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Mathematical analyses of the model 

Here, we detail the analytical results discussed in the main text with the goal of understanding the 

long-term behavior of the within host model described in the main text 

 d

dt
𝑇(𝑡) = −𝛽𝑇(𝑡)𝑉(𝑡) − 𝜅0𝑇(𝑡)𝐼(𝑡) + 𝛿𝑅𝑅(𝑡)

d

dt
𝑅(𝑡) = 𝜅0𝑇(𝑡)𝐼(𝑡) − 𝛿𝑅𝑅(𝑡)

d

dt
𝐼(𝑡) = 𝛽𝑇(𝑡)𝑉(𝑡) − (𝛿𝐼 + 𝜅1𝐷1(𝑡) + 𝜅2𝕀𝑡>𝜏𝐴)𝐼(𝑡)

d

dt
𝑉(𝑡) = 𝑝𝐼(𝑡) − 𝑐𝑉(𝑡)

d

dt
𝐽(𝑡) = 𝜈

𝐷1(𝑡)
𝑚

𝐷1(𝑡)𝑚 +𝐾𝑚
− (𝛿𝐽 + 𝜅1𝐷1(𝑡)) 𝐽(𝑡)

d

dt
𝐷0(𝑡) = 𝜆(𝐷00 − 𝐷0(𝑡)) − 𝜎(𝐽(𝑡) + 𝐼(𝑡))𝐷0(𝑡)

d

dt
𝐷1(𝑡) = 𝜎(𝐽(𝑡) + 𝐼(𝑡))𝐷0(𝑡) − 𝛿𝐷𝐷1(𝑡). }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 Eq.(1) 

We begin by giving explicit expressions for the possible representations of a resolved infection in 

the full model (1), we next show that solutions the mathematical model (1) evolving from non-

negative initial conditions remain non-negative and bounded, we then determine a positively 

invariant subset of ℝ7 and use LaSalle’s Invariance Principle to show that the asymptotic behavior 

of the system is determined by a reduced model system for 𝐽, 𝐷0 and 𝐷1. Finally, we study this 

reduced system to characterise the local stability of the resolved infection steady state, 

demonstrate the existence of the hyper inflamed equilibrium, and perform numerical bifurcation 

analysis. 

Model dynamics of resolved infection 

There is an infection free, or resolved, equilibrium solution corresponding to (𝑇0, 0,0,0,0, 𝐷00, 0). 

This equilibrium is a solution of (3) for any 𝑇0 ∈ ℝ. It follows that model in Eq. (1) does not admit 

isolated infection free equilibria, which complicates bifurcation analysis. However, we are primarily 
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interested in the asymptotic dynamics following infection and Eq. (1) has a limited number of 

target cells 𝑇. It is then reasonable to expect that all infections not leading to death must eventually 

resolve and any long-term solutions of Eq. (1) must have 𝑉(𝑡∗) and 𝐼(𝑡∗) approaching 0 for 𝑡∗ 

large enough. Indeed, any equilibrium solution must satisfy 

d

dt
[𝑇(𝑡) + 𝑅(𝑡)] = 0, 

we immediately see that 

𝛽𝑇∗𝑉∗ = 0. 

It follows that 𝑉∗ = 0 or 𝑇∗ = 0. In either case, since 𝛽𝑉∗𝑇∗ = 0, the equilibrium condition for 𝐼∗ 

becomes 

0 = −(𝛿𝐼 + 𝜅1𝐷1
∗ + 𝜅2𝕀𝑡>𝜏𝐴)𝐼

∗. 

Assuming for now that 𝐷1
∗ ≥ 0 (we prove this is the case in Lemma 2), the only possible 

equilibrium value is 𝐼∗ = 0 as 𝛿𝐼 , 𝜅1, and 𝜅2 are strictly positive. The equilibrium condition for 𝑉 

then becomes 

0 = −𝑐𝑉∗. 

Therefore, we must have 𝑉∗ = 0 independently of the value of 𝑇∗. The same argument implies 

that 𝐼∗ = 0. Thus, informally, for a given 𝑇(0) and 𝑅(0), the subsystem 𝑇, 𝑅, 𝐼, 𝑉 has only the trivial 

equilibrium solution corresponding to the 1-dimensional compact set parametrized by 𝑇∗ 

𝐿 = {(𝑇∗, 0,0,0) ∈ ℝ≥0
4 |𝑇∗ ∈ [0, 𝑇(0) + 𝑅(0)]}, 

where 𝑇∗ ≤ 𝑇(0) + 𝑅(0) since 

d

dt
[𝑇(𝑡) + 𝑅(𝑡)] ≤ 0 
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and we are assuming that 𝑅 ≥ 0 (we show this is the case in Lemma 2). 

Then, when considering the long-term behavior of Eq. (1), it is intuitive to consider only the 

remaining elements of the system. Essentially, the equilibrium values of the subsystem for 

𝑇, 𝑅, 𝐼, 𝑉 must belong to the compact set 𝐿. Further, since the dynamics of 𝑇 are contracting and 

the viral dynamics model is target cell limited, it is natural to expect that all trajectories of 𝑇, 𝑅, 𝐼, 𝑉 

will approach 𝐿. We formalize this expectation in the following section using LaSalle’s Invariance 

Principle. Accordingly, when considering the long-term behavior of (1), we only consider the 

subsystem corresponding to (𝐷0, 𝐷1 , 𝐽). 

Model reduction for bifurcation analysis 

To show that all long-term trajectories of (1) approach the 1-dimensional compact set 𝐿 for 

arbitrary 𝑇∗, we first recall LaSalle’s Invariance Principle 

Theorem 1 (LaSalle’s Invariance Principle). Let 𝛴 be a compact positively invariant set with 

respect to the dynamical system 

 d

dt
𝑥(𝑡) = 𝑓(𝑥), 𝑥(0) = 𝑥0. Eq. (2) 

Assume that 𝒱 is a negative semi-definite 𝐶1 function for all 𝑥 ∈ 𝛴, let 𝛩 ⊂ 𝛴 be the set of points 

such that �̇�(𝑥) = 0 for all 𝑥 ∈ 𝛩, and define 𝛹 as the largest invariant set contained in 𝛩. Then, 

all solutions 𝑥(𝑡) of Eq. (2) approach 𝛹 as 𝑡 → ∞. 

First, we consider the long-time model behavior with 𝑡 > 𝜏𝐴 and so include an adaptive immune 

response in the differential equation for 𝐼(𝑡) which becomes 

d

dt
𝐼(𝑡) = 𝛽𝑇(𝑡)𝑉(𝑡) − (𝛿𝐼 + 𝜅1𝐷1(𝑡) + 𝜅2)𝐼(𝑡). 
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After making this change, Eq. (1) is non-autonomous and takes the place of 𝑓(𝑥) in Eq. (2). 

Therefore, to apply LaSalle’s Invariance Principle, we must identify a positively invariant compact 

set. Given the biological interpretation of Eq. (1), the natural candidate is a bounded subset of the 

positive octant of ℝ7. To do this, we begin by showing that trajectories of the full system Eq. (1) 

evolving from non-negative initial conditions remain non-negative. 

Lemma 2.  Assume that all parameters of Eq. (1) are strictly positive and let the vector of the 

initial conditions [𝑇(0), 𝑅(0), 𝐼(0), 𝑉(0), 𝐽(0), 𝐷0(0), 𝐷1(0)] be component-wise non-negative. 

Then, solutions of Eq. (1) remain component-wise non-negative for all time 𝑡 > 0. 

Proof. We begin by considering the equations for the total number of immune cells. Assume for 

contradiction that 𝑡𝐷0 is the first time such that 𝐷0(𝑡𝐷0) = 0. Then, 

d

dt
𝐷0(𝑡) |𝑡=𝑡𝐷0 = 𝜆𝐷00 > 0,

 

so 𝐷0(𝑡) is strictly increasing at 𝑡𝐷0. Now, if 𝑡𝐷0 = 0, then 𝐷0 becomes strictly positive immediately, 

while if 𝑡𝐷0 > 0, then 𝐷0 must be non-increasing there, which is a contradiction. Therefore, 𝐷0(𝑡) >

0 for all 𝑡 > 0. We now consider the sum [𝐷0(𝑡) + 𝐷1(𝑡)] and note that 

d

dt
[𝐷0(𝑡) + 𝐷1(𝑡)] = 𝜆𝐷00 − 𝜆𝐷0(𝑡) − 𝛿𝐷𝐷1(𝑡) < 𝜆𝐷00 −min[𝜆, 𝛿𝐷](𝐷0(𝑡) + 𝐷1(𝑡)) 

so the sum must satisfy 

𝐷0(𝑡) + 𝐷1(𝑡) ≤
𝜆𝐷00

min[𝜆, 𝛿𝐷]
. 

We can thus bound 

𝐷1(𝑡) < max [𝐷1(0),
𝜆𝐷00

min[𝜆, 𝛿𝐷]
] = 𝐷1

𝑚𝑎𝑥 . 



 

6 
 

With these estimates in hand, we consider the differential equations for 𝑇(𝑡) and 𝑅(𝑡). It is simple 

to see that 𝑅0 + 𝑇0 = 0 implies 𝑇(𝑡) + 𝑅(𝑡) = 0 for all time. Furthermore, if 𝐼(0) = 𝑉(0) = 0, then 

𝐼(𝑡) = 𝑉(𝑡) = 0 satisfies the differential equations for 𝐼(𝑡) and 𝑉(𝑡) for all time and imply that the 

sum 𝑅(𝑡) + 𝑇(𝑡) is constant. In the infection free case (i.e 𝐼(0) = 𝑉(0) = 0), it follows that 

𝑅(𝑡) = 𝑅0exp[−𝛿𝑅𝑡] ≥ 0, 

and 

𝑇(𝑡) = 𝑇0 + 𝑅0exp[−𝛿𝑅𝑡] ≥ 0, 

which establishes 𝑇(𝑡) ≥ 0 and 𝑅(𝑡) ≥ 0 for 𝐼(0) = 𝑉(0) = 0. We therefore consider 𝐼(0) +

𝑉(0) > 0 and begin with simplest case where 𝑇0 + 𝑅0 = 0. With no target cells, it follows that 

d

dt
𝐼(𝑡) = −(𝛿𝐼 + 𝜅1𝐷1(𝑡) + 𝜅2𝕀𝑡>𝜏𝐴)𝐼(𝑡) > −(𝛿𝐼 + 𝜅1𝐷1

𝑚𝑎𝑥 + 𝜅2𝕀𝑡>𝜏𝐴)𝐼(𝑡) 

and Gronwall’s inequality gives 

𝐼(𝑡) ≥ 𝐼0exp[(𝛿𝐼 + 𝜅1𝐷1
𝑚𝑎𝑥 + 𝜅2𝕀𝑡>𝜏𝐴)𝑡] ≥ 0. 

From this estimate, we see 

d

dt
𝑉(𝑡) = 𝑝𝐼(𝑡) − 𝑐𝑉(𝑡) ≥ −𝑐𝑉(𝑡) 

so Gronwall’s inequality again demonstrates that 𝑉(𝑡) ≥ 𝑉0exp(−𝑐𝑡) ≥ 0. This exponential decay 

is precisely what we expect in the biologically unrealistic target cell free case. 

This leaves the case where 𝑇0 + 𝑅0 > 0 and 𝐼(0) + 𝑉(0) > 0. We consider three cases: 

Case 1 If 𝑅(0) > 0 and 𝑇(0) = 0, we immediately obtain 

d

dt
𝑇(𝑡)|𝑡=0 = 𝛿𝑅𝑅(𝑡) > 0, 
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so 𝑇(𝑡) becomes positive immediately while 𝑅(𝑡) is strictly positive in a neighbourhood of 𝑡 = 0. 

Case 2 If 𝑇(0) > 0 and 𝑅(0) = 0. Either 𝐼(0) > 0 or 𝑉(0) > 0 so 𝐼(𝑡) becomes positive 

immediately. In either case, 

d

dt
𝑅(𝑡)|𝑡=0 = 𝜅0𝑇(𝑡)𝐼(𝑡) > 0, 

and so 𝑅(𝑡) becomes positive immediately while 𝑇(𝑡) is strictly positive in a neighbourhood of 𝑡 =

0. 

Case 3 If both 𝑇(0) > 0 and 𝑅(0) > 0, then we have 

d

dt
𝑇(𝑡) > −(𝛽𝑉(𝑡) + 𝜅0𝐼(𝑡))𝑇(𝑡)

d

dt
𝑅(𝑡) > −𝛿𝑅𝑅(𝑡)

 

so Gronwall’s inequality implies these quantities decay at most exponentially and thus remain 

strictly positive. The above arguments show that we can consider 𝑇(0) > 0 in what follows. We 

now turn to the differential equations for 𝐼(𝑡) and 𝑉(𝑡) with 𝐼(0) + 𝑉(0) > 0 and the following three 

distinct cases Case I 𝑉(0) = 0 and 𝐼(0) > 0 so we see 

d

dt
𝑉(𝑡)|𝑡=0 = 𝑝𝐼(𝑡) > 0 

so 𝑉(𝑡) becomes strictly positive immediately while 𝐼(𝑡) remains strictly positive in a 

neighbourhood of 𝑡 = 0. 

Case II 𝐼(0) = 0 and 𝑉(0) > 0 so we see 

d

dt
𝐼(𝑡)|𝑡=0 = 𝛽𝑇(𝑡)𝑉(𝑡) > 0 
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so 𝐼(𝑡) becomes strictly positive immediately while 𝑉(𝑡) remains strictly positive in a 

neighbourhood of 𝑡 = 0. 

Case III 𝐼(0) > 0 and 𝑉(0) > 0. Accordingly, 𝐼(𝑡) and 𝑉(𝑡) remain strictly positive in a 

neighbourhood of 𝑡 = 0. While they are non-negative, we compute 

d

dt
[𝐼(𝑡) + 𝑉(𝑡)] = 𝛽𝑉(𝑡)𝑇(𝑡) − (𝛿𝐼 + 𝜅1𝐷1(𝑡) + 𝜅2𝕀𝑡>𝜏𝐴)𝐼(𝑡) + 𝑝𝐼(𝑡) − 𝑐𝑉(𝑡)

≥ −(𝛿𝐼 + 𝜅1𝐷1(𝑡) + 𝜅2𝕀𝑡>𝜏𝐴)𝐼(𝑡) − 𝑐𝑉(𝑡)

≥ −max[(𝛿𝐼 + 𝜅1𝐷1
𝑚𝑎𝑥 + 𝜅2𝕀𝑡>𝜏𝐴), 𝑐](𝐼(𝑡) + 𝑉(𝑡)),

 

 

so we once again use Gronwall’s inequality to see 

𝐼(𝑡) + 𝑉(𝑡) ≥ (𝐼(0) + 𝑉(0))exp(−max[(𝛿𝐼 + 𝜅1𝐷1
𝑚𝑎𝑥 + 𝜅2𝕀𝑡>𝜏𝐴), 𝑐]) > 0. 

Thus, if there is a time 𝑡𝐼 such that 𝐼(𝑡𝐼) = 0, then we argue as in Case I Conversely, if there is a 

time 𝑡𝑣 where 𝑉(𝑡𝑣) = 0, then 𝐼(𝑡𝑣) > 0 and we argue as in Case II. Therefore, no such 𝑡𝐼 or 𝑡𝑣 

can exist and we conclude that 𝐼(𝑡) and 𝑉(𝑡) remain strictly positive for 𝑡 > 0. It follows that 𝑇, 𝑅, 𝐼 

and 𝑉 remain strictly non-negative. 

Now, we proceed to the remaining equations for 𝐽 and 𝐷1. In the infection free case, if 𝐽(0) +

𝐷1(0) = 0, then 𝐽(𝑡) = 𝐷1(𝑡) = 0 solves these two equations. Further, since 𝐼(𝑡) ≥ 0 and 𝐷0(𝑡) ≥

0, it follows that 

d

dt
𝐷1(𝑡) ≥ 𝜎𝐽(𝑡)𝐷0(𝑡) − 𝛿𝐷𝐷1(𝑡). 

where we can use Gronwall’s inequality to bound 𝐷1(𝑡) by the solution of the above differential 

equation. Now, assume that 𝐽(0) + 𝐷1(0) > 0 and consider three cases: 

Case A Assume 𝐽(0) > 0 and 𝐷1(0) = 0 so we see 
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d

dt
𝐷1(𝑡)|𝑡=0 ≥ 𝜎(𝐽(𝑡))𝐷0(𝑡) > 0 

so 𝐷1 becomes strictly positive immediately while 𝐽(𝑡) remains strictly positive. 

Case B Assume that 𝐷1(0) > 0 and 𝐽1(0) = 0 so we have 

d

dt
𝐽(𝑡)|𝑡=0 = 𝜈

𝐷1(𝑡)
𝑚

𝐷1(𝑡)𝑚 + 𝐾𝑚
> 0 

so 𝐽 becomes strictly positive immediately while 𝐷1(𝑡) remains strictly positive. 

Case C Finally, assume that both 𝐽(0) and 𝐷1(0) are strictly positive, so 𝐽 and 𝐷1 remain positive 

in a neighbourhood of 𝑡 = 0. Now, inserting the upper bound for 𝐷1 into the differential equation 

for 𝐽(𝑡) gives 

d

dt
𝐽(𝑡) = 𝜈

𝐷1(𝑡)
𝑚

𝐷1(𝑡)𝑚 + 𝐾𝑚
− (𝛿𝐽 + 𝜅1𝐷1

𝑚𝑎𝑥)𝐽(𝑡) > −(𝛿𝐽 + 𝜅1𝐷1
𝑚𝑎𝑥)𝐽(𝑡), 

so Gronwall’s inequality implies that 𝐽(𝑡) > 𝐽(0)exp[−(𝛿𝐽 + 𝜅1𝐷1
𝑚𝑎𝑥)𝑡] > 0. This finally implies that 

d

dt
𝐷1(𝑡) > −𝛿𝐷𝐷1(𝑡), 

and Gronwall’s inequality once again gives 𝐷1(𝑡) > 𝐷1(0)exp[−𝛿𝐷𝑡] > 0. ◻ 

We have therefore shown that the non-negative quadrant is positively invariant under Eq. (1). 

However, the non-negative quadrant is an unbounded subset of ℝ7, and therefore non-compact, 

while we need a compact positively invariant set to apply LaSalle’s principle. We now show that 

trajectories of the full system in Eq. (1) are bounded and thus define a positively invariant compact 

subset of ℝ7. 
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Lemma 3.  Assume that parameters of (1) are strictly positive and let the vector of the initial 

conditions [𝑇(0), 𝑅(0), 𝐼(0), 𝑉(0), 𝐽(0), 𝐷0(0), 𝐷1(0)] be component-wise non-negative. Then, 

solutions of (1) are bounded above for all time 𝑡 > 0. 

Proof. In the proof of Lemma 2, we have already computed an upper bound for 𝐷1(𝑡). Using a 

similar technique, it follows that 

𝐷0(𝑡) + 𝐷1(𝑡) ≤
𝜆𝐷00

min[𝜆, 𝛿𝐷]
, 

and since 𝐷1(𝑡) ≥ 0 and 𝐷0(𝑡) ≥ 0, we conclude 

𝐷0(𝑡) < max [𝐷0(0)
𝜆𝐷00

min[𝜆, 𝛿𝐷]
] . 

Now, consider the differential equation for the sum 𝑇(𝑡) + 𝑅(𝑡) and see that 

𝑅(𝑡) + 𝑇(𝑡) ≤ (𝑅0 + 𝑇0)exp [−∫ 𝛽
𝑡

0

𝑉(𝑠)d𝑠] ≤ (𝑅0 + 𝑇0) = 𝑇
𝑚𝑎𝑥 . 

as both 𝑅0 and 𝑇0 are non-negative, 𝑇𝑚𝑎𝑥 is an upper bound for each component of the sum. 

We now consider the differential equation for 𝐽(𝑡) 

d

dt
𝐽(𝑡) = 𝜈

𝐷1(𝑡)
𝑚

𝐷1(𝑡)𝑚 + 𝐾𝑚
− (𝛿𝐽 + 𝜅1𝐷1(𝑡)) 𝐽(𝑡)

≤ 𝜈 − 𝛿𝐽𝐽(𝑡)
 

where the inequality follows from 𝐷1(𝑡) ≥ 0. It thus follows that, if 𝐽(𝑡) >
𝜈

𝛿𝐽
, then 𝐽(𝑡) is strictly 

decreasing. It follows that 

𝐽(𝑡) ≤ max [𝐽(0),
𝜈

𝛿𝐽
] . 

A simple computation shows that 
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d

dt
[𝑇(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)] ≤ 0. 

Therefore, 𝑇(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) ≤ 𝑇0 + 𝐼0 + 𝑅0 which implies that 𝐼(𝑡) ≤ 𝑇0 + 𝐼0 + 𝑅0 = 𝐼
𝑚𝑎𝑥. It 

follows from the differential equation for 𝑉(𝑡) that 𝑉(𝑡) is strictly decreasing if 𝑉(𝑡) <
𝑝𝐼𝑚𝑎𝑥

𝑐
, which 

implies 

𝑉(𝑡) ≤ max [𝑉(0),
𝑝𝐼𝑚𝑎𝑥

𝑐
] . 

 ◻ 

Combining Lemma 2 and Lemma 3 immediately gives 

Theorem 4.  Assume that all parameters of Eq. (1) are strictly positive and let the vector of the 

initial conditions [𝑇(0), 𝐼(0), 𝑉(0), 𝐽(0), 𝐷0(0), 𝐷1(0)] be component-wise non-negative. Further, 

define 

 
𝑇𝑚𝑎𝑥 = 𝑇(0) + 𝑅(0), 𝐼𝑚𝑎𝑥 = 𝑇𝑚𝑎𝑥 + 𝐼(0), 𝑉𝑚𝑎𝑥 = max [𝑉(0),

𝑝𝐼𝑚𝑎𝑥

𝑐
] , 

𝐷0
𝑚𝑎𝑥 = max [𝐷0(0),

𝜆𝐷00

min[𝜆,𝛿𝐷]
] , 𝐷1

𝑚𝑎𝑥 = max [𝐷1(0),
𝜆𝐷00

min[𝜆,𝛿𝐷]
] , and 𝐽𝑚𝑎𝑥 = max [𝐽(0),

𝜈

𝛿𝐽
] .

 

Then, the set 

𝐸 = {(𝑇, 𝑅, 𝐼, 𝑉, 𝐷0 , 𝐷1, 𝐽) ∈ ℝ
6|

 
𝑇 ∈ [0, 𝑇𝑚𝑎𝑥], 𝑅 ∈ [0, 𝑅𝑚𝑎𝑥], 𝐼 ∈ [0, 𝐼𝑚𝑎𝑥], 𝑉 ∈ [0, 𝑉𝑚𝑎𝑥],

𝐷0 ∈ [0, 𝐷0
𝑚𝑎𝑥], 𝐷1 ∈ [0, 𝐷1

𝑚𝑎𝑥], 𝐽 ∈ [0, 𝐽𝑚𝑎𝑥]
}
 

is a compact positively invariant set under the flow of (1). 

We now consider the collection of non-isolated equilibria for the subsystem 𝑇(𝑡), 𝑅(𝑡), 𝐼(𝑡), 𝑉(𝑡) in 

𝐸 

𝑀 = {(𝑇, 0,0,0, 𝐷0, 𝐷1, 𝐽) ∈ ℝ
7|𝑇 ∈ [0, 𝑇𝑚𝑎𝑥)], 𝑅 ∈ [0, 𝑅𝑚𝑎𝑥], 
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𝐷0 ∈ [0, 𝐷0
𝑚𝑎𝑥], 𝐷1 ∈ [0, 𝐷1

𝑚𝑎𝑥], 𝐽 ∈ [0, 𝐽𝑚𝑎𝑥]}. 

It is clear that 𝑀 is compact and positively invariant under trajectories of (1), and that 𝑀 ⊂ 𝐸. Now, 

Eq. (1) defines a dynamical system, the set 𝐸 is a compact positively invariant set under (1), , so 

to apply LaSalle’s invariance principle, we need only define a suitable 𝒱. First, fix 𝑥 > 0, set 

휀 =
𝛿𝐼 + 𝜅2/2

𝜅0
 

and take 

𝑦 = 1 + 𝑥 +
휀

𝑇𝑚𝑎𝑥
. 

Now, we define 

𝒱(𝑇, 𝑅, 𝐼, 𝑉, 𝐷0, 𝐷1, 𝐽) = (1 + 𝑥)𝑇 + 𝑦𝑅 + 𝐼 +
(𝛿𝐼 + 𝜅2 − 𝜅0휀)

𝑝
𝑉. 

It follows that 

�̇� = (1 + 𝑥)
d

dt
𝑇(𝑡) + 𝑦

d

dt
𝑅(𝑡) +

d

dt
𝐼(𝑡) +

(𝛿𝐼 + 𝜅2 − 𝜅0휀)

𝑝

d

dt
𝑉(𝑡)

= −(1 + 𝑥)𝛽𝑇(𝑡)𝑉(𝑡) − (1 + 𝑥 − 𝑦)𝜅0𝐼(𝑡)𝑇(𝑡) + (1 + 𝑥 − 𝑦)𝛿𝑅𝑅(𝑡) + 𝛽𝑇(𝑡)𝑉(𝑡)

  − (𝛿𝐼 + 𝜅1𝐷1(𝑡) + 𝜅2)𝐼(𝑡) + (𝛿𝐼 + 𝜅2)𝐼(𝑡) −
𝑐(𝛿𝐼 + 𝜅2 − 𝜅0휀)

𝑝
𝑉(𝑡) − 𝜅0휀𝐼(𝑡)

= −𝑥𝛽𝑇(𝑡)𝑉(𝑡) − ((1 + 𝑥 − 𝑦)𝑇(𝑡) + 휀)𝜅0𝐼(𝑡) + (1 + 𝑥 − 𝑦)𝛿𝑅𝑅(𝑡) − 𝜅1𝐷1(𝑡)𝐼(𝑡)

 

−
𝑐(𝛿𝐼 + 𝜅2 − 𝜅0휀)

𝑝
𝑉(𝑡). 

From the choice of 𝑦, we immediately have 1 + 𝑥 − 𝑦 < 0 and, recalling that 𝑇(𝑡) ≤ 𝑇𝑚𝑎𝑥, 

(1 + 𝑥 − 𝑦)𝑇(𝑡) + 휀 = (−
𝑇(𝑡)

𝑇𝑚𝑎𝑥
+ 1) 휀 ≥ 0. 

Then, the coefficients of the model variables in �̇� are non-positive. Thus, since all model variables 

are non-negative, it follows that 
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�̇� ≤ 0 for all (𝑇,𝑅, 𝐼, 𝑉, 𝐷0, 𝐷1 , 𝐽) ∈ 𝐸. 

Furthermore, it is simple to see that �̇�(𝑇, 𝑅, 𝐼, 𝑉, 𝐷0 , 𝐷1, 𝐽) = 0 only if (𝑇, 𝑅, 𝐼, 𝑉, 𝐷0, 𝐷1, 𝐽) ∈ 𝑀. Thus, 

LaSalle’s Invariance Principle implies that trajectories of (1) converge to 𝑀. We thus conclude 

that the long-term behavior of the system is independent of the concentration of target cells and 

the infection sub-system. Therefore, when performing numerical bifurcation analysis of (1), we 

consider the reduced system 

 d

dt
𝐽(𝑡) = 𝜈

𝐷1(𝑡)
𝑚

𝐷1(𝑡)
𝑚 +𝐾𝑚

− (𝛿𝐽 + 𝜅1𝐷1(𝑡)) 𝐽(𝑡)

d

dt
𝐷0(𝑡) = 𝜆(𝐷00 − 𝐷0(𝑡)) − 𝜎(𝐽(𝑡))𝐷0(𝑡)

d

dt
𝐷1(𝑡) = 𝜎(𝐽(𝑡))𝐷0(𝑡) − 𝛿𝐷𝐷1(𝑡) }

  
 

  
 

 (3) 

which corresponds to the flow of (1) on 𝑀. 

Bifurcation analysis 

We now consider equilibrium solutions of the reduced 3-dimensional system in (3). Equilibrium 

solutions of Eq. (3) must satisfy 

𝐷0
∗ =

𝜆𝐷00
𝜆 + 𝜎𝐽∗

, 𝐷1
∗ =

𝜎

𝛿𝐷
(
𝜆𝐷00𝐽

∗

𝜆 + 𝜎𝐽∗
) . 

Inserting these expressions into the equilibrium condition for 𝐽∗ gives 

0 = 𝜈
[
𝜎
𝛿𝐷
(
𝜆𝐷00𝐽

∗

𝜆 + 𝜎𝐽∗
)]
𝑚

[
𝜎
𝛿𝐷
(
𝜆𝐷00𝐽∗

𝜆 + 𝜎𝐽∗
)]
𝑚

+𝐾𝑚
− [𝛿𝐽 + 𝜅1

𝜎

𝛿𝐷
(
𝜆𝐷00𝐽

∗

𝜆 + 𝜎𝐽∗
)] 𝐽∗

= 𝜈

𝜎
𝛿𝐷
(𝜆𝐷00𝐽

∗)𝑚

𝜎
𝛿𝐷
(𝜆𝐷00𝐽∗)𝑚 + (𝜆 + 𝜎𝐽∗)𝑚𝐾𝑚

− [𝛿𝐽 + 𝜅1
𝜎

𝛿𝐷
(
𝜆𝐷00𝐽

∗

𝜆 + 𝜎𝐽∗
)] 𝐽∗
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which, after eliminating a common denominator, becomes 

0 = 𝜈
𝜎

𝛿𝐷
(𝜆𝐷00𝐽

∗)𝑚 − (
𝜎

𝛿𝐷
(𝜆𝐷00𝐽

∗)𝑚 + (𝜆 + 𝜎𝐽∗)𝑚𝐾𝑚) [𝛿𝐽(𝜆 + 𝜎𝐽
∗) +

𝜅1𝜎𝜆𝐷00𝐽
∗

𝛿𝐷
] 𝐽∗ 

the trivial solution 𝐽∗ = 0 is indeed an equilibrium point corresponding to a resolved equilibrium 

with no cellular damage. 

Analysis of the resolved equilibrium 

The reduced system in Eq. (3) admits the trivial equilibrium (𝐽ℎ , 𝐷0
ℎ , 𝐷1

ℎ) = (0,𝐷00, 0) 

corresponding to a resolved infection in the reduced system (3). The Jacobian Matrix of Eq. (3) 

evaluated at the resolved steady state is given by 

 

𝒥(0,𝐷00, 0) =

[
 
 
 −(𝛿𝐽) 0

𝜈𝑚

𝐾𝑚

−𝜎𝐷0
ℎ −𝜆 0

𝜎𝐷0
ℎ 0 −𝛿𝐷]

 
 
 
. (4) 

The corresponding characteristic equation for the eigenvalues 𝜉 is given by 

𝐹(𝜉) = (𝜆 + 𝜉) [𝛿𝐽𝛿𝐷 −
𝜈𝑚

𝐾𝑚
𝜎𝐷0

ℎ + (𝛿𝐽 + 𝛿𝐷)𝜉 + 𝜉
2] . 

The roots of 𝐹 are therefore 

𝜉1 = −𝜆, 𝜉2 =
−(𝛿𝐽 + 𝛿𝐷) + √(𝛿𝐽 + 𝛿𝐷)2 − 4[𝛿𝐽𝛿𝐷 −

𝜈𝑚
𝐾𝑀

𝜎𝐷0
ℎ]

2
,

and 𝜉3 =
−(𝛿𝐽 + 𝛿𝐷) − √(𝛿𝐽 + 𝛿𝐷)2 − 4[𝛿𝐽𝛿𝐷 −

𝜈𝑚
𝐾𝑀

𝜎𝐷0
ℎ]

2
,

 

which immediately leads to 
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Theorem 5.  The resolved equilibrium is locally asymptotically stable if and only if 

𝛿𝐽𝛿𝐷 −
𝜈𝑚

𝐾𝑀
𝜎𝐷0

ℎ > 0. 

We can rewrite this condition as 

(
𝜈𝑚

𝐾𝑀𝛿𝐽
)(
𝜎𝐷00
𝛿𝐷

) < 1, 

which acts as a reproduction number type threshold, as the first element in the product represents 

the amount of inflammation caused by a single activated immune cell and the second element is 

the number of activated immune cells produced by a single DAMP producing cell. 

Non-resolved equilibrium 

From the above analysis, non-trivial equilibria of (3) must satisfy 

0 = 𝜈
𝜎𝜆𝐷00
𝛿𝐷

(𝜆𝐷00𝐽
∗)𝑚−1 − (

𝜎

𝛿𝐷
(𝜆𝐷00𝐽

∗)𝑚 + (𝜆 + 𝜎𝐽∗)𝑚𝐾𝑚) [𝛿𝐽(𝜆 + 𝜎𝐽
∗) +

𝜅1𝜎

𝛿𝐷
(𝜆𝐷00𝐽

∗)] . 

In what follows, we assume that 𝑚 ∈ ℕ and define 

𝑃𝑚+1(𝐽
∗) = 𝜈

𝜎𝜆𝐷00
𝛿𝐷

(𝜆𝐷00𝐽
∗)𝑚−1 − (

𝜎

𝛿𝐷
(𝜆𝐷00𝐽

∗)𝑚 + (𝜆 + 𝜎𝐽∗)𝑚𝐾𝑚) [𝛿𝐽(𝜆 + 𝜎𝐽
∗) +

𝜅1𝜎

𝛿𝐷
(𝜆𝐷00𝐽

∗)] . 

We immediately see that 𝑃𝑚+1(𝐽
∗) is a 𝑚+ 1 degree polynominal in 𝐽∗ whose roots determine the 

equilibrium values of 𝐽∗. We have already shown that 𝑃𝑚+1(0) = 0 which corresponds to the 

resolved equilibrium. Biologically realistic non-trivial equilibria must be strictly positive, so not all 

the 𝑚 + 1 roots of 𝑃𝑚+1 determine realistic equilibrium of Eq. (3). We now analyze 𝑃𝑚+1(𝐽
∗) to 

determine the number of biologically realistic equilibria. 

First, to simplify notation, we denote 

𝑓(𝐽∗) = (
𝜎

𝛿𝐷
(𝜆𝐷00𝐽

∗)𝑚 + (𝜆 + 𝜎𝐽∗)𝑚𝐾𝑚) [𝛿𝐽(𝜆 + 𝜎𝐽
∗) +

𝜅1𝜎

𝛿𝐷
(𝜆𝐷00𝐽

∗)] , 
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so that 

𝑃𝑚+1(𝐽
∗) = 𝜈

𝜎𝜆𝐷00
𝛿𝐷

(𝜆𝐷00𝐽
∗)𝑚−1 − 𝑓(𝐽∗). 

We now expand 𝑓(𝐽∗) to re-write 𝑃𝑚+1(𝐽
∗) in canonical polynomial form. First, we obtain 

𝑓(𝐽∗) =
𝜎2𝛿𝐽(𝜆𝐷00)

𝑚

𝛿𝐷
(𝐽∗)𝑚+1 +

𝜎𝛿𝐽𝜆
𝑚+1𝐷00

𝑚

𝛿𝐷
(𝐽∗)𝑚 +

𝜅1𝜎
2(𝜆𝐷00)

𝑚+1

𝛿𝐷
2 (𝐽∗)𝑚+1

 +𝐾𝑚𝛿𝐽(𝜆 + 𝜎𝐽
∗)𝑚+1 +

𝐾𝑚𝜅1𝜎𝜆𝐷00
𝛿𝐷

𝐽∗(𝜆 + 𝜎𝐽∗)𝑚 ,

 

which becomes 

𝑓(𝐽∗) = [
𝜎2𝛿𝐽(𝜆𝐷00)

𝑚

𝛿𝐷
+
𝜅1𝜎

2(𝜆𝐷00)
𝑚+1

𝛿𝐷
2 ] (𝐽∗)𝑚+1 +

𝜎𝛿𝐽𝜆
𝑚+1𝐷00

𝑚

𝛿𝐷
(𝐽∗)𝑚

 +𝐾𝑚𝛿𝐽 ∑ (
𝑚 + 1

𝑛
)

𝑚+1

𝑛=0

𝜆𝑛(𝜎𝐽∗)𝑚+1−𝑛 +
𝐾𝑚𝜅1𝜆𝐷00

𝛿𝐷
∑(

𝑚

𝑛
)

𝑚

𝑛=0

𝜆𝑛(𝜎𝐽∗)𝑚+1−𝑛 .

 

Regrouping terms in 𝑓(𝐽∗) yields 

𝑓(𝐽∗) = [
𝜎2𝛿𝐽(𝜆𝐷00)

𝑚

𝛿𝐷
+
𝜅1𝜎

2(𝜆𝐷00)
𝑚+1

𝛿𝐷
2 + 𝐾𝑚𝛿𝐽𝜎

𝑚+1 +
𝐾𝑚𝜅1𝜎

𝑚+1𝜆𝐷00
𝛿𝐷

] (𝐽∗)𝑚+1

 + [
𝜎𝛿𝐽𝜆

𝑚+1𝐷00
𝑚

𝛿𝐷
+ 𝐾𝑚𝛿𝐽 (

𝑚 + 1

𝑚
)𝜆𝜎𝑚 +

𝐾𝑚𝜅1𝜆𝐷00
𝛿𝐷

(
𝑚

𝑚 − 1
) 𝜆𝜎𝑚] (𝐽∗)𝑚

 +𝐾𝑚𝛿𝐽 ∑ (
𝑚+ 1

𝑛
)

𝑚+1

𝑛=2

𝜆𝑛(𝜎𝐽∗)𝑚+1−𝑛 +
𝐾𝑚𝜅1𝜆𝐷00

𝛿𝐷
∑(

𝑚

𝑛
)

𝑚

𝑛=2

𝜆𝑛(𝜎𝐽∗)𝑚+1−𝑛

 

which gives 

𝑓(𝐽∗) = [
𝜎2𝛿𝐽(𝜆𝐷00)

𝑚

𝛿𝐷
+
𝜅1𝜎

2(𝜆𝐷00)
𝑚+1

𝛿𝐷
2 + 𝐾𝑚𝛿𝐽𝜎

𝑚+1 +
𝐾𝑚𝜅1𝜎

𝑚+1𝜆𝐷00
𝛿𝐷

] (𝐽∗)𝑚+1

 + [
𝜎𝛿𝐽𝜆

𝑚+1𝐷00
𝑚

𝛿𝐷
+ 𝐾𝑚𝛿𝐽 (

𝑚 + 1

𝑚
)𝜆𝜎𝑚 +

𝐾𝑚𝜅1𝜆𝐷00
𝛿𝐷

(
𝑚

𝑚 − 1
) 𝜆𝜎𝑚] (𝐽∗)𝑚

 +∑(𝐾𝑚𝛿𝐽 (
𝑚 + 1

𝑛
) +

𝐾𝑚𝜅1𝜆𝐷00
𝛿𝐷

(
𝑚

𝑛
))

𝑚

𝑛=2

𝜆𝑛(𝜎𝐽∗)𝑚+1−𝑛 + 𝐾𝑚𝛿𝐽𝜆
𝑚+1.
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Therefore, we see that 

𝑃𝑚+1(𝐽
∗) = − [

𝜎2𝛿𝐽(𝜆𝐷00)
𝑚

𝛿𝐷
+
𝜅1𝜎

2(𝜆𝐷00)
𝑚+1

𝛿𝐷
2 +𝐾𝑚𝛿𝐽𝜎

𝑚+1 +
𝐾𝑚𝜅1𝜎

𝑚+1𝜆𝐷00
𝛿𝐷

] (𝐽∗)𝑚+1

 − [
𝜎𝛿𝐽𝜆

𝑚+1𝐷00
𝑚

𝛿𝐷
+𝐾𝑚𝛿𝐽 (

𝑚 + 1

𝑚
)𝜆𝜎𝑚 +

𝐾𝑚𝜅1𝜆𝐷00
𝛿𝐷

(
𝑚

𝑚 − 1
) 𝜆𝜎𝑚] (𝐽∗)𝑚

 + (𝜈
𝜎𝜆𝐷00
𝛿𝐷

(𝜆𝐷00)
𝑚−1 − 𝐾𝑚𝛿𝐽 (

𝑚 + 1

2
) −

𝐾𝑚𝜅1𝜆𝐷00
𝛿𝐷

(
𝑚

2
)) (𝐽∗)𝑚−1

 −∑(𝐾𝑚𝛿𝐽 (
𝑚 + 1

𝑛
) +

𝐾𝑚𝜅1𝜆𝐷00
𝛿𝐷

(
𝑚

𝑛
))

𝑚

𝑛=3

𝜆𝑛(𝜎𝐽∗)𝑚+1−𝑛 − 𝐾𝑚𝛿𝐽𝜆
𝑚+1,

}
 
 
 
 
 

 
 
 
 
 

 

 

(5) 

or alternatively, 

𝑃𝑚+1(𝐽
∗) = ∑ 𝑎𝑛

𝑚+1

𝑛=0

(𝐽∗)𝑛 , 

where the coefficients 𝑎𝑛 are given in Eq. (5). Importantly, we note that all the coefficients except 

𝑎𝑚−1 are strictly negative while 

𝑎𝑚−1 = 𝜈
𝜎𝜆𝐷00
𝛿𝐷

(𝜆𝐷00)
𝑚−1 − 𝐾𝑚𝛿𝐽 (

𝑚 + 1

2
) −

𝐾𝑚𝜅1𝜆𝐷00
𝛿𝐷

(
𝑚

2
) 

can take either sign. 

Recalling that we are only interested in strictly positive solutions of 𝑃𝑚+1(𝐽
∗) = 0, corresponding 

to biologically relevant equilibria, we utilize Descartes’ rule of signs to determine the number of 

equilibria solutions. We recall that Descartes’ rule of signs states that the number of positive roots 

of a polynomial 𝑔(𝑥) = ∑ 𝛼𝑛
𝑚
𝑛=0 𝑥𝑚 is at most the number of sign changes in the sequence {𝛼𝑛} 

and that the difference between the number of sign changes and the number of positive roots is 

always even. 
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We now show that there are at most two positive equilibria. 

Theorem 6.  Assume that all parameters of Eq. (3) are strictly positive and 𝑚 ∈ ℕ with 𝑚 ≥ 2. 

Then, there are at most two non-trivial equilibrium solutions. 

Proof. First, assume that 𝑎𝑚−1 ≤ 0, so the sequence of coefficients 𝑎𝑛 has no sign changes. Then, 

Descartes’ rule of signs implies that there are no positive solutions of 𝑃𝑚+1(𝐽
∗) = 0 and thus no 

non-trivial equilibria solutions. 

Now, assume that 𝑎𝑚−1 > 0. Then, the sequence {𝑎𝑛} changes sign between the pairs 𝑎𝑚 and 

𝑎𝑚−1 and 𝑎𝑚−1 and 𝑎𝑚−2. Therefore, Descartes’ rule of signs implies that there are either 2 or 0 

positive solutions of 𝑃𝑚+1(𝐽
∗) = 0. This establishes the claim. ◻ 

Numerical simulation indicates the existence of a stable non-trivial equilibrium that disappears as 

𝜅1 increases. These numerical observations, combined with the upper bounds on the number of 

equilibria solutions established in Theorem 6 suggests the presence of a saddle-node bifurcation. 

Indeed, we note that, by considering 𝑎𝑚−1 as a function of model parameters, 𝑎𝑚−1 is 

monotonically decreasing in 𝜅1. Then, simple inspection suggests 𝜅1 as a candidate bifurcation 

parameter as 𝑎𝑚−1(𝜅1
∗) = 0 for 

𝜅1
∗ =

𝜈
𝜎𝜆𝐷00
𝛿𝐷

(𝜆𝐷00)
𝑚−1 −𝐾𝑚𝛿𝐽(

𝑚+1
2
)

𝐾𝑚𝜆𝐷00
𝛿𝐷

(𝑚
2
)

. 

Similar reasoning also suggests performing bifurcation analysis in 𝜈 with 

𝜈∗ =
𝐾𝑚𝛿𝐽(

𝑚+1
2
) +

𝐾𝑚𝜅1𝜆𝐷00
𝛿𝐷

(𝑚
2
)

𝜎𝜆𝐷00
𝛿𝐷

(𝜆𝐷00)𝑚−1
. 

To test these predictions, we performed numerical bifurcation analysis using Matcont [Dhooge et 

al., 2008]. We identified a Saddle-Node bifurcation in Eq. (3) that is shown in Fig S1. We 
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performed further continuation analysis to interrogate the relationship between 𝜈 and 𝜅1 by 

following the Saddle-Node bifurcation point in Fig S2. Our results indicate that increases in 

immune activation by damaged cells, 𝜈, can be counterbalanced by increasing immune efficacy 

of clearing damaged cells 𝜅1 to avoid convergence to the hyper inflamed steady state. 

Infection drives the system into the basin of attraction of the hyper inflamed equilibrium 

In the reduced model in Eq. (3), solution trajectories cannot cross the separatrix that appears 

following the Saddle-Node bifurcation. Consequently, the dynamics of the non-autonomous 

differential equation are determined by the initial concentration of damaged cells, 𝐽(0). However, 

the infection subsystem (𝑇, 𝑅, 𝐼, 𝑉) acts to induce cellular damage via infection. This infection 

driven damage can force the system across the separatrix and into the basin of attraction of the 

hyper inflamed equilibrium. Our analysis thus indicates a potential mechanism by which viral 

infection can lead to sufficient bystander cell damage to drive the inflammatory response into a 

self-sustaining positive feedback loop corresponding to convergence to the hyper inflamed 

equilibria. 
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Supplementary Figures  

 

 
 

Figure S1: The hyperinflamed state appears following a saddle node bifurcation.  
The non-resolved equilibrium values of 𝐽∗ as a function of the bifurcation parameter. The 

saddle-node bifurcation point is denoted by LP. The solid branch denotes the locally 
asymptotically stable hyper inflamed equilibrium while the lower dashed branch of 
equilibria is unstable. The unstable branch acts as a separatrix between the resolved and 
hyper inflamed states. Viral infection drives model trajectories across the separatrix and 
into the basin of attraction of the hyper inflamed steady state. In the simulations, this 
convergence to the hyper inflamed steady state corresponding to the severe COVID-19 
group while simulations that remain in the resolved basin of attraction converge to the 
resolved steady state. Panel A plots the equilibrium values 𝐽∗ as a function of log10 𝜅1 
while panel B values 𝐽∗ as a function of log10 𝜈. 
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Figure S2: Continuation of the saddle-node bifurcation in two model 
parameters.  The curves plot the location of the saddle-node bifurcation as two model 
parameters vary simultaneously and shows the non-linear relationship between model 
parameters. Panel A illustrates how decreases in 𝑚 can be counterbalanced by changes 
in log10 𝜈 to allow for the existence of a hyper inflamed state. Panel B shows how 

increased immune-mediated resolution of inflammation, corresponding to larger values 
of 𝜅1, can be overcome by increased immune-mediated damage, or increased 𝜈,  to allow 
for a saddle node bifurcation and the resulting hyper inflamed state.  
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Figure S3. Distribution of parameters leading to accepted simulations based on 
conditions i)-iii). 
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Figure S4: Linear relationship between log𝟏𝟎𝜷 and log𝟏𝟎𝒑 in the space of acceptable 
parameter values. Values leading to acceptance of conditions i)-iii) are represented bv 
green dots, while those values that lead to unacceptable viral loads are represented by 
grey dots. 
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Figure S5. Correlation matrix between model parameters and between model 
parameters and Disease Score 

 

 

 

 

 



 

25 
 

 
Figure S6. Correlation matrix between virtual markers and between markers and 
Disease Score 
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Figure S7. Complete tree for predicting hyperinflammation from model 
parameters. Resolved inflammation is represented by label Mild/Moderate. 
Hyperinflammation is represented by label Severe. 
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Figure S8. Violin plots of the effect of virtual treatment on the slope of viral load 
decay after the peak viral load. Negative values represent slower viral load decay after 
treatment administration, while positive values represent faster decay. Note there was no 
clear difference between a reduction in 𝛽 or 𝑝 in the simulation of antivirals so this plot 
applies to both cases. Orange denotes the effect of treatment among individuals who 
would have resolved inflammation in the absence of treatment, whereas pink denotes the 
effect of treatment among individuals who would have had hyperinflammation in the 
absence of treatment.  
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