5.2 0.8 COL1A2 2.6 3.2

COL4a3 2.6 0.8 COL4a3 2.6 1.6

COL4A3BP 2.6 0.8 COL4A3BP 2.6 1.6

COL5A2 2.6 4.8 COL5A2 1.3 1.6

DBT 1.3 1.6 DBT 1.3 1.6

DCN 1.3 0.8 DCN 1.3 2.4

DDC 0.0 0.8 DDC 1.3 4.8

DLAT 2.6 6.4 DLAT 2.6 2.4

DPYSL5 1.3 0.8 DPYSL5 1.3 0.8

DRD2 1.3 0.0 DRD2 1.3 0.8

DUPD1 0.0 6.4 DUPD1 2.6 4.8

EDNRA 1.3 5.6 EDNRA 1.3 0.8

ELAVL4 2.6 2.4 ELAVL4 1.3 0.0

F2 1.3 0.8 F2 1.3 0.0

F7 1.3 0.0 F7 1.3 0.0

F8 1.3 4.0 F8 2.6 3.2

F9 1.3 2.4 F9 1.3 0.0

FGB 0.0 4.8 FGB 0.0 1.6

FSHB 3.9 0.0 FSHB 1.3 0.0

GABBR1 1.3 5.6 GABBR1 2.6 6.4

GABRA1 1.3 8.8 GABRA1 1.3 0.8

GABRB3 0.0 3.2 GABRB3 1.3 2.4

GAD1 2.6 1.6 GAD1 2.6 0.8

GAD2 1.3 0.8 GAD2 3.9 1.6

GFAP 2.6 3.2 GFAP 2.6 0.8

GHRHR 0.0 5.6 GHRHR 1.3 7.2

GLRA1 1.3 5.6 GLRA1 1.3 4.8

GNRHR 1.3 3.2 GNRHR 0.0 3.2

GRIA2 1.3 0.8 GRIA2 1.3 0.8

GRIA3 1.3 0.8 GRIA3 1.3 4.8

GRIA4 1.3 0.0 GRIA4 2.6 0.0

GRIN1 2.6 2.4 GRIN1 0.0 1.6

GRIN2A 0.0 2.4 GRIN2A 2.6 4.0

GRIN3A 1.3 0.0 GRIN3A 1.3 0.8

GRIN3B 0.0 1.6 GRIN3B 1.3 2.4

GRINA 1.3 3.2 GRINA 1.3 4.8

GRM1 1.3 0.0 GRM1 0.0 0.8

GRM2 3.9 0.8 GRM2 0.0 0.8

GRM3 1.3 0.0 GRM3 1.3 0.0

GRM4 0.0 0.8 GRM4 0.0 0.0

GRM7 2.6 0.0 GRM7 0.0 0.0

GRM8 0.0 0.8 GRM8 1.3 0.8

GSTT1 1.3 0.8 GSTT1 1.3 3.2

HARS 2.6 1.6 HARS 2.6 4.0

HLA-A 1.3 0.8 HLA-A 1.3 0.8

HLA-B 1.3 0.8 HLA-B 1.3 1.6

HLA-C 1.3 0.8 HLA-C 1.3 0.0

HLA-DMA 2.6 1.6 HLA-DMA 1.3 0.8

HLA-DMB 2.6 1.6 HLA-DMB 2.6 0.0

HLA-DOA 2.6 0.0 HLA-DOA 1.3 2.4

HLA-DOB 1.3 0.0 HLA-DOB 3.9 0.8

HLA-DPA1 2.6 0.0 HLA-DPA1 1.3 2.4

HLA-DPB1 3.9 0.0 HLA-DPB1 1.3 0.8

HLA-DQA1 2.6 0.0 HLA-DQA1 1.3 0.8

HLA-DQB1 5.2 0.0 HLA-DQB1 0.0 0.8

HLA-DQB2 1.3 0.0 HLA-DQB2 1.3 0.0

HLA-DRA 0.0 0.0 HLA-DRA 0.0 5.6

HLA-DRB1 1.3 1.6 HLA-DRB1 0.0 7.2

HLA-DRB3 2.6 0.0 HLA-DRB3 0.0 0.8

HLA-DRB4 3.9 2.4 HLA-DRB4 0.0 6.4

HLA-DRB5 2.6 0.0 HLA-DRB5 1.3 0.0

HLA-E 0.0 0.0 HLA-E 0.0 0.8

HLA-F 1.3 0.8 HLA-F 0.0 0.0

HLA-G 1.3 1.6 HLA-G 1.3 2.4

IDI2 2.6 0.0 IDI2 0.0 1.6

IFNA1 1.3 0.8 IFNA1 1.3 0.0

KCNJ10 2.6 4.0 KCNJ10 1.3 0.0

KRT18 1.3 8.0 KRT18 1.3 3.2

LAMC2 1.3 0.8 LAMC2 1.3 3.2

LGI1 1.3 8.0 LGI1 1.3 6.4

LRRC10 2.6 0.0 LRRC10 1.3 0.0

MAG 0.0 9.6 MAG 1.3 4.0

MAPT 2.6 0.0 MAPT 1.3 0.8

MBP 1.3 0.0 MBP 1.3 2.4

MOG 1.3 0.0 MOG 1.3 0.8

MPO 2.6 0.8 MPO 1.3 6.4

MYBPHL 0.0 4.8 MYBPHL 1.3 9.6

MYL4 1.3 0.0 MYL4 1.3 1.6

MYL7 1.3 0.0 MYL7 0.0 0.0

NEFL 2.6 2.4 NEFL 0.0 5.6

NOVA1 2.6 0.0 NOVA1 2.6 5.6

NPHS2 2.6 3.2 NPHS2 2.6 2.4

NPPA 1.3 0.0 NPPA 3.9 0.0

NPPB 2.6 4.0 NPPB 0.0 2.4

Nucleocapsid protein 1.3 59.2 Nucleocapsid protein 3.9 0.0

NUP210 2.6 0.8 NUP210 2.6 1.6

OMG 1.3 0.0 OMG 0.0 0.0

PLA2R1 1.3 4.0 PLA2R1 1.3 0.0

PNMA1 1.3 0.0 PNMA1 2.6 3.2

PNMA2 2.6 2.4 PNMA2 1.3 0.0

POMC 1.3 0.0 POMC 1.3 0.0

PPP1R27 2.6 0.0 PPP1R27 1.3 2.4

PRL 2.6 0.0 PRL 1.3 0.8

PROC 1.3 2.4 PROC 1.3 0.8

PROS1 1.3 0.0 PROS1 2.6 0.8

PRTN3 2.6 0.8 PRTN3 2.6 0.8

Rhodamine+IgG647 1.3 0.8 Rhodamine+IgG647 1.3 0.0

S100B 1.3 0.0 S100B 1.3 0.0

SCGB1A1 1.3 0.0 SCGB1A1 1.3 0.0

SCGB3A2 1.3 0.0 SCGB3A2 1.3 2.4

SELE 1.3 1.6 SELE 1.3 4.0

SFTPA1 0.0 8.8 SFTPA1 1.3 3.2

SFTPA2 1.3 0.8 SFTPA2 2.6 0.0

SFTPC 3.9 1.6 SFTPC 0.0 4.0

SLC22A12 2.6 0.0 SLC22A12 0.0 0.0

SLC2A1 0.0 4.8 SLC2A1 1.3 14.4

SNCA 0.0 0.0 SNCA 1.3 0.0

Spike protein 1.3 80.0 Spike protein 1.3 36.0

SSB 1.3 3.2 SSB 2.6 6.4

TGM2 1.3 0.0 TGM2 2.6 0.8

TJP1 1.3 0.0 TJP1 1.3 1.6

TMEM174 1.3 2.4 TMEM174 0.0 5.6

TNNI3 2.6 2.4 TNNI3 1.3 3.2

TNNT2 2.6 0.8 TNNT2 1.3 0.8

TPH1 1.3 1.6 TPH1 1.3 3.2

TPM1 3.9 0.0 TPM1 1.3 0.8

TPO 1.3 1.6 TPO 1.3 1.6

TROVE2 2.6 4.8 TROVE2 1.3 0.8

TSHB 1.3 0.0 TSHB 1.3 0.0

TSHR 1.3 2.4 TSHR 0.0 0.8

TTN 1.3 0.0 TTN 2.6 2.4

TUBA1B 2.6 0.0 TUBA1B 1.3 0.0

TUBB3 1.3 0.0 TUBB3 1.3 3.2

UCHL1 1.3 0.0 UCHL1 1.3 2.4

UCP3 1.3 1.6 UCP3 2.6 0.0

UMOD 1.3 4.0 UMOD 3.9 1.6

VIM 2.6 0.0 VIM 2.6 1.6

ZIC4 1.3 0.0 ZIC4 0.0 0.8

ZNF397 2.6 1.6 ZNF397 1.3 0.0

IgG IgM

Frequency of Positive Autoantibody Hits (Z > 3)

Supplementary Table 2 Frequency of Positive Autoantibody hits 
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Name % Controls Z >3 % COVID Z > 3 Name % Controls Z >3 % COVID Z >  3

ACE 2.6 0.8 ACE 0.0 5.6

ACTA1 2.6 0.8 ACTA1 2.6 0.8

ADAMTS13 2.6 0.0 ADAMTS13 1.3 0.0

AGER 0.0 0.0 AGER 1.3 2.4

AGTR1 1.3 0.0 AGTR1 2.6 0.0

ANKRD23 2.6 0.0 ANKRD23 0.0 0.0

ANXA4 1.3 0.0 ANXA4 2.6 1.6

ANXA5 1.3 0.0 ANXA5 1.3 1.6

APOH 1.3 0.0 APOH 2.6 0.8

APP 1.3 0.0 APP 1.3 0.0

BSG 2.6 0.0 BSG 1.3 6.4

CD74 1.3 0.0 CD74 1.3 5.6

CDH1 1.3 0.8 CDH1 2.6 0.8

CDH13 1.3 0.0 CDH13 1.3 4.0

CDR2 2.6 0.0 CDR2 2.6 0.0

CEACAM1 1.3 0.0 CEACAM1 0.0 3.2

CEACAM5 2.6 0.0 CEACAM5 1.3 0.8

CENPB 1.3 0.0 CENPB 2.6 0.8

CENPH 3.9 0.8 CENPH 0.0 1.6

CHRM2 1.3 0.8 CHRM2 0.0 1.6

CHRNA10 1.3 0.8 CHRNA10 1.3 7.2

CHRNA9 0.0 1.6 CHRNA9 0.0 5.6

CLDN5 0.0 2.4 CLDN5 0.0 0.8

COL1A1 2.6 3.2 COL1A1 1.3 0.0

COL1A2 5.2 0.8 COL1A2 2.6 3.2

COL4a3 2.6 0.8 COL4a3 2.6 1.6

COL4A3BP 2.6 0.8 COL4A3BP 2.6 1.6

COL5A2 2.6 4.8 COL5A2 1.3 1.6

DBT 1.3 1.6 DBT 1.3 1.6

DCN 1.3 0.8 DCN 1.3 2.4

DDC 0.0 0.8 DDC 1.3 4.8

DLAT 2.6 6.4 DLAT 2.6 2.4

DPYSL5 1.3 0.8 DPYSL5 1.3 0.8

DRD2 1.3 0.0 DRD2 1.3 0.8

DUPD1 0.0 6.4 DUPD1 2.6 4.8

EDNRA 1.3 5.6 EDNRA 1.3 0.8

ELAVL4 2.6 2.4 ELAVL4 1.3 0.0

F2 1.3 0.8 F2 1.3 0.0

F7 1.3 0.0 F7 1.3 0.0

F8 1.3 4.0 F8 2.6 3.2

F9 1.3 2.4 F9 1.3 0.0

FGB 0.0 4.8 FGB 0.0 1.6

FSHB 3.9 0.0 FSHB 1.3 0.0

GABBR1 1.3 5.6 GABBR1 2.6 6.4

GABRA1 1.3 8.8 GABRA1 1.3 0.8

GABRB3 0.0 3.2 GABRB3 1.3 2.4

GAD1 2.6 1.6 GAD1 2.6 0.8

GAD2 1.3 0.8 GAD2 3.9 1.6

GFAP 2.6 3.2 GFAP 2.6 0.8

GHRHR 0.0 5.6 GHRHR 1.3 7.2

GLRA1 1.3 5.6 GLRA1 1.3 4.8

GNRHR 1.3 3.2 GNRHR 0.0 3.2

GRIA2 1.3 0.8 GRIA2 1.3 0.8

GRIA3 1.3 0.8 GRIA3 1.3 4.8

GRIA4 1.3 0.0 GRIA4 2.6 0.0

GRIN1 2.6 2.4 GRIN1 0.0 1.6

GRIN2A 0.0 2.4 GRIN2A 2.6 4.0

GRIN3A 1.3 0.0 GRIN3A 1.3 0.8

GRIN3B 0.0 1.6 GRIN3B 1.3 2.4

GRINA 1.3 3.2 GRINA 1.3 4.8

GRM1 1.3 0.0 GRM1 0.0 0.8

GRM2 3.9 0.8 GRM2 0.0 0.8

GRM3 1.3 0.0 GRM3 1.3 0.0

GRM4 0.0 0.8 GRM4 0.0 0.0

GRM7 2.6 0.0 GRM7 0.0 0.0

GRM8 0.0 0.8 GRM8 1.3 0.8

GSTT1 1.3 0.8 GSTT1 1.3 3.2

HARS 2.6 1.6 HARS 2.6 4.0

HLA-A 1.3 0.8 HLA-A 1.3 0.8

HLA-B 1.3 0.8 HLA-B 1.3 1.6

HLA-C 1.3 0.8 HLA-C 1.3 0.0

HLA-DMA 2.6 1.6 HLA-DMA 1.3 0.8

HLA-DMB 2.6 1.6 HLA-DMB 2.6 0.0

HLA-DOA 2.6 0.0 HLA-DOA 1.3 2.4

HLA-DOB 1.3 0.0 HLA-DOB 3.9 0.8

HLA-DPA1 2.6 0.0 HLA-DPA1 1.3 2.4

HLA-DPB1 3.9 0.0 HLA-DPB1 1.3 0.8

HLA-DQA1 2.6 0.0 HLA-DQA1 1.3 0.8

HLA-DQB1 5.2 0.0 HLA-DQB1 0.0 0.8

HLA-DQB2 1.3 0.0 HLA-DQB2 1.3 0.0

HLA-DRA 0.0 0.0 HLA-DRA 0.0 5.6

HLA-DRB1 1.3 1.6 HLA-DRB1 0.0 7.2

HLA-DRB3 2.6 0.0 HLA-DRB3 0.0 0.8

HLA-DRB4 3.9 2.4 HLA-DRB4 0.0 6.4

HLA-DRB5 2.6 0.0 HLA-DRB5 1.3 0.0

HLA-E 0.0 0.0 HLA-E 0.0 0.8

HLA-F 1.3 0.8 HLA-F 0.0 0.0

HLA-G 1.3 1.6 HLA-G 1.3 2.4

IDI2 2.6 0.0 IDI2 0.0 1.6

IFNA1 1.3 0.8 IFNA1 1.3 0.0

KCNJ10 2.6 4.0 KCNJ10 1.3 0.0

KRT18 1.3 8.0 KRT18 1.3 3.2

LAMC2 1.3 0.8 LAMC2 1.3 3.2

LGI1 1.3 8.0 LGI1 1.3 6.4

LRRC10 2.6 0.0 LRRC10 1.3 0.0

MAG 0.0 9.6 MAG 1.3 4.0

MAPT 2.6 0.0 MAPT 1.3 0.8

MBP 1.3 0.0 MBP 1.3 2.4

MOG 1.3 0.0 MOG 1.3 0.8

MPO 2.6 0.8 MPO 1.3 6.4

MYBPHL 0.0 4.8 MYBPHL 1.3 9.6

MYL4 1.3 0.0 MYL4 1.3 1.6

MYL7 1.3 0.0 MYL7 0.0 0.0

NEFL 2.6 2.4 NEFL 0.0 5.6

NOVA1 2.6 0.0 NOVA1 2.6 5.6

NPHS2 2.6 3.2 NPHS2 2.6 2.4

NPPA 1.3 0.0 NPPA 3.9 0.0

NPPB 2.6 4.0 NPPB 0.0 2.4

Nucleocapsid protein 1.3 59.2 Nucleocapsid protein 3.9 0.0

NUP210 2.6 0.8 NUP210 2.6 1.6

OMG 1.3 0.0 OMG 0.0 0.0

PLA2R1 1.3 4.0 PLA2R1 1.3 0.0

PNMA1 1.3 0.0 PNMA1 2.6 3.2

PNMA2 2.6 2.4 PNMA2 1.3 0.0

POMC 1.3 0.0 POMC 1.3 0.0

PPP1R27 2.6 0.0 PPP1R27 1.3 2.4

PRL 2.6 0.0 PRL 1.3 0.8

PROC 1.3 2.4 PROC 1.3 0.8

PROS1 1.3 0.0 PROS1 2.6 0.8

PRTN3 2.6 0.8 PRTN3 2.6 0.8

Rhodamine+IgG647 1.3 0.8 Rhodamine+IgG647 1.3 0.0

S100B 1.3 0.0 S100B 1.3 0.0

SCGB1A1 1.3 0.0 SCGB1A1 1.3 0.0

SCGB3A2 1.3 0.0 SCGB3A2 1.3 2.4

SELE 1.3 1.6 SELE 1.3 4.0

SFTPA1 0.0 8.8 SFTPA1 1.3 3.2

SFTPA2 1.3 0.8 SFTPA2 2.6 0.0

SFTPC 3.9 1.6 SFTPC 0.0 4.0

SLC22A12 2.6 0.0 SLC22A12 0.0 0.0

SLC2A1 0.0 4.8 SLC2A1 1.3 14.4

SNCA 0.0 0.0 SNCA 1.3 0.0

Spike protein 1.3 80.0 Spike protein 1.3 36.0

SSB 1.3 3.2 SSB 2.6 6.4

TGM2 1.3 0.0 TGM2 2.6 0.8

TJP1 1.3 0.0 TJP1 1.3 1.6

TMEM174 1.3 2.4 TMEM174 0.0 5.6

TNNI3 2.6 2.4 TNNI3 1.3 3.2

TNNT2 2.6 0.8 TNNT2 1.3 0.8

TPH1 1.3 1.6 TPH1 1.3 3.2

TPM1 3.9 0.0 TPM1 1.3 0.8

TPO 1.3 1.6 TPO 1.3 1.6

TROVE2 2.6 4.8 TROVE2 1.3 0.8

TSHB 1.3 0.0 TSHB 1.3 0.0

TSHR 1.3 2.4 TSHR 0.0 0.8

TTN 1.3 0.0 TTN 2.6 2.4

TUBA1B 2.6 0.0 TUBA1B 1.3 0.0

TUBB3 1.3 0.0 TUBB3 1.3 3.2

UCHL1 1.3 0.0 UCHL1 1.3 2.4

UCP3 1.3 1.6 UCP3 2.6 0.0

UMOD 1.3 4.0 UMOD 3.9 1.6

VIM 2.6 0.0 VIM 2.6 1.6

ZIC4 1.3 0.0 ZIC4 0.0 0.8

ZNF397 2.6 1.6 ZNF397 1.3 0.0

IgG IgM

Frequency of Positive Autoantibody Hits (Z > 3)
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