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Abstract 
 
Rapid and accurate histopathological diagnosis during surgery is critical for clinical decision-making. The 
prevalent method of intraoperative consultation pathology is time, labour and cost intensive and requires 
the expertise of trained pathologists. Here, we present an alternative technique for the rapid, label-free 
analysis of biopsy samples by sequentially assessing the physical phenotype of singularized, suspended 
cells in high-throughput. This new diagnostic pipeline combines enzyme-free, mechanical dissociation of 
tissues with real-time deformability cytometry at measurement rates of 100 – 1,000 cells/sec, and machine 
learning-based analysis. We show that physical phenotype parameters extracted from brightfield images of 
single cells can be used to distinguish subpopulations of cells in various tissues, without prior knowledge or 
the need for molecular markers. Further, we demonstrate the potential of our method for inflammatory bowel 
disease diagnostics. Using unsupervised dimensionality reduction and logistic regression, we accurately 
differentiate between healthy and tumorous tissue in both mouse and human biopsy samples. The method 
delivers results within 30 minutes, laying the groundwork for a fast and marker-free diagnostic pipeline to 
detect pathological changes in solid biopsies. 
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Introduction 

Changes in physical properties of cells, such as cell size, shape or deformability, are pivotal to the pathology 
of some diseases and hold great potential as a diagnostic or prognostic marker 1,2. In the last decades, a 
variety of tools have been developed to examine the mechanical properties of cells, including micropipette 
aspiration, atomic force microscopy, microbead rheometry and optical tweezers and traps 3,4. The field has 
seen an exponential increase in publications that suggest a strong correlation between cell mechanical 
phenotype and disease state, including sepsis 5,6, malaria 7, diabetes 8, sickle cell anaemia 9 and cancer 10–

12. Unfortunately, these conventional techniques suffer from low cell throughput and the requirement of deep 
specialist knowledge for operation, which limits their use as a diagnostic tool. Real-time fluorescence and 
deformability cytometry (RT-FDC) 13,14 is one of several new microfluidic techniques 10,15–21 that have 
overcome these drawbacks, allowing the assessment of physical properties of single cells in a label-free 
and high-throughput manner, opening a new avenue to clinical diagnostics. RT-FDC is not only fast (with 
up to 1000 cells analysed per second), but in addition to cell deformability it also provides multidimensional 
information obtained directly from cell images. The diagnostic potential of RT-FDC has been demonstrated 
in many human disease conditions ranging from leukaemia to bacterial and viral infections including COVID-
19 22–26. However, until now, the applicability of the technique was limited to analysing cultured cells or liquid 
biopsies from blood or bone marrow. 

Solid tissue biopsy is the most common method for characterising malignancy and is fundamental in guiding 
surgeons during intraoperative and perioperative management of cancer patients. Diagnostic assessment 
of solid tissue biopsies is commonly delivered through intraoperative consultation pathology which relies on 
histopathological analysis of frozen biopsy sections 27. The conventional workflow of intraoperative 
diagnosis involves numerous processing steps, staining reagents and the microscopic inspection of tissue 
slices by experienced pathologists for expert analysis. Moreover, sample preparation is time-, resource- and 
labour-intensive. Alternative workflows have been proposed 27, including stimulated Raman spectroscopy 
28,29, optical coherence tomography 30 and confocal microscopy 31, but have not yet been implemented. The 
necessity of an approach that reduces sample preparation and time to diagnosis is therefore imminent. 

Here, we present a rapid label-free diagnostic method for solid tissue biopsies. The approach combines the 
enzyme-free, mechanical dissociation of tissues using a tissue grinder for the quick and simple isolation of 
viable single cells 32,33 with the sequential assessment of cellular physical phenotypes of thousands of 
individual cells using RT-FDC. First, we screened a panel of mouse tissues and assessed the cell yield, 
viability and the feasibility of RT-FDC measurement upon the mechanical dissociation of tissue. We 
demonstrated the ability to distinguish subpopulations of tissue cells purely based on the image-derived 
physical parameters without prior knowledge or additional molecular labelling, in contrast to conventional 
flow cytometry, which relies on multi-colour panels of markers for identifying cells. We also showed that our 
approach can determine inflammatory changes in tissue, based on the measurement of cell deformability 
in the microfluidic system. Moreover, we examined frozen and fresh biopsy samples from mouse and human 
and showed for the first time the potential of RT-FDC to distinguish healthy from cancerous tissues, using 
principal component analysis (PCA) and machine learning on the multi-dimensional data. The findings 
demonstrate that assessing the physical phenotype of tissue-derived single cells using RT-FDC is an 
alternative strategy to detect an inflammatory or malignant state. Our procedure, which can deliver results 
within 30 minutes, has potential as a diagnostic pipeline to detect pathological changes in biopsies and, 
more generally, to identify and characterize cell populations in tissues in an unbiased and marker-free 
manner. 
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Fig. 1: Schematic representation of the analysis procedure. The tissue sample is dissected in small 
pieces and placed into the inner rotor of the tissue grinder unit containing culture medium. Mechanical 
dissociation is performed by a pre-programmed, automatically executed sequence of clockwise and 
anticlockwise rotations. Dissociated cells are centrifuged and resuspended in measuring buffer. The sample 
is loaded onto a microfluidic chip and analysed using RT-FDC. A brightfield image of every single one of 
typically 10,000 cells is captured. Various features are extracted from the images, which are used for multi-
dimensional analysis. In total, the procedure from tissue to result takes less than 30 minutes. 
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Results 

Physical phenotyping of single cells obtained by mechanical dissociation of solid tissues  

Prior to assessing the physical phenotype of cells, the first challenge faced was the quick extraction of single 
cells from solid tissues on a time scale of minutes, while aiming for a maximally accurate representation of 
the heterogeneity of cell subpopulations. For this, we used a tissue grinder (TG); a mechanical dissociation 
device based on counter rotating rows of grinding teeth (Fig. 1) assembled into a Falcon tube 33. The device 
automatically executes a predefined sequence of alternating cutting and grinding steps to isolate single cells 
from a solid tissue. In total 10 different murine tissues were processed using either TG or conventional 
enzymatic protocols for comparison (Supplementary Table 1 and 2). Viability was 70-90% in most tissues; 
cell yield was similar to enzymatic dissociation and tissue dependent (Supplementary Fig. 1). The key 
advantage of mechanical dissociation was that the processing time took less than 5 minutes per sample, as 
opposed to tens of minutes or even several hours for the enzymatic protocols. The speed of the extraction 
presumably helps to preserve biochemical and biophysical phenotypes in conditions close to those in situ. 

Next, the extracted single cells were analysed using RT-FDC. In an RT-FDC measurement, hundreds of 
cells per second, suspended in a high-viscosity medium, are pushed through a microfluidic channel 
constriction, where they are deformed by shear stress and pressure gradients and an image of each cell is 
obtained. Several physical parameters were calculated from the images in real time, namely deformation, 
cell size, brightness, standard deviation of brightness, aspect ratio and area ratio (for details see 
Supplementary Table 3). Additionally, the fluorescence module 14 was used to detect the expression of cell 
surface markers. 

Representative scatter plots of certain physical parameters of cells from liver, colon and kidney are shown 
in Fig. 2, which revealed distinct clusters of cells. Each of these clusters was composed of cells with similar 
physical phenotype, typically of the same cell type. This was confirmed by labelling the cells with surface 
markers for three major cell types: epithelial cells (EpCAM), endothelial cells (CD31), leukocytes (CD45) 
(Supplementary Fig. 2). For example, a cluster of cells with similar physical properties (in this case defined 
by average brightness and cell size) was mainly composed of EpCAM positive cells (Fig. 2a), demonstrating 
that a clean population of epithelial cells can be distinguished in a label-free manner, purely using image-
derived physical parameters. 

Fig. 2b and Fig. 2c highlight the advantage of using image-based physical phenotyping over relying on 
conventional fluorescence-based flow cytometry alone. In conventional flow cytometry it is hardly possible 
to distinguish individual subpopulations of epithelial (EpCAM+) cells unless extra panels of fluorescent 
antibodies against known and pre-defined cell types are used. Distinction of various subpopulations was 
possible with RT-FDC thanks to the extra information depth provided by physical phenotype parameters. 
Within the epithelial cells of colon, we identified 6 clusters of cells purely based on brightness and size (Fig. 
2b). Similarly, within the leukocyte (CD45+) population of the kidney, we found 4 different clusters based on 
the cell size and deformation parameters (Fig. 2c). We note that, using the sorting modality recently 
developed for RT-FDC 34, any of these cell populations can be isolated according to the image-derived 
parameters and analysed for their molecular identity, e.g. by subsequent RNA sequencing. 

RT-FDC can also be used to capture cell interactions. Using the aspect ratio and cell size parameters, we 
identified cell doublets in the thymus and spleen samples. Many doublets were composed of two different 
cell types, according to the cell surface markers (Supplementary Fig. 3). The position of the cell within the 
channel in combination with the position of the fluorescent peak allowed us to identify, for instance, that a 
doublet was composed of a leukocyte (CD45+) and an endothelial cell (CD31+) (Supplementary Fig. 3b and 
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d). Using the RT-FDC sorting module 34, cell doublets can be isolated label-free for further molecular 
analysis and downstream applications, including studies of physically interacting immune cells in tissue 35. 

 

Fig. 2: Representative scatter plots of physical parameters of cells from murine liver, colon and 
kidney samples. a, Representative scatter plots of brightness average vs cell size for cells isolated from 
the liver showing numerous clusters of cells. The marked population of cells (forming a distinct cluster at 
cell size 25-50 μm2 and brightness average 100-115) is enriched for EpCAM positive (epithelial) cells but 
devoid of endothelial cells or leukocytes. b, Representative scatter plots of colon cells stained for EpCAM 
and CD45 cell surface markers. Within the EpCAM positive population, 7 subpopulations of cells can be 
distinguished based on their physical parameters, i.e. brightness and cell size. c, Representative scatter 
plots of kidney cells stained for EpCAM and CD45. Within the CD45 population, 4 subpopulations can be 
distinguished based on cell size and deformation. 
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We observed that RT-FDC analysis of single cell suspensions obtained from mechanical and enzymatic 
dissociation showed different population distributions for certain tissue types. For instance, the mechanical 
dissociation of liver and lung showed an enrichment of bigger cells (> 150 μm2 for liver, > 50 μm2 for lung) 
compared to enzymatically processed samples (Supplementary Fig. 4). In liver, cells ranging between 150 
μm2 and 1000 μm2 in cross-sectional cell area (corresponding to 7-18 μm in radius) were determined as 
hepatocytes according to their morphology and size 36. As the major parenchymal cell type of the liver, 
hepatocytes account for 70% of the liver cell population and take up nearly 80% of liver volume 37. In the 
cell suspension obtained using TG, the proportion of hepatocytes to total cells was between 40-80%, 
showing that the yield of hepatocytes was nearly representative of their known presence in tissue. 
Mechanical dissociation seems less disruptive to sensitive cells such as hepatocytes which are extremely 
prone to cell death and are often lost during standard isolation procedures 38. Moreover, subpopulations of 
hepatocytes could be distinguished according to cell size (Supplementary Fig. 4b). We hypothesize that 
these populations correspond to hepatocytes of differing ploidy, as DNA content is strongly correlated with 
cell volume 39. Thus, our method could serve as a tool for the label-free monitoring of aging and 
pathophysiological processes in the liver, which are linked with the proportion of polyploid hepatocytes 40. 

 

Detecting the degree of tissue inflammation by the physical phenotyping of cells 

Our method opened the possibility to investigate the changing physical phenotype of cells in solid tissues 
during disease progression. Previously, we studied physical phenotype changes of blood cells involved in 
inflammatory states 22,25 and thus decided to investigate the possibility to detect inflammation in solid tissue. 
Inflammatory bowel diseases (IBD), such as Crohn’s disease and ulcerative colitis, are chronic inflammatory 
disorders of the intestine associated with a compromised epithelial/mucosal barrier and 
activation/recruitment of immune cells 41. Although the aetiology of IBD is still not fully understood, much of 
our understanding about IBD comes from experimental animal models of intestinal inflammation. One such 
model is adoptive transfer of naïve T-cells into Rag1-deficient mice to induce experimental colitis (T cell 
transfer model of chronic colitis, from here on referred to as transfer colitis). The severity is then commonly 
quantified via a histopathological score generated from haematoxylin and eosin (H&E) stained slides of the 
colon tissue.  

Our goal was to investigate changes in the physical phenotype of colon cells during transfer colitis. Scatter 
plots of deformation vs cell size suggest a difference between disease and healthy tissue (Fig. 3a), where 
cells from disease tissue appear less deformed than cells from healthy tissue. Upon examination of the 
CD45+ cells (Fig. 3b, c) it became evident that the transfer colitis samples were characterised by a high 
abundance of leukocytes with low deformation, likely lymphocytes. Overall, we found a significant decrease 
of median deformation in the transfer colitis samples, accompanied by a significant increase in the number 
of leukocytes, in accordance with infiltration of adoptively transferred lymphocytes (n = 14; Fig. 3d). The 
median deformation of cells was strongly negatively correlated with the number of leukocytes, with a 
Pearson’s correlation coefficient of r(12) = −0.69 (p = 0.0065; Fig. 3e). Furthermore, the median values of 
cell size and deformation were linked with expert H&E scoring (Supplementary Fig. 5); although correlation 
via linear fitting was not possible. Transfer colitis samples with high H&E score exhibited bigger cell size 
and lower deformation compared to healthy tissue.  
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Fig. 3: Physical phenotyping of cells via RT-FDC reflects tissue inflammation. a, Cell size vs 
deformation scatter plots of cells isolated from transfer colitis tissue samples (TC) compared to healthy 
murine colon tissue (Control); with corresponding cell size and deformation histograms. b, The same two 
colon samples gated for CD45 positive cells, showing the enrichment of leukocytes in transfer colitis 
samples, accompanied by changes of the physical phenotype parameters. c, Contour plots of samples 
shown in A and B. d, Quantification of median deformation and percentage of CD45 positive cells (n = 14). 
Statistical comparisons were performed using Student’s t-test, p-values are represented by * p < 0.05, ** p 
< 0.01, *** p < 0.001. e, Pearson’s correlation of median deformation and the proportion of leukocytes 
(CD45+ cells). 

 

The physical phenotype of cells is distinct in tumour versus healthy mouse colon tissue  

Previous studies have found differences between the mechanical properties of cancer cells and their healthy 
counterparts 11,12,42–45. A major drawback of these studies is laborious sample preparation and low 
throughput that limits the conversion of these studies to actual diagnostic approaches. Given the rapidity of 
our approach to obtain and assay the mechanical phenotype of single cells from solid tissues, we explored 
its potential to detect colorectal cancer. We used mice deficient in an intestinal epithelial cell-specific protein 
with a key role in epithelial integrity. These animals spontaneously develop colon tumours. We examined a 
total of 17 mice and compared cells isolated from tumours to cells from a healthy part from the colon of the 
same animal. It is noteworthy that the healthy tissue was always more difficult to mechanically break apart 
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into single cells, and tumour tissue yielded more intact cells. We analysed cells greater than 60 µm2 

(determined by cross-sectional area), as below this threshold the sample comprised mainly of immune cells 
(Supplementary Fig. 6) and small debris. 

Our results showed that the physical phenotype of cells from tumour tissue significantly differed from the 
control samples. Representative plots from a single mouse in Fig. 4a-c demonstrate that cells from the 
tumour had larger cell size and higher deformation than their healthy counterpart. The analysis of all 34 
samples revealed that cells from tumours had significantly higher mean cell size (Fig. 4d), deformation (Fig. 
4e), aspect ratio (Fig. 4f) and area ratio (Fig. 4g). The tumour samples also exhibited greater heterogeneity, 
demonstrated by the broader distribution in Fig. 4c and significantly higher standard deviations of cell size, 
deformation and area ratio (Fig. 4d-g).  

We next investigated whether the physical phenotype differences could be exploited for the reliable 
distinction between tumorous and healthy tissue. For this, we divided cells into three categories according 
to cell size (60-90 μm2, 80-120 μm2, 120-200 μm2). For each size category twelve parameters were derived: 
mean, median and standard deviations of the cell size, deformation, aspect ratio and area ratio; adding up 
to a total of 36 parameters for each sample (Supplementary Fig. 7). These parameters were subjected to 
principal component analysis (PCA), Fig. 4h. 58.5% of the variance was explained by the two principal 
components PC1 (39.8%) and PC2 (18.7%). The relative importance of physical features in determining the 
principal components is shown in Supplementary. Fig. 7. The most dominant feature for PC1 was the 
deformation of cells between 60 and 120 µm2, whilst in the case of PC2 cell size parameters prevailed. 
Logistic regression performed on the PCA (shown by the linear divide in Fig. 4h) demonstrated that the 
condensed physical phenotype information represented by the principal components suffices to distinguish 
between healthy and tumour tissue; 31 out of 34 samples lay in the correct region. 
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Fig. 4: Physical phenotype of cells in tumorous and healthy mouse colon tissue. a, Cell size vs 
deformation scatter plots of a control sample of murine colon tissue compared to b, tumour tissue. c, The 
contour plot of samples shown in A and B, with corresponding cell size and deformation histograms 
demonstrating greater heterogeneity of cell size and deformation in tumour compared to the control tissue. 
d-g, Means and standard deviations of physical phenotype parameters of 17 control (purple) and 17 tumour 
samples (green); d, cell size, e, deformation, f, aspect ratio, g, area ratio. Statistical comparisons were 
performed using Student’s t-test, p-values are represented by * p < 0.05, ** p < 0.01, *** p < 0.001, ns = 
non-significant. h, Principal component analysis of mouse colon tissue samples, where green points 
represent tumour samples and purple points represent the control samples. Linear regression analysis was 
performed on PC1 and PC2 with the resulting two categories shown as purple (control) and green (tumour) 
background colours. 

 

Reliable distinction of tumour and healthy tissue in frozen or fresh human biopsies 

We next sought to challenge our method for detecting tumours from human biopsy samples. As a first step, 
we performed RT-FDC analysis on cells isolated from 13 cryopreserved biopsy samples of colorectal cancer 
and 13 samples of healthy surrounding tissue from the same patients. PCA was performed on 45 
parameters (Fig. 5a; Supplementary Fig. 8) with 41.7% of the variance explained by the two principal 
components (25.3% and 16.4% for PC1 and PC2, respectively). The PCA showed that tumour and healthy 
samples segregate along the PC2 mainly by the deformation and standard deviation of brightness of cells 
larger than 100 µm2 (Fig. 5a). Cell size parameters of cells under 100 µm2 also contributed to the separation 
of the samples. Of note, the selection of RT-FDC parameters had to be optimised to get a good separation 
between the healthy and tumour tissue. Logistic regression was performed on the PCA (shown by the linear 
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divide in the PCA plot) and used to predict the classification of six blind samples (shown as crosses in Fig. 
5a); all six samples were correctly classified as either healthy or tumour tissue. We examined the minimal 
number of cells needed for correct classification of these blind samples (Supplementary Fig. 9). 
Approximately 1,500 cells had to be analysed in a sample for correct classification, corresponding to a 
minimal RT-FDC measurement time of approximately 5 minutes. 

The short-combined tissue processing and analysis time (< 30 minutes) opened up the applicability of the 
method for intraoperative pathology, the examination a patient’s biopsy sample during surgery. To explore 
this idea, we analysed freshly excised biopsies samples from colorectal cancer patients (n = 11). The 
algorithm trained on frozen colon tissue did not perform well for fresh tissue, possibly due to differences of 
physical phenotype between the frozen and fresh tissue (Supplementary Fig. 10), as well as the absence 
of certain cell types lost during the freezing process. Therefore, new PCA was performed on data from fresh 
colon biopsies in two size categories (20-50 µm2 and 50-600 µm2) (Fig. 5b), where 68.5% of the variance 
was explained by the two principal components (36.5% and 32% for PC1 and PC2, respectively). Here, the 
deformation of cells contributed strongly in the PCA and cell size was less important than the other physical 
phenotype parameters. Upon logistic regression, 3/22 samples were not correctly classified, which could be 
attributed to inter-tumour or intra-tumour heterogeneity. Nevertheless, using our approach we achieved 
100% accuracy in classifying healthy and tumour samples from frozen biopsies, and 86% accuracy for the 
separation of fresh biopsy samples. 

To validate our method on tissue from a different organ, we applied it to freshly excised lung biopsy samples 
from seven cancer patients. PCA combined with logistic regression easily separated all healthy from tumour 
samples (Fig. 5c). In the PCA, 46.9% of the variance was explained by PC1 and PC2 (31.2% and 15.7%, 
respectively). Deformation parameters contributed strongly to PC1, which again demonstrates that the 
unique information brought by cell deformability measurement is useful for distinguishing between tumorous 
and healthy tissue, and the technique should be considered and adapted for routine clinical practice.  
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Fig. 5: Distinction of tumour and healthy tissues in human biopsies using PCA and logistic 
regression. In the PCA plots on the left, green points represent tumour samples and purple points represent 
the healthy surrounding tissue. Logistic regression was performed on each of the PCAs with the resulting 
two categories shown as purple (healthy) and green (tumour) background colours. The feature importance 
analysis to the right of the PCA plot shows the colour-coded significance of each feature for determining 
PC1 and PC2 for that particular tissue; the x axis lists cell size categories; the y axis lists RT-FDC 
parameters and their statistical features derived across all samples (in brackets). a, PCA on RT-FDC 
parameters of 30 frozen colon samples (15 tumour biopsies and 15 samples of surrounding tissue). b, PCA 
on RT-FDC parameters of 22 fresh colon biopsy samples (11 tumour, 11 healthy). c, PCA on RT-FDC 
parameters of 14 fresh lung biopsy samples (7 tumour, 7 healthy). 
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Discussion 

Here, we present a quick and simple method for the processing and analysis of cells from solid tissue, 
suitable for biopsy diagnostics. To our knowledge, this is the first demonstration of the diagnostic potential 
of physical phenotyping of single cells from solid tissue samples which is applicable in practice. Mechanical 
dissociation of tissue within a few minutes is followed by high-throughput analysis of cells in deformational 
flow. Within a few minutes, thousands of cells are imaged and various physical phenotype features are 
extracted from each cell image. The method is label-free and relies simply on brightfield images, in contrast 
to molecular diagnostic tools or conventional flow cytometry, where expensive reagents or fluorescent 
markers are needed. Importantly, the information is available within 30 minutes of biopsy excision, which 
can be an advantage when there is necessity to detect pathology quickly. This is the case during 
intraoperative consultation that provides diagnostic information during cancer surgery and often defines the 
further course of the procedure. The standard workflow requires transportation of the biopsy sample to the 
pathology department, where it is embedded in a mounting medium (optimal cutting temperature 
compound), frozen and cut in thin slices using a cryostat. The slides are then prepared with H&E staining, 
and pathologists assess numerous characteristics including the nature of the lesion (i.e. its malignancy) 
29,46. Our workflow circumvents the freezing and staining steps, could be performed directly on site and 
allows to detect malignancy based on the automated assessment of physical parameters of single cells. 

Beyond intraoperative diagnosis, we show that our method is useful for rapid examination of IBD samples. 
Clinical diagnosis of IBD in most cases requires the combination of different tests including a blood test, 
stool examination, endoscopy and histological analysis of mucosal biopsies 47,48. Histological scoring has 
growing importance in the IBD field, as the histological level of inflammation correlates with recurrence of 
disease, probability of surgery and risk of cancer. Our study shows that the degree of tissue inflammation 
in a colon biopsy sample can be obtained by monitoring cell physical phenotype via RT-FDC, bypassing the 
need for staining or expert’s assessment. We envision that the method could be used to monitor temporal 
inflammatory changes to assess disease progression and response to treatment, and to provide an objective 
diagnostic scoring system for daily clinical practice, which is currently lacking in the IBD field.  

Previous studies on cancer cells have shown a strong correlation between malignancy and the mechanical 
properties of cells 10–12,42,45,49. Here, we exploit this correlation for detecting malignancy in human tissue 
biopsies. RT-FDC probes cell deformability, at a high-throughput rate, by exposing cells to shear flow in a 
microfluidic channel and allows the mechanical phenotyping of single cells, using an analytical model and 
numerical simulations 50,51. Assuming an initial spherical cell under normal (stress-free) conditions, RT-FDC 
can provide a quantitative measure of an elastic modulus. However, in heterogenous tissue samples, such 
as the ones used in this study, the cells are often not spherical prior to entering the microfluidic channel. 
Nevertheless, the degree of deformation in this standardized deformation-assay can be interpreted as a 
qualitative measure of deformability and the deformation information inherent in the images is shown to be 
valuable diagnostic marker. PCA of murine colon samples and human colorectal biopsies revealed that cell 
deformation in standardised channel flow conditions is key for distinguishing between healthy and tumorous 
tissue. This highlights the uniqueness of the information brought by this method, currently missing from 
routine diagnostic practices which to date rely mostly on histological assessment. 

For practical clinical use, it will be necessary to integrate the tissue processing and single-cell phenotype 
analysis into a single automated pipeline. Although mechanical dissociation using a tissue grinder is an 
efficient way to obtain single cells from tissues for diagnostic application, it will be important to reduce the 
manual handling steps such as filtering and concentrating cells. However, even in its current state, it is faster 
and more cost-effective than enzymatic processing of tissue. A key advantage of mechanical dissociation 
was that the processing time took less than 5 minutes per sample, as opposed to tens of minutes or even 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.21267075doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.30.21267075
http://creativecommons.org/licenses/by/4.0/


 
   
 

 
 

13 

several hours for enzymatic dissociation protocols. Moreover, enzymatic protocols typically require sample-
dependent reagents that are often expensive and require special storage conditions, while mechanical 
dissociation can be performed in standard culture medium. Whereas different enzymatic protocols often 
enrich for specific cell types 52, we believe that the single-cell suspension from mechanical dissociation 
might be more representative of the actual populations in tissue and is therefore suitable for an unbiased 
examination of the cellular landscape. Fast dissociation also has the potential to preserve biochemical and 
biophysical properties of cells in a state near to in situ, properties which likely deteriorate with increased 
processing times in other approaches. Due to the speed of the mechanical dissociation, cells might undergo 
less proteomic or transcriptional changes, which are known to happen during enzymatic processing 32,53–56. 
Further comparative and molecular studies are necessary to assess these assumptions. 

In the future, investigation on larger patient cohorts will allow to exploit machine learning for diagnostic or 
prognostic decision making. Artificial intelligence (AI) is a powerful tool for diagnostic tasks, aiding 
pathologists in inspecting histological whole slide images, diagnosing cancer or classifying tumours 57–59. 
The large datasets obtained by RT-FDC analysis, composed of thousands of cell images and 
multidimensional information, lend themselves for such AI approaches. In this study, we focused on 
parameters calculated from images in real-time, but additional physical phenotype parameters can be 
calculated post acquisition and used as further inputs for machine learning, e.g. shape or texture features. 
Future work will also focus on the correlation between the physical phenotype data and tumour malignancy 
scoring, metastatic potential and survival rate. 

Finally, an important aspect of the method is that the physical phenotype of cells can be used to identify cell 
populations in tissue in a label-free manner. This renders our approach unbiased compared to conventional 
fluorescence-based analysis, which relies on prior knowledge of the molecular signature of a specific 
population within a heterogenous mixture of cells. In simple terms, one does not need to know which cell 
types to expect prior to analysis. Furthermore, thanks to the sorting modality recently added to RT-FDC 34, 
a specific population of cells can be isolated according to parameters calculated from images in real-time 
or using trained neural networks. In the future, this could be employed for enrichment of uncharacterised 
cell populations in tissue for downstream OMICS analysis or even for regenerative medicine purposes, e.g. 
for the label-free isolation of tissue-derived stem cells.  

Taken together, our findings demonstrate the potential of physical phenotyping of cells via RT-FDC after 
enzyme-free mechanical tissue dissociation as a quick and simple method for diagnosing pathological states 
in tissue biopsies, in particular to provide a rapid and unbiased prediction of disease state in inflammatory 
conditions and in malignancy. 
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Methods 

Animal experiments 

All animal experiments were conducted in collaboration with the Department of Internal Medicine 1, 
University Hospital Erlangen, in compliance with all institutional guidelines. Animal studies were conducted 
in a gender and age-matched manner using littermates for each experiment. Both male and female animals 
were used. All mice were kept under specific pathogen–free conditions. Mice were routinely screened for 
pathogens according to FELASA guidelines (TVA No: 55.2.2- 2532-2-1032/ 55.2.2- 2532-2-473). Animals 
were euthanised by cervical dislocation and organs were surgically removed. Lung and liver tissues 
perfusion preceded the enzymatically dissociation process. For mechanical dissociation using a tissue 
grinder, organs were washed thoroughly with PBS before being placed in DMEM supplemented with 2% 
FBS and placed on ice until further processing. Enzymatical protocols were obtained from literature and are 
summarised in Supplementary Table 1.  

Tissue  Enzymatic/Mechanical Dissociation Procedure 
Colon Miltenyi Biotec Lamina Propria Dissociation Kit 

Small Intestine Miltenyi Biotec Lamina Propria Dissociation Kit 

Lung Miltenyi Biotec Lung Dissociation kit 

Liver Miltenyi Biotec Liver Dissociation Kit or Collagenase/Dispase enzymatic 
cocktail 

Stomach Ruiz et al 2012 (Ruiz et al., 2012) 

Kidney Valente et al 2011 (Valente et al., 2011) 

Pancreas Epshtein et al 2017 (Epshtein et al., 2017) 

Thymus Mash tissue between frosted ends of two microscope slides 

Mesenteric Lymph Node Mash tissue between frosted ends of two microscope slides 

Spleen Mash tissue between frosted ends of two microscope slides 

Supplementary Table 1: Enzymatic or mechanical dissociation protocols used for each organ 

 

Spontaneous tumour model 

To generate a specific deletion of an intestinal epithelial cells-specific protein with a key role for epithelial 
integrity, mice carrying LoxP-Cre flanked for the specific protein were crossbred with VillinCre mice. 
Spontaneous tumorigenesis was observed in colon with 100% of penetrance.  

Adoptive lymphocyte transfer colitis 

Immunodeficient Rag1-/- mice received 1 million of CD4+CD25- T cells via i.p route. Mononuclear cells were 
isolated from the spleen of C57/BL6 donor mice and purified using MACS technology, before being injected 
into immunodeficient mice. Animals were sacrificed three weeks upon cell transfer and the colon tissue was 
processed as described in the Tissue dissociation and single cell preparation section. 
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Human tissue preparation 

Surgically resected human biopsy samples (obtained from the Pathology Institute, Erlangen) from tumour 
or healthy tissue were immediately placed in DMEM Advanced medium supplemented with 10% Foetal 
Bovine Serum (FBS), 1% GlutMAXTM,1% HEPES and 1% penicillin/streptomycin and stored at 4°C, 
processed immediately or frozen in liquid nitrogen for later use. This study is covered by ethic votes of the 
University Hospital of the Friedrich-Alexander University Erlangen-Nürnberg (24.01.2005, 18.01.2012). 

Tissue dissociation and single cell preparation 

Tissue dissociation using a TissueGrinder (TG; Fast Forward Discoveries GmbH) was performed, as 
described in 32,33. Briefly, the tissue sample was cut into small pieces of about 1-2 mm and placed into the 
rotor unit of the TG with 800 μl of DMEM supplemented with 2% FBS. The rotor unit was positioned in the 
lid of a 50 ml Falcon tube; the stator insert with a 100 μm cell strainer was placed on top of the rotor unit. A 
50 ml falcon tube was placed on the lid, screwed and positioned on the TissueGrinder device (Fig. 1). The 
grinding process parameters for each tissue type are summarised in Supplementary Table 2. TG protocols 
were provided by the manufacturer with some minor modifications 32,33. Following the grinding procedure, 
the Falcon tube was inverted onto a rack, opened and the cell strainer washed with 5 ml of DMEM, 2% FBS. 
The flow through was transferred into a 15 ml Falcon tube and centrifuged for 8 minutes at 300 x g. 
Subsequently the supernatant was aspirated, and the cell pellet washed with 2 ml of PBS, 2% FBS, passed 
through a FACS tube with a cell strainer cap and centrifuge at 300 x g for 5 minutes. The cell pellet was 
resuspended in a high viscosity measurement buffer prepared using 0.6% (w/w) methyl cellulose (4,000 
cPs; Alfa Aesar) diluted in phosphate buffer solution (PBS) without calcium and magnesium, adjusted to an 
osmolality of 270-290 mOsm/kg and pH 7.4. The viscosity of the buffer was adjusted to (25±0.5) mPa∙s at 
24 °C using a falling sphere viscometer (HAAKE Falling Ball Viscometer Type C, Thermo Fisher Scientific).  

Tissue TG protocol Microfluidic chip size 
Colon Colon 20 μm 
Small Intestine Intestine 20 μm 
Lung Lung standard 30 μm 
Liver Liver standard 30 μm & 40 μm 
Kidney Medium 30 μm 
Pancreas Soft 30 μm 
Thymus Thymus Soft 30 μm 
Mesenteric Lymph Node Lymph nodes standard 30 μm 
Spleen Thymus Soft 30 μm 
Human tumour Human Tumour 20 μm 

Supplementary Table 2: Mouse organs processed with corresponding TG protocol used for mechanical 
dissociation and microfluidic chip size used for RT-FDC measurements. 
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Real-time fluorescence and deformability cytometry 

RT-FDC measurements were performed as previously described 13,14, using an AcCellerator instrument 
(Zellmechanik Dresden GmbH). The cell suspension was drawn into a 1 ml Luer-Lok syringe (BD 
Biosciences) attached to a syringe pump and connected by PEEK-tubing (IDEX Health & Science LLC) to 
a microfluidic chip made of PDMS bonded on cover glass. A second syringe filled with pure measurement 
buffer was attached to the chip and used to hydrodynamically focus the cells inside the constriction channel. 
The microfluidic chip consists of a sample inlet, a sheath inlet and an outlet connected by a central channel 
constriction of a 20x20 μm, 30x30 μm or 40x40 μm square cross-section and a length of 300 μm. The 
corresponding total flow rate used: 0.06 µl/s, for 20 μm channel; 0.12 µl/s, for 30 μm channel; 0.2 µl/s, for 
40 μm channel; with a sheath to sample flow ratio of 3:1. The chip was mounted on the stage of an inverted 
high-speed microscope equipped with a CMOS camera. The laser power for each fluorophore was adjusted 
accordingly, based on single stain controls and an unstained sample. An image of every cell was captured 
in a region of interest of 250 x 80 pixels at a frame rate of 2000 fps. Morphological, mechanical and 
fluorescence parameters were acquired in real-time. The fluorescence threshold for each antibody was 
adjusted according to an unstained sample of cells obtained from the same tissue. Supplementary Table 3 
lists the features acquired in real-time and during post processing analysis; described in detail in previous 
publications 60,61. 

The calculation of deformation, a measure of how much the cell shape deviates from circularity, was 
obtained from the image using the projected area (A) and cell contour length calculated from the convex 
hull (l): 

 
𝐷𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 	

1 − 2√𝜋𝐴
𝑙  

 

 
Eq. 1 
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RT-FDC Parameters Description 

Area (cell size; μm2) 

The projected cross-sectional area of the 
cells is obtained from the number of pixels 
within the boundary of the cell, defined by the 
contour 

Bounding box size x and y  A bounding box around the whole cell 
defines its length in x and y direction 

Aspect ratio Ratio between object’s length (x) and height 
(y) 

Circularity 

Parameter that relates area (A) to the 
perimeter (P) of an object based on 	

𝐶 =
2√𝜋𝐴
𝑃

 

Deformation 1 − 2√𝜋𝐴
𝑙

 

Inertia ratio  Ratio of the second moment of area over the 
y- and x-axis of the contour. 

Area ratio Ratio between the area of the convex hull 
and the area of the contour  

Brightness [a.u.] Mean of all pixel intensities inside the contour 

Standard deviation of brightness 
Standard deviation of the brightness of pixels 
inside the contour 

X position 
Position along the flow axis in the field of 
view. 

Y position 
Position perpendicular to flow axis in the field 
view 

Volume 
The apparent volume based on the 
assumption of rotational symmetry over the 
flow axis. 

Elastic modulus (Young’s Modulus) 
Describes cell stiffness, based on 
assumptions of a model 

Fluorescence area of peak [μs] Area of the fluorescence intensity peak 

Fluorescence maximum [a.u] Maximum fluorescence intensity 

Fluorescence width [μs] Full width at half-maximum; used to identify the 
sub-cellular distribution of fluorescence marker 

 

Supplementary Table 3: Parameters derived from cell images in real-time during an RT-FDC 
measurement. 
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Fluorescence labelling 

Where necessary, single cell suspensions were incubated for 20 minutes at room temperature with 200 μl 
of corresponding antibodies (Supplementary Table 4 for antibodies dilution) diluted in PBS supplemented 
with 0.5% Bovine Serum Albumin (BSA, Sigma-Aldrich) and FcR Blocking reagent of corresponding species 
(Miltenyi Biotec, Human: 130-059-901; Mouse: 130-092-575). The antibodies were washed by adding 1 ml 
of PBS, 2% FBS and centrifuged for 500 x g for 5 minutes. The final cell preparation was then resuspended 
in the measurement buffer before loading onto the microfluidic chip for RT-FDC analysis. For frozen biopsy 
samples, the tissue was placed in pre-warmed DMEM, supplemented with 10% FBS for 10 minutes and 
allowed to thaw prior to processing as described above.  

 Reactivity Dilution Clone Cat. No Company  

CD326 (EpCAM) Alexa Fluor® 488  Human 1 in 100 9C4 324210 BioLegend 

CD31(PECAM-1) APC Human 5μl/reaction WM59 303115 BioLegend 

CD45 PE Human 1 in 500 HI30 304008 BioLegend 

CD326 (EpCAM) FITC Human 1 in 100 9C4 324203 BioLegend 

CD45 Alexa Fluor® 700  Human 5μl/reaction HI30 304024 BioLegend 

CD45 Alexa Fluor® 700  Mouse 1 in 1000 30-F11 103128 BioLegend 

CD326 (EpCAM) Alexa Fluor® 488  Mouse 1 in 200 G8.8 118210 BioLegend 

CD45 FITC  Mouse 1 in 150 30-F11 11-0451-82 Thermo Fischer Scientific 

CD326 (EpCAM) APC  Mouse 1 in 250 G8.8 17-5791-82 Thermo Fischer Scientific 

CD31 (PECAM-1) PE  Mouse 1 in 1000 390 12-0311-82 Thermo Fischer Scientific 

DRAQ5™  - 5μl/reaction - 62251 Thermo Fischer Scientific 

Propidium Iodide - 1 in 2000 - P1304MP Thermo Fischer Scientific 

7-AAD Viability Solution - 5μl/reaction - 420404 Thermo Fischer Scientific 

Supplementary Table 4: Antibodies and fluorescent probe solutions used with the corresponding 
dilutions 

 

Data analysis 

Cell images were analysed using Python 3.7. Dclab library was used for the initial loading, pre-processing 
and filtering of RT-FDC data 62. In order to remove images of debris, damaged cells and red blood cells, we 
applied gates for minimum cross-sectional area (20 µm2), area ratio (1-1.1) and aspect ratio (1-2). 

Scikit learn package was used for further data processing and analysis 63. Parameters obtained from RT-
FDC were transformed by scaling each feature to the range between (0,1). PCA was used for linear 
dimensionality reduction, using Singular Value Decomposition of the data to project onto a two-dimensional 
space (PC1 vs PC2). Logistic Regression was used for the classification of healthy vs tumour samples. 

Statistical analysis was done in Python 3.7. Paired Student’s t-test was used to assess differences between 
fresh colon tissue samples and the corresponding frozen samples. The rest of statistical analyses were 
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performed using independent Student’s t-tests. In graphs, p-values are represented by * p < 0.05, ** p < 
0.01, *** p < 0.001. Pearson’s correlation was performed to judge the correlation between cell deformation 
and the number of CD45+ cells. 

Data availability statement 

The RT-FDC datasets generated and analysed for Fig 2, 3 and Supplementary Fig. 2 and 3 are available 
on figshare [https://figshare.com/s/2b3a1e1441f59813c24f]. 

Due to the size restrictions on figshare repository, the RT-FDC datasets generated from human biopsies 
samples and mouse tumour samples are available from the corresponding author on reasonable request. 

Code availability statement 

The Python code for analysing the RT-DC datasets and performing the PCA analysis is available from the 
corresponding author on reasonable request. 
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