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Abstract 
Background/Aims: One goal of predictive, preventive, and personalised medicine is to improve 

the prediction and diagnosis of diseases, as well as to monitor therapeutic efficacy and to tailor 

individualised treatments with as little side effects as possible. New methodological 

developments should preferably rely on non-invasively sampled biofluids like sweat and tears 

in order to provide optimal compliance. Here we have thus investigated the metabolic 

composition of human tears in comparison to finger sweat and evaluated whether tear 

analyses may provide insight into ocular and systemic disease mechanisms. 

 

Methods: In addition to finger sweat, tear fluid was sampled from 20 healthy volunteers using 

commercially available Schirmer strips. Tear fluid extraction and analysis using high-resolution 

mass spectrometry hyphenated with liquid chromatography was performed with optimized 

methods each for metabolites and eicosanoids. As second approach, we performed a clinical 

pilot study with 8 diabetic patients and compared them to 19 healthy subjects.  

 

Results: Tear fluid was found to be a rich source for metabolic phenotyping. Remarkably, 

several molecules previously identified by us in sweat were found significantly enriched in tear 

fluid, including creatine or taurine. Furthermore, other metabolites such as kahweol and 

various eicosanoids were exclusively detectable in tears, demonstrating the orthogonal power 

for biofluid analysis in order to gain information on individual health states. The clinical pilot 

study revealed that many endogenous metabolites that have previously been linked to type 2 

diabetes such as carnitine, tyrosine, uric acid and valine were indeed found significantly up-

regulated in tears of diabetic patients. Nicotinic acid and taurine were elevated in the diabetic 

cohort as well and may represent new biomarkers for diabetes specifically identified in tear 

fluid. Additionally, systemic medications like metformin, bisoprolol, and gabapentin, were 

readily detectable in tears of patients. These findings highlight the potential diagnostic and 

prognostic power of tear fluid analyses, in addition to the promising methodological support for 

pharmacokinetic studies and patient compliance control. 

 

Conclusions: Tear fluid analysis may support the development of clinical applications in the 

context of predictive, preventive, and personalised medicine as it reveals rich molecular 

information in a non-invasive way. 
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Introduction 
 

In clinical metabolomics applications, blood sampling and analyses are typically employed in 

order to identify biomarkers for diagnosis and prognosis. However, blood collection is invasive 

and thus, impedes time-course measurements and the identification of dynamic biomarkers 

due to several compliance issues as multiple samples would have to be collected in short 

intervals.[1-3] This calls for the evaluation of alternative body fluids, such as sweat, saliva, or 

tears.[4, 5] All of these matrices are accessible in a non-invasive fashion, and can be collected 

painlessly, rapidly, with only minimal to no discomfort and stress for the patients, thus, 

supporting optimal compliance for biomedical studies.[1, 6-9] As we have previously 

investigated, the composition of sweat collected from the fingertip was found to be a rich source 

for various biologically highly relevant metabolites.[10, 11] Sweat from fingertips can be 

sampled in a frequent manner (up to 12 times per hour), hence, finger sweat analysis proved 

to be an optimal tool for kinetic measurements, exemplified by the ingestion of caffeine and its 

hepatic conversion to paraxanthine, theobromine and theophylline. However, sweat analysis 

faces a normalisation problem impeding absolute quantification of metabolites as the exact 

amount of collected sweat cannot be determined. The implementation of mathematical models 

of related metabolic pairs measured in sweat allowed to overcome this limitation and permit 

the calculation of the sweat rate for each sample.[11] Further, sweat and also saliva may suffer 

from contamination stemming from the skin and bacteria, food intake or smoking, respectively, 

potentially impeding and distorting highly sensitive mass spectrometry (MS)-based 

metabolomic analyses. [1, 4] In contrast to saliva and sweat, tear fluid also faces the least 

contamination problems and tear volume can be determined when tear fluid is collected with 

the commercially available Schirmer strips. However, tears cannot be sampled as frequently 

as sweat or saliva as Schirmer strips may irritate the eye. [1, 12] Thus, we decided to evaluate 

the biomedical power of tear fluid analysis in a more systematic fashion. 

 

Tear fluid composition and its potential applications in the context of PPPM 

 

Due to its distinct origin, tears may actually contain biomarker candidates hardly accessible 

via blood or sweat. The function of the ocular tear film is complex including maintenance of 

lubrication of the ocular surface, guaranteeing normal vision and immune defence of the eye. 

[7, 13-15] Compared to sweat, which is mainly excreted by eccrine and apocrine glands, tears 

get secreted from different glands: Whereas the lacrimal glands mainly produce the aqueous 

component of the tear film, the meibomian glands, goblet cells, and ocular surface epithelial 

cells are responsible for the lipid and mucin components of the tear film.[7, 14] Next to water 

(98%)[13], tear fluid comprises proteins such as lipocalin, lactotransferrin, lysozyme C and 
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immunoglobulins [16-19],  lipids (e.g. phospholipids, sphingolipids, wax esters and 

triglycerides), glycans, electrolytes (e.g. sodium, potassium, chloride and phosphate)[20], as 

well as metabolites like amino acids, urea, cholesterol, creatine, and epinephrine.[21] Changes 

in tear film composition have already been explored in many ocular diseases such as age-

related macular degeneration, dry eye disease, glaucoma or diabetic retinopathy using ‘Omics’ 

approaches. Additionally, systemic diseases like cancer, multiple sclerosis, Alzheimer’s 

disease, and diabetes have also been linked to alterations of the molecular composition of 

tears.[7, 20, 22-31] Several medications such as antibiotics, chemotherapeutics, and anti-

inflammatory drugs were further successfully detected in tears after drug administration.[32-

36] Regarding tear fluid analysis, metabolomics is still rarely applied compared to other ‘Omics’ 

techniques. Thus, the metabolic investigation of tear fluid may support the identification of 

novel biomarkers for diagnosis and prognosis or the monitoring of treatment efficacy, allowing 

for a more patient-tailored therapy.[37] 

 

Metabolomic investigations supporting biomarker discovery of type 2 diabetes mellitus 

 

Type 2 diabetes mellitus (T2DM) is a metabolic disorder affecting half a billion of patients 

worldwide.[38] However, the underlying disease mechanisms and potential risk factors are not 

yet fully elucidated. Non-modifiable risk factors like genetic predisposition and advanced age, 

but also modifiable risk factors associated with the personal lifestyle such as physical (in-

)activity and sugar-rich diet, leading to elevated Body Mass Index (BMI) and increased fasting 

plasma glucose levels, are synergistically involved in diabetes manifestation.[38, 39] T2DM is 

not only associated with premature mortality, but also several other health issues including 

kidney failure, retinopathy, increased risk of cardiovascular disease and stroke as well as with 

a reduced quality of life.[40, 41] Predictive biomarkers are urgently needed for early 

identification of individuals at high risk of developing T2DM in order to design highly-effective 

targeted preventive measures.[42] Untargeted metabolomics of plasma samples from diabetic 

patients has already proven to provide novel insights into mechanisms of disease 

pathogenesis and to supply biomarkers for diabetes.[43] As diabetes is a systemic disease 

that is known to also affect the eye (diabetic retinopathy), it was presently chosen as model 

disease for the evaluation of tear fluid in a clinical context. 

 

Tear fluid analysis enabling the metabolic phenotyping of T2DM 

 

In this basic research project, we have developed a simple and quick sample preparation 

workflow for the comprehensive investigation of tear fluid, which is based on our previously 

established liquid chromatography-mass spectrometry (LC-MS) methods for sweat 
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metabolomics [10, 11] and plasma eicosadomics. [44, 45] First, we wanted to systematically 

investigate and compare tear fluid composition with sweat in order to find differences deriving 

from the respective secretory glands. Indeed, distinct small molecules were preferably 

accumulated in tears such as eicosanoids, taurine or epinephrine, while other molecules like 

amino acids could be found in higher concentrations in sweat, demonstrating that each fluid 

has its unique set of metabolites. These findings prove tear fluid as a rich metabolic source 

being worth for further investigations regarding biomarker discovery. Therefore, as a second 

part of this study, the potential of tear fluid analysis for biomarker discovery in T2DM was 

investigated. To this end, exogenous as well as endogenous metabolites of diabetic patients 

and healthy controls were profiled in tear fluid. Remarkably, many blood-borne metabolites 

that have already been linked to diabetes such as tyrosine, valine, carnitine, and uric acid were 

presently found significantly upregulated in the tears of diabetic patients. Moreover, we have 

found individual medication (e.g. metformin), but also lifestyle factors (e.g. the sweetener 

sorbitol) associated with the disease in the tear fluid of diabetic patients. Thus, here we 

demonstrate the potential of tear fluid analyses for diagnosis but also for lifestyle monitoring, 

potentially supporting the development of novel applications in the context of predictive, 

preventive and personalised medicine (PPPM). 

 

Materials and Methods 
 
Reagents and Chemicals 

 

LC-MS grade formic acid, water, and acetonitrile used for chromatographic separation as well 

as for preparation of internal standards and samples were purchased from VWR (Germany), 

whereas LC-MS grade methanol was bought from Honeywell International Inc. (USA). Internal 

and external standards used for normalisation and verification were obtained either from 

Sanova Pharma GmbH (Austria) or Sigma Aldrich (Austria). Filter papers used for the 

collection of sweat from fingertips were stamped out of fuzz free paper (precision wipes, 

number=7552, white, 11x21cm, Kimtech Science, Kimberly-Clark Professional, USA). Tears 

were collected using Schirmer plus paper strips (Grecis, France). 

 

Cohort Design 

 

Volunteers were recruited by Department of Clinical Pharmacology, Medical University of 

Vienna, Austria, and gave their written, informed consent for the different studies outlined in 

Table 1. All experiments were approved by the ethics committee of the Medical University 

Vienna. For study A sweat from the fingertips and tear fluid from both eyes were sampled in 
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parallel, whereas for study B and C only tears were obtained. Some volunteers were sampled 

several times. In case of the diabetic participants, basic clinical and ophthalmological 

characteristics were collected (Table 2). To diagnose whether patients suffered from diabetic 

retinopathy, pupils were dilated with tropicamide 0.5% eye drops for better visualisation during 

eye examination. For the assessment of intraocular pressure, a mixture of oxybuprocaine and 

fluorescein was used. Moreover, patients were asked about medication they took on a regular 

basis, of which some could be detected in tears.  

 

Table 1: Overview of all studies discussed in this publication. Age and BMI are expressed as 

average ± standard deviation.  

Study Participants Age BMI [kg m-2] Sampling 
A 20 healthy 

subjects 

31 ± 13 25 ± 4 Sweat and 

tears, two 

visits  

B 20 healthy 

subjects  

24 ± 6 22 ± 6 Tears, up to 5 

visits 

C 8 diabetic patients 64 ± 9 

 

32 ± 4 Tears, 1 visit 

 

Table 2: Clinical characteristics for diabetic patients 

Donor Fasting 
glucose 

 [mg dL-1] 

HbA1c 
[%] 

Status Medication detected 
in tears 

35 138 5.8 No clinical signs of 

retinopathy 

Metformin 

50 222 7.8 Mild retinopathy Metformin 

53 198 7.6 Mild retinopathy Concor (Bisprolol) 

60 148 6.6 Moderate to severe 

retinopathy 

Metformin 

61 162 6.8 Moderate to severe 

retinopathy 

Xigduo (Metformin), 

Gabapentin 

64 212 7.3 No clinical signs of 

retinopathy 

Metformin, Sitagliptin 

97 - 6.8 No clinical signs of 

retinopathy 

Metformin, Pioglitazone 

103 162 7.3 No clinical signs of 

retinopathy 

Eucreas (Metformin, 

Vildagliptin) 
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Collection of Sweat from the Fingertip and Sample Preparation 

 

Finger sweat samples were collected and processed as previously described.[10, 11] In short, 

pre-wetted filter papers were provided in 0.5 mL Eppendorf tubes. For each sweat collection, 

volunteers washed their hands with warm tap water and dried them with disposable paper 

towels. After waiting for 1 min at room temperature without touching anything, filter papers 

were placed between the thumb and index finger using clean tweezers and held for another 

minute, resulting in the collection of 2 min sweat in total. Then, the sampling unit was 

transferred into the labelled Eppendorf tube and stored at 4° C. For the extraction of the 

metabolites, an extraction solution consisting of an aqueous solution of caffeine-(trimethyl-D9) 

in a concentration of 1 pg µL-1 with 0.2% formic acid was prepared. 120 µl of this extraction 

solution were added into the 0.5 mL Eppendorf tubes containing the sampling unit. The 

metabolites were extracted by pipetting up and down 15 times. The filter paper was pelleted 

on the bottom of the tube and the supernatant was transferred into HPLC vials equipped with 

a 200 µL V-shape glass insert (both Macherey-Nagel GmbH & Co.KG) and analysed by LC-

MS/MS. 

 

Collection of Tear Fluid and Sample Preparation 

 

Tear fluid was collected according to the instructions of the manufacturer. Briefly, donors were 

asked to look up, then the lower eyelid was gently pulled down and the bent strip end of the 

Schirmer plus strip was placed in the temporal section of the lower conjunctival fornix. Both 

eyes were tested at the same time. The donors were then asked to gently close their eyes 

without squeezing. After a maximal collection time of 5 minutes, subjects were instructed to 

open their eyes again, and the strips were removed. Schirmer strips were transferred into 2 ml 

glass vials (Agilent Technologies, USA) after tear collection and stored at -20 °C until further 

sample preparation. Different extraction solution and reconstitution conditions were evaluated 

to determine the best conditions for the parallel analysis of eicosanoids and metabolites: i) 200 

µL water with 0.2% formic acid and internal standards without pre-concentration and 

reconstitution, ii) 300 µL 35% methanol with 0.2% formic acid and internal standards without 

pre-concentration and reconstitution, iii) 300 µL 80% methanol and internal standards followed 

by drying and reconstitution in 5% methanol (s. results). Finally, samples were prepared as 

follows: Filter papers were first thawed before 5 µL of a deuterated eicosanoid standard mixture 

containing 15S-HETE-d8, 12S-HETE-d8, 5-oxo-ETE-d7, PGE2-d4, 20-HETE-d6, and 11,12-

DiHETre-d11 (Cayman Europe, Tallinn, Estonia) were pipetted onto Schirmer strips. Exact 
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concentrations for the deuterated eicosanoid standards can be found in Supplementary Table 

1. For the extraction of the samples, 300 µL of 80% methanol were added onto the filter paper, 

samples were vortexed and additionally, put on a shaker for 30 min. The Schirmer strip was 

pelleted at the bottom of the glass tube and the supernatant was transferred into a new HPLC 

glass vial (Macherey-Nagel GmbH & Co.KG). Samples were dried using a gentle stream of 

nitrogen and reconstituted in 200 µL of 5% methanol, 0.2% formic acid containing the internal 

standards caffeine-(trimethyl-D9) and N-acetyl-tryptophan (both in a concentration of 1 pg µL-

1). Samples were transferred into V-shaped glass inlets, put back in the labelled HPLC glass 

vial and analysed by LC-MS/MS. Schirmer strips with no tears were subjected to the same 

extraction protocol to serve as blank controls. 

 

Untargeted LC-MS/MS Analysis 

 

For LC-MS/MS analysis the Q Exactive HF mass spectrometer coupled to a Vanquish UPLC 

system (both Thermo Fisher Scientific) was used and both were controlled by the Xcalibur 

software (Thermo Fisher Scientific).  

For the metabolomics analyses of both sweat and tears, chromatographic separation was 

achieved using a Kinetex XB-C18 column (100 Å, 2.6 µm, 100 × 2.1 mm, Phenomenex Inc.). 

Mobile phase A was water with 0.2% formic acid and mobile phase B was methanol with 0.2% 

formic acid. The following gradient was used: 0.0-0.3 min 1-5% B, then 0.3 – 4.5 min 5-40% 

B, followed by a column washing phase from 4.5 – 6.9 min at 80% B and then a re-equilibration 

phase of 1.6 min at 1% B resulting in a total runtime of 7.5 min. The column temperature was 

set to 40°C, the flow rate was 500 µL min-1, and the injection volume was 10 µL. Samples were 

analysed in technical duplicates. An untargeted mass spectrometric approach was applied for 

compound identification. Therefore, electrospray ionisation was performed in the positive 

mode, the MS scan range was from 100-1000 m/z and the resolution was set to 60000 (at m/z 

200). A top 4 method was applied and dynamic exclusion was set to 6 s. Selected precursors 

were fragmented applying 30 eV collision energy and fragments were subsequently analysed 

in the orbitrap at a resolution of 15000 (at m/z 200).  

For eicosanoid profiling of sweat and tears, a Kinetex C18 column (2.6 μm, 100 Å, 150 x 2.1 

mm; Phenomenex Inc.) was used, and a 20 min gradient flow method was applied to separate 

molecules. Mobile phase A was again water with 0.2% formic acid, whereas mobile phase B 

consisted of 90% acetonitrile, 10% methanol, and 0.2% formic acid. The gradient was 

programmed as follows: starting with 35% B for 1 min, then 35-90% B from 1-10 min, followed 

by a wash phase at 99% B for 3.25 min before returning to the starting condition of 35% B. 

The column temperature was set to 40°C, the flow rate was kept at 200 µL min-1, and the 

injection volume was 20 µL. Eicosanoids were measured in negative ionisation mode and the 
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scan range for MS1 spectra was from 250-700 m/z at a resolution of 60000 (at m/z of 200). 

The two most abundant precursor ions were selected for fragmentation, applying a collision 

energy of 24 eV. An inclusion list (Supplementary Table 2) for prioritized fragmentation was 

predefined for m/z corresponding to well-known eicosanoids and their precursors. Generated 

fragment ions were analysed in the orbitrap at a resolution of 15000 (at 200 m/z).  

 

Data Analysis, Statistics and Figures 

 

Raw files generated by the Q Exactive HF instrument were processed by the Compound 

Discoverer Software 3.1 (Thermo Fisher Scientific) using a user-defined workflow tree. 

Automatically identified compounds were manually reviewed using Xcalibur 4.0 Qual browser 

(Thermo Fisher Scientific) and additionally, in case of metabolites the obtained MS2 spectra 

were compared to a spectral library (mzcloud - Copyright © 2013–2021 HighChem LLC, 

Slovakia). For eicosanoid identification, recorded MS2 spectra of eicosanoid specific precursor 

masses were compared to reference spectra available in the LipidMaps spectral library and 

mzcloud. The match factor cut-off from mzcloud in the Compound Discoverer Software was 

set to ≥ 80 for manual investigation, and the maximum mass tolerance was 5 and 10 ppm on 

MS1 and MS2 level, respectively. Verification of key metabolites was done with purchased 

analytical standards analysed under the same LC-MS conditions as samples. The Tracefinder 

Software 4.1 (Thermo Fisher Scientific) was used for peak integration and calculation of peak 

areas. Peaks with a signal-to-noise of >25 and a minimum area of 1E5 were considered for 

further evaluation. Afterwards, batch tables generated by the Tracefinder Software were 

exported and further processed by means of Microsoft Excel, GraphPad Prism (Version 6.07) 

for univariate analysis such as t-tests or Mann Whitney tests as well as to check if data display 

gaussian distribution, and the Perseus software (version 1.6.12.0)[46] for multivariate analysis 

namely PC and volcano plots. Figure 1A was created using BioRender (www.BioRender.com). 

 

Results 
 
Tear fluid has a distinct metabolic composition compared to sweat 

 

A straight-forward workflow was established for processing tear fluid collected with Schirmer 

strips according to the manufacturer’s protocol (Figure 1A). In short, metabolites were 

extracted from Schirmer strips using organic conditions, the resulting solution was evaporated, 

reconstituted in the initial solvent conditions of the LC method and subsequently analysed by 

high-resolution MS. Sample collection takes ≤ 5 min depending on tear flow rate of the 

individual and sample preparation of a single tear fluid can be performed within 5 min. In 
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addition of being fast and simple, sampling of tear fluid is non-invasive, which facilitates patient 

compliance as it is less discomforting compared to blood collection. LC-MS data acquisition of 

samples requires further 7.5 min in case of metabolites or 20 min in case of eicosanoids, which 

gives a total of approximately 40 minutes for the entire workflow per sample.  

 Metabolic profiling of minute amounts of sweat as well as of low abundant plasma 

eicosanoids using the Q Exactive HF hyphenated with an ultra-high-performance LC (UPLC) 

was already successfully demonstrated by us [10, 11, 44, 45], consequently, this set-up was 

also applied for tear fluid analysis. Regarding sample preparation, several extraction conditions 

were tested in order to ensure optimal extraction for both, metabolites and eicosanoids, present 

in tears (Figure 1B). First, water was evaluated as solvent as it is the standard method for 

sweat analysis. Further, extraction using 35% methanol representing the loading conditions of 

the eicosanoid analysis method was investigated. Lastly, we evaluated the extraction with 80% 

methanol followed by drying and reconstitution in 5% methanol, which was reported in the 

literature.[21]  The evaluation of different extraction solutions was performed regarding peak 

areas and shapes of representative molecules. For caffeine and arachidonic acid (Figure 1B) 

as well as for paraxanthine and docosahexaenoic acid (Supplementary Figure 1), highest peak 

areas and best peak shapes were obtained using 80% methanol as extraction solution. 

Additionally, 80% methanol-extracted preliminary tear fluid led to more feature annotations by 

the Compound Discoverer Software in contrast to the other two extraction conditions, however, 

Schirmer strip background levels were similar for all conditions. Thus, 80% methanol was used 

for sample preparation in the following proof-of-principle studies. 

 Initially, tear fluid and sweat were collected from 20 healthy donors in order to evaluate 

and compare the metabolic composition of these biofluids. Many metabolites were detected in 

both, sweat and tear fluid, but interestingly, a principal component analysis (PCA) using these 

metabolites (165 in total) separated the two groups perfectly (Figure 1C). Further, tear fluid 

was found to be a rich source for eicosanoids exemplified by the hydroxyeicosatetraenoic acids 

(HETEs) and the precursor molecules arachidonic acid (AA) and docosahexaenoic acid. 

Actually, none of these molecules was detectable in sweat (Figure 1D). Statistical analysis of 

the metabolites reproducibly detected in all 20 volunteers revealed that 14 metabolites such 

as creatine, adenosine, taurine, epinephrine and uric acid were found at significant higher 

levels in tears, whereas other 95 metabolites like adenine, dopamine, nicotine, and histamine 

were detected at higher levels in sweat (Figure 1E). In case of taurine, abundance levels 

detected in tear fluid were also significantly higher than in plasma.[24] Interestingly, some 

metabolites could only be specifically measured in one of the investigated biofluids such as 3-

hydroxycotinine and 3-phenyllactic acid in sweat, whereas kahweol and eicosanoids could only 

be detected in tear fluid (Figure 1D and 1E). These findings indicate that the simultaneous 

collection and analyses of several biofluids may be synergistic, as some molecules may 
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preferably accumulate in one biofluid due to distinct environmental factors such as pH (sweat: 

4.0 – 6.0, tears 7.0 – 8.0 and blood: 7.35-7.45), or polarity. Thus, certain diseases may give 

rise to biomarkers that are transported to specific biofluids or secreted via specific glands.[1] 

The monitoring of biofluid-specific metabolic responses to certain environmental conditions 

may consequently gain great relevance in the further development of PPPM.   

 
 

Figure 1. Non-invasively sampled tear fluid and sweat have distinct metabolic 
compositions. A straight-forward workflow for tear fluid collected with commercially available 

Schirmer strips was established and successfully applied to proof-of-principle studies. A 
Graphical summary of the workflow including sample collection of tear fluid and sweat from 

fingertips, the extraction of analytes and subsequent LC-MS/MS analysis as well as data 

analysis. B Respective peak areas of caffeine and arachidonic acid extracted from tear fluid 

with water, 35% methanol and 80% methanol. AA, absolute area; RT, retention time C Principal 
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component analysis (PCA) of metabolites detected in sweat and tears simultaneously derived 

from the same healthy volunteers is depicted. The PCA was calculated with a set of 165 

metabolites identified in both sweat and tears and successfully clustered samples according 

to biofluids. D Examples of eicosanoids (hydroxyeicosatetraenoic acids (HETEs), 

docosahexaenoic acid (DHA) and arachidonic acid (AA)) identified in high levels in the tear 

sample of a healthy control (relative intensities of 4E6 – 3E7), but not in the respective sweat 

sample. AA, absolute area; RT, retention time E Metabolic differences of sweat and tears 

depicted with a volcano plot. 14 and 95 metabolites were found at higher levels or specifically 

in tears and sweat, respectively. 

 

Tear fluid analysis allows to discriminate between diabetic patients and healthy controls 

 

In a clinical pilot study, 20 healthy volunteers and 8 T2DM patients were recruited to evaluate 

tears as a diagnostic and prognostic fluid (Figure 2A). All of these 28 donors received eye 

drops in the course of their ophthalmological examination, namely oxybuprocaine/fluorescein 

(Thilorobin ®) for measurement of intraocular pressure (Both study B and C) and tropicamide 

(Mydriaticum ‘Agepha’ 0.5%) for pupil dilation in diabetes patients (study C). Additionally, tear 

fluid from both eyes was sampled using Schirmer strips, which were extracted and 

subsequently analysed by LC-MS/MS. Some of the healthy volunteers were sampled several 

times, thus, leading to the collection of 127 healthy and 16 diabetic volunteer profiles. Our 

untargeted metabolomic and eicosadomic workflow applied to the 143 Schirmer strip samples 

resulted in the identification of 226 metabolites and 70 eicosanoids and eicosanoid-like 

features (Supplementary Data) in tears of study participants (Figure 2B), including 

oxybuprocaine, which was administered to all subjects for diagnostic purposes (Figure 2C).  

A PCA using the 226 metabolites successfully discriminated between healthy controls 

and diabetic patients, however, donors 35 and 64, both belonging to the diabetic cohort, rather 

clustered with healthy controls (Figure 2D). Interestingly, these two donors showed no signs 

of diabetic retinopathy according to the clinical evaluation, which may be a causal factor 

influencing the PCA separation. In addition, some healthy participants donated tear samples 

at different site visits. Multiple sample of three donors are highlighted in the PCA (Figure 2D, 

orange, violet and pink symbols), demonstrating that tear samples cluster according to each 

individual and not the sampling time point. This indicated that the molecular composition of 

tears collected from both, left and right eye, was determined by the individuum showing little 

variance associated with multiple sampling. The principal components underlying the PCA plot 

were influenced by specific medications such as metformin and tropicamide, which was used 

for pupil dilation during eye examination, but also endogenous factors like methionine 

sulfoxide, glutathione, threonine and citrulline (Figure 2E). Even though high levels of 
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eicosanoids have been measured in tears (Figure 1), a PCA based on the 70 identified 

eicosanoids and eicosanoid-like features in tears was not able to discriminate between healthy 

controls and diabetic patients (Supplementary Figure 2). No significant eicosanoid differences 

between the two groups were observed. The successful clustering of healthy controls versus 

diabetic patients (Figure 2D) already demonstrated the great potential of tear fluid analyses as 

a tool for PPPM. In particular, the analysis of tear fluid may not only support the discrimination 

of distinct disease states but also provide a rich source of biologically relevant metabolites 

potentially serving as future biomarkers. 
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three healthy donors that donated tears more than once (violet, pink and orange) are 

highlighted. 

 

Evaluation of tear fluid as potential source for biomarker candidates 

 

The observation that individuals, who repeatedly donated tears, formed clusters in the PCA 

(Figure 2D) indicated that the metabolic composition of tear fluid is specific for each individual 

and hardly affected by sample collection and preparation. This motivated us to investigate the 

differences between the study groups in greater detail in order to identify potential T2DM-

related marker molecules in tear fluid. Statistical analysis of the metabolites detected in tears 

of study participants revealed significantly higher levels of carnitine, nicotinic acid and sorbitol, 

as well as tropicamide and metformin in diabetic patients (Figure 3A, 3B and 3C). While 

carnitine and nicotinic acid are two endogenous metabolites, tropicamide as well as metformin 

represent individual medications and the sweetener sorbitol may represent a life style related 

xenobiotic compound. Elevated levels of circulating carnitine have already been observed in 

obesity and insulin resistance and may be an early predictor of developing T2DM [47, 48]. 

Altered levels of nicotinic acid have not been reported in the literature before, thus, nicotinic 

acid might represent a potential novel biomarker associated with diabetes. 

 Further, a significant difference of oxybuprocaine, the active compound of the eye 

drops (Thilorobin®), was observed between diabetic patients and healthy (Figure 3D). 

Oxybuprocaine was found at higher levels in tears of diabetic patients. This observation may 

indicate that the active ingredient of the eye drops was not as efficiently cleared within the eye 

in case of diabetic patients compared to healthy individuals. Metabolomic tear fluid analysis 

actually allowed the identification of individual medications. Next to metformin, which is the 

first-line oral medication in the treatment of T2DM [49], other diabetic medications such as 

pioglitazone, sitagliptin or vildagliptin were successfully detected in some patients (Figure 3E). 

Untargeted mass spectrometric analyses further led to the detection of other drugs in tears of 

diabetic patients such as the beta-blocker bisoprolol and the anticonvulsant gabapentin, which 

have indeed been taken by respective patients according to their questionnaire (Figure 3F). 

Tropicamide, a medication used in diabetic patients during clinical examination in order to 

assess signs of diabetic retinopathy and to identify potential occurred damage to the retina, 

was specifically found in the tear fluid of diabetic patients.  

 These findings clearly demonstrate that tear fluid analyses revealed potential 

biomarker candidates for diabetes, which have to be further evaluated in larger patient cohorts. 

Moreover, we have not only identified endogenous molecules, but also xenobiotics that are 

associated with the disease (e.g. medication and artificial sweetener), allowing to monitor a 

patient’s compliance regarding the intake of specific prescribed medications. 
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Figure 3. Endogenous and exogenous metabolic differences between diabetic patients 
and healthy controls. A Multiparameter corrected volcano plot revealing significant 

differences of metabolites between diabetic patients and healthy controls. B-D Box plots of 

carnitine, nicotinic acid, sorbitol, tropicamide (n=127 for healthy and n=16 for diabetes), 

metformin (n=16) and oxybuprocaine (n=44 for healthy and n=16 for diabetes) are shown for 

healthy controls and diabetic patients. Since data was not normally distributed, two-tailed 

unpaired t-tests (Mann Whitney test) were performed, demonstrating the significant increase. 
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Oxybuprocaine is only demonstrated for all study participants receiving the same product of 

eye drops (Thilorbin®, for healthy n = 44, for diabetes n = 16), resulting in a p-value of 0.0105. 

Metformin and tropicamide were only measured in diabetic patients (n = 14), thus, a one 

sample, two-tailed t-test was performed. Boxes are represented as mean and standard 

deviation. *** = p-value of < 0.0001; * = p-value of < 0.05; nAUC normalised area under the 

curve. E-F Head-to-tail comparison of recorded versus reference spectra taken from mzcloud 

for type 2 diabetes mellitus specific medication metformin (RT = 0.45 min, identified in all 

diabetic patients except for donor 53), pioglitazone (RT = 4.92 min, only detected in donor 97), 

sitagliptin (RT = 3.80, only measured in donor 64) and vildagliptin (RT = 1.80, only found in 

donor 103) as well as for the drugs bisoprolol (RT = 4.75 min, only taken by donor 61), 

gabapentin (RT = 2.09 min, only consumed by donor 53) and tropicamide (RT = 2.95 min, 

identified in all diabetic patients). All of them have been identified by the Compound Discoverer 

Software with a match factor >95 and subsequently verified via the patients’ questionnaire. RT, 

retention time. 

 

Several amino acids and other endogenous molecules were significantly elevated in tear fluid 

of diabetic patients 

 

Statistical t-tests further uncovered several endogenous metabolites displaying significantly 

higher levels in diabetic patients compared to healthy controls (Figure 4). Among them were 

the essential and non-essential amino acids aspartic acid (Asp), glutamate (Glu), glutamine 

(Gln), methionine (Met), methionine sulfoxide (MetO), serine (Ser), threonine (Thr), tyrosine 

(Tyr) and valine (Val) (Figure 4A). Previous metabolomics investigations have already linked 

these amino acids to insulin resistance and used them as predictors for T2DM risk.[47, 50-52] 

Moreover, citrulline, ornithine and uric acid were found at significantly higher levels in diabetic 

patients (Figure 4B), indicating an impaired metabolism (urea cycle and purine catabolism). 

High levels of uric acid have already been associated with diabetes, however, it is not yet clear 

whether uric acid contributes to the development of diabetes or if hyperuricemia is a result of 

insulin resistance.[53] An apparent accumulation of taurine in tears of T2DM patients, as 

presently observed, has already been described in case of dry eye syndrome.[25] Moreover, 

taurine levels may be increased in diabetic patients following the long-lasting stress due to the 

metabolic disorder. Hence, taurine may represent a tear-specific biomarker for T2DM and/ or 

diabetic retinopathy. 

Conclusively, tear fluid analyses revealed endogenous and exogenous metabolites that 

were differently regulated or specifically found in diabetic patients. This demonstrates the great 

potential of LC-MS-based tear fluid analyses for the characterisation of disease state(s) and 

to support biomarker discovery. This new approach may extend current means to asses 
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individual health states, to identify potential new targets for therapeutic interventions, and to 

monitor therapeutic efficacy and to control patients’ compliance, which are all factors urgently 

needed for PPPM. 

 

 

 
Figure 4. Tear fluid analyses reveals differences in endogenous metabolites that have 
already been linked to diabetes. A-B Box plots of essential and non-essential amino acids 

that were significantly up-regulated in diabetic patients (n = 16) in contrast to healthy controls 

(n = 127). Statistical analyses further revealed a significant elevation of citrulline, ornithine, 

taurine, and uric acid. Normality of the data was checked, but data did not stem from a 

Gaussian distribution. Two-tailed, unpaired t-tests (Mann Whitney Tests) were performed to 

confirm significance. Boxes represent means and standard deviation. **** = p-value < 0.0001, 

*** = p-value < 0.001, ** = p -value < 0.01 and * p-value < 0.05; Asp, aspartate; Glu, glutamate; 

Gln, glutamine; Met, methionine, MetO, methionine sulfoxide; nAUC, normalised area under 

the curve; Ser, serine; Thr, threonine, Tyr, tyrosine; Val, valine. 

 

Discussion 
 
The present work clearly demonstrates that tear fluid sampled with Schirmer strips can be used 

for individual metabolic phenotyping. Tears are easily accessible and their collection is non-

invasive, painless and fast, thus providing important characteristics regarding point-of-care 

testing. Compared to blood, the non-invasive nature of tear fluid collection supports repeated 

sampling of the same individual in order to evaluate dynamic biomarkers which is of great 

relevance for meaningful metabolic phenotyping. Moreover, a straightforward and quick (<5 

min) tear sampling method combined with a fast LC-MS analysis strategy (approximately 7.5 
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min for metabolites and 20 min for eicosanoids) (Figure 1) offers the opportunity to use tear 

fluid for large scale longitudinal metabolic studies.  

 

Distinct metabolic composition of sweat and tear fluid 

 

Since sweat has been already demonstrated to be a rich source for biologically highly relevant 

molecules[10, 11], this study was conducted to evaluate the composition of tear fluid collected 

with Schirmer strips in greater detail. Therefore, sweat and tears from 20 healthy participants 

were collected in parallel in order to investigate and compare the distinct molecular 

composition of these two non-invasively sampled biofluids. While both biofluids are easily 

accessible, they also have specific properties: Sweat can be sampled in a highly frequent 

manner allowing kinetic time-course measurements. Tears are less likely to be contaminated 

due to the protection of the eyelids and the lipid layer, and the sample volume can be 

determined, which is necessary for absolute quantification. Numerous endogenous and 

exogenous small molecule metabolites, which have previously been identified in sweat[10, 11], 

were also successfully profiled in the minute amounts of tears using the same LC/MS-MS 

methodology. Interestingly, while some molecules were specifically detected in one biofluid, 

other molecules showed high abundance differences between the two specimens. For 

example, kahweol and the whole panel of eicosanoids and eicosanoid-like features were only 

detected in tear fluid. Molecules such as taurine and epinephrine were found at significantly 

higher levels in tears compared to sweat (Figure 1). These findings highlight the potential of 

tear fluid analysis in order to successfully identify low-abundant metabolites, which may be 

challenging to be detected in other biofluids such as sweat or blood due to matrix effects, pH 

or polarity. Intriguingly, eicosanoids, important inflammatory mediators were detectable solely 

in tears demonstrating that tear fluid may be a relevant biofluid allowing insights into disease-

related metabolic alterations. Certain diseases often have multiple causes; thus, they may 

become detectable only at advanced stages due to diagnostic challenges. Earlier molecular 

diagnosis typically results in better treatment outcome and improved recovery.[54] Most 

importantly, the more data we can collect on these influencing factors in vivo with the help of 

biofluid analysis, the better we may understand different pathologies. Thus, combining the 

analysis of several biofluids such as sweat and tears may be valuable to gain complementary 

information on individual metabolic traits, help to assess individual lifestyle parameters and 

health states as well as to facilitate a better understanding for different disease pathologies.  

 

The need for non-invasive metabolic biomonitoring in type 2 diabetes 
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T2DM is a metabolic disorder that can cause long-term tissue damage and dysfunction of 

several organs, including the eyes, eventually resulting in sight-loss.[55]. The underlying 

disease mechanism of T2DM are still not fully elucidated and currently there exists no curative 

therapy. However, the treatment of pre-diabetes, meaning already impaired β-cell function and 

insulin resistance but not yet sufficiently high blood sugar levels for diagnosis, has been 

demonstrated to prevent disease progression.[56] Thus, identifying biomarkers to diagnose 

the disease prior to clinical manifestation or assess the risk for future insulin resistance and 

T2DM is crucial in order to initiate preventive treatments by anti-diabetic drugs such as 

metformin through lifestyle intervention and/ or in time. As already known, ocular diseases (e.g. 

dry eye disease) as well as systemic diseases (e.g. diabetes) can lead to the accumulation of 

disease-associated molecules such as proteins or lipids in tear fluid. The fact that T2DM finally 

results in the development of diabetic retinopathy in 50% of patients[57], justifies tears as a 

promising source for biological relevant molecules potentially serving as future biomarkers in 

personalised medicine. So far, most clinical metabolomics studies focusing on the identification 

of small molecule key players in the pathology of diabetes rely on the analysis of blood/plasma. 

As metabolite profiles change constantly due to varying environmental demands and disease 

progression, metabolomic measurements call for repeated analyses in a short timeframe in 

order to identify dynamic biomarkers. Thus, blood sampling is hardly applicable for time-course 

analysis due to several compliance issues. Moreover, the lack of inexpensive sampling 

methods and point-of-care testing devices as well as the absence of high-throughput analysis 

impede the development of clinical tools used for early disease detection.[54] Non-invasive 

methods such as tear fluid sampling and analysis seem rather preferable. Since only small 

volumes of tear fluid can be collected and analytes are generally very low abundant, there is 

great demand for ultra-sensitive analytical methodologies. With the continuous improvement 

of detection sensitivity in mass spectrometric approaches, the analysis of the minute amounts 

of tear fluid and other alternatively sampled biofluids become feasible. Hence, an ultra-

sensitive LC-MS method was used for the conduction of a clinical pilot study based on T2DM 

patients and healthy controls in order to evaluate tears analyses as a diagnostic biofluid for 

biomarker discovery in T2DM. 

 

Tear fluid proves as rich source for biomarker discovery in type 2 diabetes mellitus 

 

The opportunity of analysing tear fluid in order to identify potential biomarkers supporting the 

clinical management of T2DM was presently investigated in a pilot study based on 20 healthy 

volunteers and 8 T2DM patients. Therefore, the molecular composition of tear fluid was 

assessed by applying comprehensive LC-MS-based metabolic profiling and subsequently 

evaluated regarding significant differences between the study cohorts. Altogether, our 
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methodology allowed the identification of 226 metabolites as well as 70 eicosanoids and 

eicosanoid-like features in tears of all study participants (Figure 2). Statistical analysis between 

diabetic patients and healthy controls revealed significant difference of certain metabolites but 

no significant changes in the eicosanoid composition was observed. Regarding metabolites, 

we were able to detect medications such as metformin, bisoprolol and gabapentin only in tears 

of diabetic patients as a result of their individual clinical treatment (Figure 3). These findings 

proofed our analysis strategy as valid approach for further investigation of biomarker discovery. 

Statistical analyses revealed a significant up-regulation of many amino acids (Asp, Glu, Gln, 

Met, MetO, Ser, Thr, Tyr, Val) as well as the endogenous metabolites carnitine, citrulline, 

ornithine, and uric acid in tears of patients suffering from T2DM (Figure 3 and 4). All of these 

metabolites have already been linked to diabetes and/ or diabetic retinopathy, demonstrating 

that our results agree with data described in the literature.[40, 47, 48, 52, 58-60] Nonetheless, 

we have further identified nicotinic acid and taurine to be significantly accumulated in tears of 

diabetic patients, both have not been reported before and may represent novel biomarker 

candidates for T2DM, which have to be further evaluated in larger study cohorts. 

 

The role of branched chain and aromatic amino acids, uric acid and taurine in T2DM 

 

High serum levels of branched chain amino acids (Val, leucine, isoleucine) together with the 

aromatic amino acids phenylalanine and tyrosine can be used as predictors for identifying 

individuals at high risk of developing future insulin resistance and T2DM. Levels of these amino 

acids may be relevant up to 12 years before disease onset.[39, 52]  It is speculated that these 

amino acids act via the same pathways as insulin, namely the activation of the mammalian 

target of rapamycin (mTOR) and its downstream targets. On the other hand, accumulation of 

these amino acids may cause mitochondrial dysfunction via stress kinase stimulation resulting 

in β-cell apoptosis. Both effects may lead to insulin resistance and T2DM.[61] While elevated 

serum levels of the respective amino acids have been already reported, we were able to 

demonstrate the accumulation of many amino acids, i.e. Asp, Glu, Gln, Met, MetO, Ser, Thr, 

Tyr, Val, also in the tear fluid of patients suffering from T2DM. Similar to amino acids, high 

serum levels of uric acid were already linked to diabetes but diabetes-related accumulation in 

tears was not yet reported. Serum hyperuricemia has been strongly associated with pre-

diabetes and T2DM since the 1920s, however, it is not clear if accumulation of uric acid is due 

to reduced kidney function associated with diabetes or if hyperuricemia contributes to diabetic 

pathology. Yet, it has been shown that uric acid can induce mitochondrial oxidative stress 

resulting in impaired fatty acid oxidation, insulin-dependent nitric oxide release and glucose 

delivery.[62] Taurine, which has several important functions including membrane stabilisation, 

antioxidation properties, osmoregulation and being a pro-inflammatory regulator, was shown 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.30.21267045doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.30.21267045
http://creativecommons.org/licenses/by-nd/4.0/


22 
 

to be decreased in plasma levels of diabetic patients in contrast to healthy controls.[25, 63] 

Here, we have observed contrary results: while decreased plasma taurine levels have been 

reported, taurine levels in tears were significantly increased in diabetic patients compared to 

healthy participants. Taurine concentrations were found to be elevated in stressed states, 

including the inflammation of the ocular surface in dry eye disease.[64] T2DM has also been 

associated with ocular surface changes and dry eye symptoms, hence, taurine could be a 

novel biomarker specifically found in tears of diabetic patients reflecting an imbalance of 

metabolic homeostasis due to long-lasting stress and inflammation of the ocular surface.[65] 

 

The potential of tear fluid analyses to support PPPM concepts 

 

Metabolic phenotyping of tear fluid derived from TDM patients and healthy controls enabled 

the successful identification of many meaningful marker molecules potentially serving as future 

biomarkers. While many of them were already linked to the pathology of diabetes, others seem 

to be a result of the general metabolic imbalance associated with diabetes. This study clearly 

demonstrates that tear fluid analyses may not only be used to assess personal health states 

and lifestyles by evaluating endogenous metabolites but also has the potential to monitor the 

intake of xenobiotic medications used in the treatment for T2DM in an individualised fashion. 

Follow-up clinical studies using tear fluid of larger study cohorts are needed in order to evaluate 

the power of suggested biomarker candidates. Conclusively, tear fluid analyses seems a 

powerful tool to facilitate the development of novel PPPM-related applications for detecting 

individuals at risk, monitoring disease progression, therapies and therapeutic efficacy, finding 

potential targets for therapeutic interventions in conditions such as diabetes, examining 

lifestyle changes, as well as to check the intake of prescribed medications in clinical practice, 

all in a non-invasive and painless manner.  

 

Strength and limitations 
 

Schirmer strip collection was chosen for tear sampling as it is fast, non-invasive, easy, gentle 

with minimal discomfort for patients, thus, ensuring patients’ compliance and allowing to collect 

multiple samples from the same participant. Sample preparation of Schirmer strips is 

straightforward and inexpensive. Nevertheless, Schirmer strip collection could slightly irritate 

the eye and induce reflex tear secretion in some subjects, and may alter tear fluid composition. 

Moreover, evaporation of water collected with the strip cannot be excluded, which may result 

in higher apparent concentrations and may impede the determination of actual collected tear 

volume and thus, also absolute quantification.[12] We have already demonstrated that the 

kinetic profiles combined with mathematical models of biochemically related pairs such as 
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caffeine and its metabolites can overcome this normalisation problem and enable the 

determination of individual sweat flux rates, which can easily be applied to tear fluid analyses 

as well.[11] Metabolomic profiling of tear fluid using LC-MS/MS is quick, highly sensitive and 

revealed that tears are a rich source for many endogenous and exogenous metabolites. The 

presented approach further allowed to identify significant differences between healthy controls 

and diabetic patients, thereby, demonstrating the applicability of tear fluid analyses as a 

diagnostic and prognostic tool for clinical applications. However, the sample cohort of this pilot 

study was quite small, the T2DM sample size was limited, and groups were not age/ BMI 

matched, thus, other confounders causing these characteristics cannot be fully excluded. 

Hence, the findings of this study will have to be tested in larger cohorts, which may even allow 

the identification of further biomarkers and potential targets for therapeutic intervention for 

diabetes. 

 

Conclusions and Outlook 
 

We conclude that tear fluid analysis has the great potential to support further developments of 

PPPM strategies as tears can be sampled non-invasively, gently, repeatedly and thus it allows 

point-of-care testing. Tears represent a rich source of different classes of endogenous and 

exogenous metabolites including eicosanoids. Profiling of these metabolites may enable the 

assessment of individual health states as well as the identification of individual responses to 

environmental changes and disease states. We have demonstrated that the tear fluid 

composition of diabetic patients and controls displayed significant differences and presented 

a panel of potential tear specific biomarkers. Ongoing research may be able to relate dynamic 

molecular patterns obtained by tear fluid analysis with other disease states or identify 

individuals at high risk for certain diseases. Hence, we suggest that tear fluid analysis offers 

many opportunities for applications in precision medicine ranging from biomarker discovery to 

the monitoring of patients’ compliance and therapeutic efficacy. 
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