
1 
 

 

 

A simple model of COVID-19 explains disease severity and the effect of 

treatments 

 

 

Steven Sanche1, Tyler Cassidy1, Pinghan Chu1, Alan S. Perelson1, Ruy M. Ribeiro1,*, Ruian 

Ke1,* 

 

Affiliations:  

1T-6 Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National 

Laboratory, NM87545, USA.  

 

* Correspondence should be addressed to:  

Ruian Ke  
Email: rke@lanl.gov  
Telephone: 1-505-667-7135 
 
or 
 
Ruy Ribeiro 
Email: ruy@lanl.gov  
Telephone: 1-505-667-9455  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.29.21267028doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:rke@lanl.gov
mailto:ruy@lanl.gov
https://doi.org/10.1101/2021.11.29.21267028
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

ABSTRACT 

Considerable effort was made to better understand why some people suffer from severe COVID-

19 while others remain asymptomatic. This has led to important clinical findings; people with 

severe COVID-19 generally experience persistently high levels of inflammation, slower viral load 

decay, display a dysregulated type-I interferon response, have less active natural killer cells and 

increased levels of neutrophil extracellular traps. How these findings are connected to the 

pathogenesis of COVID-19 remains unclear. We propose a mathematical model that sheds light 

on this issue. The model focuses on cells that trigger inflammation through molecular patterns: 

infected cells carrying pathogen-associated molecular patterns (PAMPs) and damaged cells 

producing damage-associated molecular patterns (DAMPs). The former signals the presence of 

pathogens while the latter signals danger such as hypoxia or the lack of nutrients. Analyses show 

that SARS-CoV-2 infections can lead to a self-perpetuating feedback loop between DAMP 

expressing cells and inflammation. It identifies the inability to quickly clear PAMPs and DAMPs 

as the main contributor to hyperinflammation. The model explains clinical findings and the 

conditional impact of treatments on disease severity. The simplicity of the model and its high level 

of consistency with clinical findings motivate its use for the formulation of new treatment 

strategies. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.29.21267028doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.29.21267028
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

INTRODUCTION 

COVID-19 symptoms severity differs wildly between infected individuals. Some individuals are 

infected without experiencing many of the characteristic symptoms, such as fever, coughs, body 

aches and the loss of taste or smell.(1) At the other end of the spectrum, a substantial minority 

will experience more extreme symptoms, such as acute respiratory distress syndrome and 

thrombotic complications that can lead to organ failure and death.(1,2) What distinguishes 

individuals experiencing more severe symptoms has been extensively studied.(3) These studies 

have identified a set of risk factors associated with severe COVID-19 such as older age, obesity, 

diabetes and past or present cancer.(3) COVID-19 severity likely depends on both the trajectory 

of the viral infection and the trajectory of the inflammatory response. An association was found 

between endothelial cell expression of angiotensin-converting enzyme 2 (ACE2), the receptor for 

severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) entry to host cells, and the 

presence of microthrombi in major organs such as the lung, heart, brain, and liver.(4,5) This 

suggests that the spread of the infection may be responsible for damage to vital tissues and organ 

dysfunction. It also underlines the necessity of an appropriate innate and adaptive immune 

response to limit the spread of the infection. To this effect, inflammation plays a crucial role by 

coordinating the immune response. However, elevated inflammatory markers in COVID-19 

patients (IL-1𝛽, IL-2R, IL-6, IL-8, IL-10, TNF-𝛼, to name a few) have been associated with severity 

of symptoms, the need for ventilation and deaths.(6–8) This suggests that a sustained or 

exaggerated inflammatory response (hyperinflammation) may play an important role in 

determining disease severity. In particular, an inappropriate innate immune response was pointed 

out as a significant contributor to the hyperinflammatory state in COVID-19.(9,10) Despite the 

large effort provided by the scientific community, there are still many unknowns with regards to 

the mechanistic drivers of severe COVID-19. In turn, this knowledge gap hampers our ability to 

find new treatment strategies aiming to improve clinical outcomes.  
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Our main objective was to provide a simple quantitative framework to understand the 

pathogenesis of severe COVID-19 and to determine the importance of potential mechanisms. We 

aimed to provide a model that is simple and yet adequately captures the main clinical findings. 

Many within-host models of SARS-CoV-2 infection have been published (11–17) with a wide 

range of model complexities (from less than 10 to more than 80 parameters). These models 

mostly differ in terms of the complex interactions between the viral infection and the immune 

response that they include in their formulation (see Discussion for details). The large difference 

between model formulations suggests that identifying the key elements having an impact on 

clinical outcomes is a difficult task.  

The model we formulated focuses on cells that trigger inflammation through molecular patterns: 

infected cells carrying pathogen-associated molecular patterns (PAMPs) and damaged cells 

producing damage-associated molecular patterns (DAMPs). We show that the clearance rate of 

infected and damage cells by the innate immune response is of the utmost importance to reach 

a state of resolved of inflammation. Despite its simplicity, our model can explain the following 

findings: i) severe COVID-19 tends to be accompanied by hyperinflammation, ii) those with severe 

COVID-19 generally experience a similar viral trajectory as mild cases, albeit with a slower viral 

load decay after the peak, iii) the complex and conditional effect of antivirals and corticosteroids 

on disease severity, iv) an inefficient type-I IFN response is associated with severe COVID-19, 

and v) generation of bystander cell damage and infective removal of these cells are a critical 

component of severity. Note that this last point is reminiscent of clinical observations that, for 

example, less cytotoxic NK cells and higher levels of neutrophil extracellular traps (NETs) are 

associated with severe COVID-19. Overall, the simplicity of the model we propose along with its 

high level of consistency with clinical observations suggest it is an adequate framework for the 

study of COVID-19 pathogenesis and the effect of therapy. 

METHODS 
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The Model 

Our goal was to formulate a model that is simple enough to guide intuition, yet complex enough 

to allow relating with clinical outcomes. A schematic representation is provided in Fig. 1. The 

model is described below.  

 
𝑑𝑇

𝑑𝑡
=  −𝛽𝑇𝑉 −  𝜅0𝑇𝐼 + 𝛿𝑅𝑅 

Eq. 1 

 
𝑑𝑅

𝑑𝑡
= 𝜅0𝑇𝐼 − 𝛿𝑅𝑅  

Eq. 2 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝑇𝑉 − 𝐼(𝛿𝐼 + 𝜅1𝐷1 + 𝕀𝑡>𝜏𝜅2) 

Eq. 3 

 
𝑑𝑉

𝑑𝑡
= 𝑝𝐼 − 𝑐𝑉 

Eq. 4 

 
𝑑𝐽

𝑑𝑡
=

𝜈𝐷1
𝑚

𝐷1
𝑚 + 𝐾𝑚 − 𝐽(𝛿𝐽 + 𝜅1𝐷1) 

Eq. 5 

 
𝑑𝐷0

𝑑𝑡
= 𝜆(𝐷00 − 𝐷0) + 𝜎(𝐼 + 𝐽)𝐷0 

Eq. 6 

 
𝑑𝐷1

𝑑𝑡
=  𝜎(𝐼 + 𝐽)𝐷0 − 𝛿𝐷𝐷1 

Eq. 7 
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Figure 1. Schematic representation of the model described by Eqs. 1-7. Target cells (𝑇) 

transition to a productively infected state (𝐼) after successful infection by virions (𝑉) at rate . 
Virions are cleared at per capita rate c, while new virions are produced by infected cells at rate p. 
Target cells become refractory to infection (𝑅) at rate 𝜅0𝐼 (we assume target cells are exposed to 

a concentration of type-I IFN that is proportional to 𝐼 and that puts the cells into an antiviral state). 

Resting innate immune cells (𝐷0) become activated (𝐷1) at rate (I+J), where I and J are the 
number of infected and damaged bystander cells, respectively (we assume the extent of PAMP 
and DAMP signaling is proportional to 𝐼+𝐽). Also, activated immune cells (𝐷1) die at per capita 
rate 𝛿𝐷. Damaged bystander cells (𝐽) are generated from an extensive proinflammatory response 

at a rate that is a Hill function of the number of activated immune cells 𝐷1. Infected cells die due 

to viral cytopathic effects at rate 𝛿𝐼  and damaged cells die from their injury at rate 𝛿𝐽. The 

clearance of these cells also occurs by the action of activated innate immune cells at rate 𝜅1𝐷1. 

The effect of the adaptive immune response is modeled by adding a constant term  2 to the 
clearance of infected cells at time 𝜏 after infection. Finally, homeostatic processes allow 

replenishment of the population of resting cells (𝐷0) at rate λ(𝐷00 − 𝐷0), where D00 is their 

homeostatic level. 

 

Modeling the course of infection in absence of immune responses  

We describe the course of the infection in the absence of immune response through cells 

susceptible to viral infection (𝑇) that can become infected (𝐼) by contact with virions (𝑉). We 
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assumed this process follows mass action with rate 𝛽𝑉. Infected cells die at constant rate 𝛿𝐼 due 

to viral cytopathic effects. Infected cells produce virions at rate 𝑝, which are cleared at per capita 

rate 𝑐. 

Modeling inflammation and the innate immune response 

The model focuses on molecular patterns that initiate an inflammatory response. Pathogen 

associated molecular patterns (PAMPs) trigger an inflammatory response by signaling the 

presence of pathogens.(18) An inflammatory response can also be initiated in the absence of 

pathogenic infection through recognition of damage associated molecular patterns (DAMPs).(19) 

Various conditions promote DAMP expression including hypoxia, low levels of glucose and amino 

acids, exposure to heat, physical stress or exposure to toxic molecular products.(19–22) Many of 

the same conditions that promote DAMP expression can be induced by inflammation itself. For 

example, an excessive presence of neutrophil extracellular traps (NETs) released during 

inflammation is linked to immunothrombosis.(23) This can contribute to hypoxia and nutrient 

deprivation that can lead to DAMP expression.(24) Overall, a positive feedback loop between 

inflammation and DAMP expression may be triggered. (22,24) Interestingly, patients with severe 

COVID-19 have increased levels of NETs.(25,26) NETs and platelet dysregulation may be 

specific to COVID-19 and both are associated with lung microthrombi, conditions that can 

ultimately favor an inflammatory response in the lungs.(27) 

The inflammatory response signals a need to eliminate infected or damaged cells and protect the 

rest of the organism from the perceived danger. Infected cells carrying PAMPs and uninfected 

cells producing DAMPs are represented by 𝐼 and 𝐽 in the model, respectively. In the organism, 

these molecular patterns promote the downstream recruitment and activation of numerous innate 

immune cells such as neutrophils, monocytes, macrophages and natural killer (NK) cells.(28)  For 

simplicity, we lumped all cells that take part directly or indirectly (through cytokine signaling) in 

cytolytic or phagocytic activities into two model compartments,  𝐷0 and 𝐷1 representing resting 
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and activated phenotypes, respectively. In our model, the rate at which 𝐷0 cells become 𝐷1  is 

proportional to the amount of PAMPs and DAMPs, themselves assumed proportional to the 

number of cells carrying these molecules, i.e. 𝜎(𝐼 + 𝐽). We further assumed resting cells 𝐷0 have 

a homeostatic level 𝐷00, that they maintain through the recruitment of resting immune cells over 

the course of infection at rate 𝜆. We assumed 𝐷0 cells are long-lived compared to the duration of 

acute infection, and that activated cells decay at rate 𝛿𝐷. The role of 𝐷1 in our model is to promote 

cytolytic and phagocytic activities to rid the system of PAMPs and DAMPs. Due to the innate 

nature of the modeled response, we assumed the effect to be similar on the decay of both I and 

J at per capita rate 𝜅1𝐷1. This was partly motivated by the behavior of NK cells, which target 

injured epithelial cells through stimulation of receptor NKG2D, as well as infected cells having 

downregulated major histocompatibility complex class 1 (MHC-I) molecules or upregulated MHC 

class I polypeptide–related sequence A (MICA) or sequence B (MICB).(29,30)  

We assumed that high levels of inflammation can induce significant cellular stress and promote 

the expression of DAMPs in bystander cells. This is represented by the Hill term in Eq. 5 for the 

rate of generation of uninfected cells expressing DAMPs with 𝜈 being the maximum damage rate, 

𝐾 being the 𝐷1 concentration leading to half of the maximum damage rate, and 𝑚 is the Hill 

coefficient. We assumed damaged cells decay at rate 𝛿𝐽 < 𝛿𝐼 in the absence of an innate immune 

response. 

Finally, we assumed an additional innate immune response, e.g., a type-I interferon response. 

Type-I interferons signal danger to neighboring cells, making the latter refractory to infection 

(𝑅).(31) For simplicity, we approximated the amount of interferon in the microenvironment to be 

proportional to the number of infected cells.(32) Accordingly, we modeled the rate at which 

susceptible cells become refractory (R) by 𝜅0𝐼. Refractory cells expected to naturally revert to a 

susceptible state after 1/𝛿𝑅. 
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Modeling the adaptive immune response 

The model mainly focuses on the innate response. To avoid unnecessary complexity, the adaptive 

immune response is represented by a single term that includes two parameters: 𝜅2, which is the 

maximum decay rate of infected cells due to the adaptive immune response, and 𝜏, which 

represents the time post-infection that the adaptive response takes effect. This approach is similar 

to that in Pawelek et al.(33) This response is thus modelled using the indicator function 𝕀𝑡>𝜏(t). 

Structural analysis of the model 

A substantial minority of individuals with COVID-19 experience a state of sustained high 

inflammation or hyperinflammation. (9) We evaluated whether the model allowed the existence of 

such a hyperinflammatory state. We used 𝐷1 as a marker of inflammation. Through a bifurcation 

analysis, we searched for the existence of a stable steady state of resolved inflammation (𝐷1=0) 

and the existence of a second stable steady state of hyperinflammation where 𝐷1 is maintained 

well above 0. This type of analysis also allows identifying basins of attraction, i.e. regions in the 

space of variables that lead to specific inflammation trajectories over time. We used analytical 

techniques combined with the numerical bifurcation software Matcont (34), a Matlab software 

package designed for the analysis of equations such as Eqs. 1-7.(35,36) Matcont uses 

continuation techniques to follow equilibria and performs normal form computations to classify 

bifurcation points. 

Set of virtual markers 

To analyze model behavior, a set of virtual markers were computed. These markers were used 

to compare model predictions to clinical observations and to investigate determinants of severe 

COVID-19. These markers are: i) the peak viral load (peak VL, maximum value of V); ii) the time 

of peak viral load; iii) the difference between the viral load at its peak and the viral load 5 days 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.29.21267028doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.29.21267028
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

after the peak; iv) peak 𝐷1 (used as a proxy measure for peak inflammation); v) the time of peak 

𝐷1; vi) 𝐷1 at 60 days post-infection. 

We further computed the hyperinflammation index, which takes a value of 1 if the value of 

log10(𝐷1) at the end of the simulated period was more than 99% of its peak value, and 0 otherwise. 

This resulted in the categorization of each simulation into inflammation trajectory groups: i) 

resolved inflammation (R) or ii) hyperinflammation (H). Finally, we computed the Disease Score, 

defined as the total number of cells (I+J) that died over the 60-day period post-infection. This 

score is meant to describe disease severity, with higher scores representing more severe COVID-

19.  

Identifying a space of realistic parameter values  

The next step consisted in identifying a space of parameter values for which model predictions 

are consistent with a minimal set of clinical observations to allow in silico investigation of the 

model. In particular, acceptable parameter values should result in: i) peak viral loads (VL) values 

between 4 and 10 log10, ii) peak viral loads achieved 2 to 14 days following infection, and iii) an 

innate immune response during the course of infection (the activation of at least 1% of all resting 

innate immune cells). These are referred to as conditions i)-iii). Condition i) was chosen to 

represent peak viral loads observed using nasopharyngeal swabs in a population of individuals 

infected by the virus.(7,37) Condition ii) was chosen based on reports of peak viral loads occurring 

around the time of symptom onset and symptom onset primarily occurring within 14 days of 

infection (median 4-5 days).(14,16,32,38) Finally, we chose condition iii) to ensure 𝐷1 reaches 

high enough values for an observable effect of 𝐷1 on either 𝐼(𝑡) or 𝐽(𝑡). 

 

The determination of the space of parameter values that satisfy the above conditions was done 

iteratively. First, we established bounds of values for each parameter using literature estimates 

when available, results from the bifurcation analysis to ensure that hyperinflammation was 
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achievable, and preliminary simulations when no estimate was available (see Table 1). We then 

selected n=100,000 vectors of parameters from the parameter space using a Latin hypercube 

approach to minimize the chances of unexplored multidimensional subspaces.(39) Simulations 

were performed for each selected vector of parameters using initial conditions listed in Table 2 to 

predict infection and inflammation trajectories from day 0 (day of infection) to day 60. We identified 

regions in the parameter subspace leading to unacceptable results based on the conditions i)-iii) 

listed above. We subsequently refined the parameter space and repeated the procedure until we 

were satisfied that a randomly selected vector of parameters would lead to a high likelihood of 

satisfying acceptance criteria i) to iii) (>70% acceptance probability). Table 1 describes all 

parameters, the resulting space of parameter values along with references from the literature 

when applicable.  
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Table 1. Model parameters, the range of explored values used for the in silico investigation along with justifications and 
references. Par: Parameters. 
Par Description (unit) Range of 

explored 
values  

Justification and References 

𝛽 Infectivity rate 
(virion-1 day-1) 

[-12;-6]   
(log10 scale) 
 

𝛽 values of 1.9E-6 and 6.6E-7 were used in Ke et al. for the upper and 
lower respiratory tract, respectively.(40) A value of 5.2 x 10-6   was used in 
Kim et al.(14) A larger range of values was used to account for variability 
between individuals and uncertainty in parameter values due to a possible 
correlation with parameter 𝑝. 

𝑝 Virion production rate (virions 
cell-1 mL-1  
day-1) 

[-1;4] 
(log10 scale) 
 

𝑝 values of 51.4 per swab per day and 0.35 per mL per day were used in Ke 
et al. for the upper and lower respiratory tract, respectively.(40)  A larger 
range of values was used to account for variability between individuals and 
uncertainty in parameter values due to a possible correlation with parameter 

𝛽. Accordingly, it was inefficient to sample 𝛽 and 𝑝 independently. It was 
determined through linear regression that a value of log10𝑝 determined by -
6.8 - 1.0*log10 𝛽 + U, where U is a uniform random variable with range [-
0.4;0.5], greatly enhanced the likelihood of peak viral loads being between 4 

and 10 log10 and occurring between day 2 and 14 post-infection. 
𝛿𝐼 Death rate from viral cytopathic 

effects  
(day-1) 

[0.05;0.1] Jenner et al. used an infected cell death rate of of 0.014 day-1 in the preprint 
version of the paper.(11) The lower bound was reviewed to allow a greater 
probability of satisfying the simulation acceptance conditions (see Methods). 
A study demonstrated that viral production from infected cells was 
maintained at high levels for up to 6 days in vitro.(41) 

𝑐 Virion clearance rate (day-1) [10;30] Values explored in Goncalves et al. as well as Ke et al. were between 5 and 
20 day-1.(32,37) 

𝜅0 Rate of transition to IFN induced 
refractory state  
(cell-1 day-1) 

[-8;-5] 
(log10 scale) 

A value of 1.3 x 10-6 was estimated in Ke et al.(32)  

𝛿𝑅 Refractory state reversion rate 
(day-1) 

[-4;-2] 
(log10 scale) 
 

A value of 0.0044 day-1 was estimated in Ke et al. (40) 

𝜏 Time delay of adaptive immune 
response post-infection (days) 

[7;40] The range was chosen to match the variability between individuals in time of 
viral clearance post-infection, with a median of around 25 days.(7,40) 

𝜅2 Effect of adaptive immune 
response on the clearance of 
infected cells (day-1) 

[2;6] This range was chosen to ensure viral clearance is achieved shortly after 𝜏 
days 
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𝑚 Hill coefficient for bystander cell 
damage 

3 A value of 3 ensures a steep progression of the damage rate as a function 
of 𝐷1. In other words, we assumed that the damage due to inflammation is 
not substantial unless inflammation reaches high levels. 

𝜈 Maximum bystander damage rate 
(cells day-1)   

[7.5;8.5] 
(log10 scale) 

An initial range of values was chosen based on bifurcation analyses. The 
range was refined to ensure that the around 5-20% of simulations led to 
hyperinflammation. 

𝐾 𝐷1 concentration leading to half 
the bystander damage rate (cell) 

[1.5x106;2 
x106] 

An initial range of values was chosen based on bifurcation analyses. The 
range was refined to ensure that the around 5-20% of simulations lead to 
hyperinflammation. 

𝛿𝐽 Death rate from cell damage [0.01;0.05] Chosen such that the death rate for damaged cells is slower than for 
infected cells  

𝐷00 Resting immune cells 
homeostatic constant (cells mL-1) 

106 A value of 106 was used for alveolar macrophages in Smith et al. 
(2011).(42) Values ranging from 4x105 and 3x107 were used for various 
populations of innate immune cells in Jenner et al.(11) A single value was 
used since we were not interested in investigating the impact of variability in 
𝐷00 on the severity of COVID-19.  

𝜆 Resting immune cells 
replenishing rate or recruitment 
rate (day-1) 

[-2;1] 
(log10 scale) 

A comparative value of 0.22 was used in Jenner et al. for monocytes.(11) 

𝜎 Innate immune cell activation rate 
(cell-1 day-1) 

[-8.5;-7.5] 
(log10 scale) 

A value of the order of 1x10-6 was used in Jenner et al.(11) The range of 
values was adjusted to ensure that at least 1% of all resting innate immune 
cells activated over the course of infection and that high inflammation levels 
(𝐷1 > 1x106) did not occur prior to peak VL. 

𝛿𝐷 
  

Activated innate immune cell 
average death rate (day-1) 

[0.1;0.3] A value of 0.3 was used for activated macrophages in Jenner et al.(11) A 
value of 0.04 was used for activated macrophages in Pawelek et al.(43) 
Natural killer cells are shown to have a turnover of around 2 weeks.(44) In 
Sadria et al., a value of 0.2 was used to represent the natural death rate of 
effector cell(13) 

𝜅1 Effect of innate immune response 
on the clearance of PAMP and 
DAMP expressing cells (cell-1 
day-1) 

[-8;-4] 
(log10 scale) 

An initial range of values was chosen based on bifurcation analyses. The 
range was refined to ensure that the around 5-20% of simulations lead to 
hyperinflammation. 
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Simulating clinical observations  

We sampled a large number of sets of parameter values (n=1,000,000) from the space of 

parameter values described in Table 1 using a Latin hypercube approach.(39) Accordingly, the 

marginal distribution of values being sampled for each parameter was uniform across the 

considered range (Table 1). For each selected vector, simulations were performed using initial 

conditions listed in Table 2 to predict infection and inflammation trajectories from day 0 (day of 

infection) to day 60. Analyses were only performed on the simulations satisfying the acceptance 

criteria (conditions i)-iii)). We first investigated the distribution of parameter values and virtual 

markers using histograms. We used violin plots to study bivariate associations between 

parameters and inflammation trajectory groups (resolved inflammation or hyperinflammation). 

Multivariate analyses were performed using decision trees.(45) We used the hyperinflammation 

index as the variable being predicted by model parameters. We first obtained a single tree. Cross-

validation and deviance plots were used to guide the choice of the optimal tree.(45) To account 

for uncertainty around the formulation of a single tree, we also performed a Random Forest 

analysis, generating 100 trees, and reported the mean decrease in GINI index (a measure of 

decreased node impurity from choosing a parameter for tree splits, i.e. its ability to discriminate 

inflammation trajectory groups).(46) 

 

Table 2. Initial conditions for all simulations. 

Variable Description Initial value 

𝑇 Target cells 4.8x108 cells(40) 

𝑅 Refractory cells 0 cells 

𝐼 Infected cells 10 cells 

𝑉 Virions 0 virions 

𝐽 Damaged cells 0 cells 

𝐷0 Resting innate immune cells 𝐷00 (see Table 1) 

𝐷1 Activate innate immune cells 0 cells 
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Simulating the effect of treatments on COVID-19 severity 

Finally, we evaluated if the model could replicate clinical findings regarding the treatment of 

COVID-19. For this purpose, we selected 10,000 simulations leading to lower Disease Severity 

scores and the same number of simulations leading to higher scores from the sample of accepted 

simulations. To allow comparison with clinical data, we assumed the former group represents 

mild/moderate disease, while the latter represents severe COVID-19. To simulate the use of 

corticosteroids, we assumed a reduction of 𝐷1 by 50% for a period of 10 days. To simulate the 

use of potent antivirals, we decreased parameters 𝛽 or 𝑝 to 1% of their original value at peak viral 

load for the remainder of the simulation. For each simulation, we modified parameter values at 

the time of peak viral load as it is estimated that the peak is reached within the few days following 

symptom onset.(14,32,38) We also simulated treatment administration a day prior to the expected 

viral load peak to study the effect of early treatment. The difference in log10 Disease Score (with 

vs without treatment) was computed and reported. 

RESULTS 

The Model Allows Two Stable Steady States (Hyperinflammation and Resolved 
Inflammation) under Realistic Parameter Values 

To understand the general dynamics of the model given by Eqs. (1) – (7) and the types of infection 

outcomes predicted by the model, we first performed a bifurcation analysis using baseline 

parameter values (see Supplementary Material for detail). Interestingly, the analysis shows that 

under certain biologically plausible parameter values, there exists bistability in the system with 

both a stable hyperinflammatory state and a stable resolved inflammatory state. In more technical 

terms, there are three equilibria in the model:.a stable high-inflammation state corresponding to 

hyperinflammation, an unstable equilibrium with non-zero, but low, inflammation and another 

stable equilibrium corresponding to resolved infection and resolved inflammation. The first two 
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steady states appear/disappear following a saddle-node bifurcation as shown in the bifurcation 

plots (Fig S1 and S2).  

  

The bifurcation analysis identified important parameters that dictate the existence of a 

hyperinflammatory steady state: i) 𝜅1, which represents the effect of the innate response (𝐷1) on 

the clearance of cells carrying PAMPs and DAMPs, and ii) the parameter 𝜈 that dictates the 

amount of bystander cell damage resulting from inflammation (Fig. S1). Our analysis shows there 

is a threshold value of 𝜅1 beyond which the hyperinflammatory state ceases to exist (Fig S1A). 

Further, hyperinflammation can only occur if there is enough immune driven inflammation beyond 

a threshold value of 𝜈 (Fig S1B and Fig S2B). 

 

When bistability exists in the system, inflammation trajectories could either converge to one stable 

state or the other over time. What determines the long-term inflammation trajectory is the amount 

of bystander cell damage 𝐽 caused by inflammation over the course of the infection. 

Mathematically, this is represented by a saddle-node bifurcation. The unstable lower branch of 

equilibria acts as a separatrix between the hyperinflammatory and resolved-inflammation states 

and so defines the basin of attraction of the hyperinflammatory state (see Fig. S1).  Thus, 

hyperinflammation can only occur if the infection induced inflammation is severe enough to force 

the system across this separatrix and into this basin.  

 

Overall, these results suggest that the clearance of cells carrying PAMPs and DAMPs and the 

amount of bystander cell damage from inflammation are important determinants of disease 

outcomes. When the clearance rate of infected and damaged cells is sufficiently high or bystander 

cell damage is low, infection leads to non-severe outcomes. 

Model Simulations of a Virtual Cohort of Infected Individuals 
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We next simulated the model by sampling n=1,000,000 sets of parameter values across 

biologically plausible ranges (Methods). We use these simulation results to analyze the different 

viral load and inflammatory response trajectories in the population, such that key determinants of 

disease outcomes can be further identified. In our analysis, we only included simulations 

satisfying the acceptance criteria that are consistent with broad patterns seen in clinical studies 

(described in the Method section as conditions i-iii) (accepted simulations, n=739,465 of 

1,000,000 or 73.9%). The distribution of parameter values that led to accepted simulations are 

presented in Supplementary Material (Fig. S3). Most parameters preserved their sampling 

distributions, i.e. the distribution remained uniform across the considered ranges after discarding 

simulations that do not satisfy the acceptance criteria. Further, there was little correlation between 

almost all parameters. However, there was a strong correlation between 𝛽 and 𝑝 (-0.99). 

Consequently, parameters 𝛽 and 𝑝 could not be independently sampled in order to output 

acceptable simulations (Fig. S4). Table 1 describes the sampling strategy used to account for this 

dependency.  

A Strong Association Between Hyperinflammation & the Disease Score 

To represent disease severity, we define the Disease score as the total number of infected and 

bystander cells 𝐼 and 𝐽, that died over a 60-day period. Simulations give rise to the Disease Score 

distribution are illustrated in Fig. 2. They are categorized in groups by inflammation trajectory: i) 

the inflammation marker 𝐷1 decreased after peak inflammation or ii) the inflammation marker 𝐷1 

kept increasing or was maintained at high level following peak inflammation 

(hyperinflammation).  There was a direct link between the presence of hyperinflammation and the 

Disease Score (see Fig. 2A). Overall, 13.5% of accepted simulations exhibited 

hyperinflammation. Hyperinflammation and a high Disease Score were both associated with a 

higher number of cells that died following injury from inflammation (Fig. 2B). 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.29.21267028doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.29.21267028
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

 
Figure 2. (A) Distribution of Disease Scores and (B) distribution of the total number of 
bystander cells that died by inflammation trajectory groups:  
Resolved inflammation (orange), Hyperinflammation (pink). 

 

Similar Viral Load but Divergent Inflammation Trajectories 

Viral load and inflammation trajectories over time by inflammation groups are presented in Fig. 3. 

Simulations resulting in both resolved inflammation or hyperinflammation exhibited similar viral 

load dynamics. The distribution of peak viral load and the time to reach this peak after infection 

largely overlapped between groups. However, those with resolved inflammation tended to have 

a faster VL decay after peak VL (Fig. 3C). The most remarkable difference between groups 

pertained to the dynamics of the inflammation marker 𝐷1. Peak levels of inflammation were higher 

for simulations resulting in hyperinflammation. For those with resolved inflammation, peak 

inflammation was generally observed around the time of peak viral load while for those with 

hyperinflammation, peak inflammation was observed much later (Fig. 3H).  
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Figure 3. Viral load and inflammation trajectory characteristics by inflammation trajectory 

groups. (A) Viral loads over the course of infection. The shaded area corresponds to the 10th 

and 90th percentiles of the viral loads, while the curve represents the median. (B) The 

distribution of peak viral loads, (C) the VL decay from peak infection to 5 days after peak 

infection and (D) the time of occurrence of peak VL after infection. (E) Inflammation trajectories 

by inflammation trajectory groups. The shaded area corresponds to the 10th and 90th 

percentiles of 𝐷1, while the curve represents the median. (F) the distribution of peak 𝐷1, (G) the 

distribution of 𝐷1 at 60 days post-infection and (H) the time of occurrence of peak 𝐷1 after 

infection. In orange and represented by the symbol R, Resolved inflammation. In pink and 

represented by the symbol H, Hyperinflammation. 

 

Association between Hyperinflammation and Characteristics of the Innate Immune 
Response 

Next, we compared the distribution of parameter values between inflammation trajectory groups. 

Figure 4 shows violin plots for the 15 parameters that were allowed to vary between simulations. 

The most striking differences between groups are observed for parameters 𝜅1, 𝜆,  𝜅0, 𝜎, 𝛿𝐷  and 

𝜈. Lower values of 𝜅0 (type-I IFN secretion and/or response) and  𝜅1 (cytolytic and phagocytic 

activities of innate immune cells) were associated with a greater risk of hyperinflammation and a 

high Disease Score. Similarly, higher values of  𝜆 (innate immune cell recruitment rate), 𝜎 
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(activation rate), 1/𝛿𝐷 (survivability of activated innate immune cells) and 𝜈 (damage rate due to 

inflammation) were associated with hyperinflammation and a high Disease Score. 

 

 

 

Figure 4. Distribution of the model parameters by inflammation trajectory groups. 

Distribution overlap may be discriminated from multivariate models. Inflammation trajectory 

groups R: Resolved inflammation, H: Hyperinflammation. 

 

Prediction of the Risk of Hyperinflammation from Characteristics of the Innate Immune 
Response 

We used regression tree analysis to reveal the discriminatory importance of parameters from a 

multivariate perspective. The regression trees attempted to discriminate simulations leading to 

hyperinflammation from those leading to a resolved inflammatory state. Results are shown in Fig. 

5. 
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Figure 5. Regression tree analysis results. (A) Single optimal tree for the prediction of 
hyperinflammation from model parameters. The tree reads from left to right. At each labeled node, 
simulations either go up if the value for the associated parameter is higher than a threshold 
determined by the procedure (threshold not shown, see Supplementary Figure S7), or down 
otherwise. Branch length represents the amount of classification error explained by the node. At 
each terminal node, the percentage of simulations as well as the risk of hyperinflammation within 
members of the node are reported. (B): Parameter importance based on the GINI index. A greater 
mean GINI decrease indicates a parameter that is more discriminatory. 
 

The tree has a root (left side), branches, nodes (where branches separate) and terminal leaves 

(right side). Simulations enter at the root and separate at nodes. At each node, one parameter 

and one threshold value were chosen by the regression algorithm based on their ability to 

separate simulations into more homogeneous groups in terms of inflammation trajectory. 

Simulations are directed toward the lower branch if the value for the chosen parameter for the 

simulation is smaller than the threshold, or toward the upper branch otherwise. This resulted in 5 

terminal leaves that partitioned all simulations into 5 groups. Longer branches following a node 

signify that the node allowed a better separation of the two inflammation trajectory groups.  

Fig. 5 illustrates the multivariate conditions favoring hyperinflammation. The most important 

parameters pertain to type-I IFN response, the ability of the system to clear cells carrying PAMPs 
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and DAMPs (𝜅0 and 𝜅1) and the immune cell activation and recruitment rate (𝜎 and 𝜆). In 

particular, combined low values of 𝜅0 and 𝜅1 and high values of 𝜎 and 𝜆 led to a dramatically 

increased chance of hyperinflammation (73.2% risk of hyperinflammation).  

Differences in the Effect of Treatments in terms of Treatment Type, Administration Time 
and Predicted Disease Severity 

To validate and demonstrate the utility of our model, we simulated the use of corticosteroids and 

antivirals in infected individuals and compared the model results with clinical findings. First, we modeled 

corticosteroid treatment by assuming the treatment leads to a reduction of 𝐷1 by 50% for a period of 10 

days following peak infection. The in silico administration of corticosteroids had a remarkably 

different effect on the Disease Score depending on the inflammation trajectory groups (Fig. 6). 

Among those simulations where resolved inflammation is predicted in the absence of treatment 

(orange plot), corticosteroids were often detrimental (32% chance of an increase in Disease 

Score). Such a detrimental effect was not observed among those for which hyperinflammation 

was predicted in absence of treatment (pink plot). Greater improvements were observed in the 

latter group: 23% had a greater than 0.5 log10 decrease in Disease Score, compared to only 0.7% 

in the former group. There were only small differences in the effect of corticosteroids across the 

investigated timing of drug administration (at peak viral load in Fig 6A and a day prior in Fig 6B). 

Corticosteroid treatment also had an effect on the slope of viral load decay, which was substantial 

for those simulations of mild/moderate disease and lesser among simulations of severe COVID-

19 (Fig S8). 

Simulations of the effect of antivirals were performed by decreasing parameters 𝑝 or 𝛽 to 1% of 

their original value at peak viral load. Modifying 𝑝 or 𝛽 had a very similar effect on  
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Figure 6. Violin plots of the effect of virtual treatment on the Disease Score. A) represents 
administration of corticosteroids while B) represents antiviral drug administration. Negative values 
represent improvements while positive values represent the worsening of symptoms. Note there 
were no clear difference between a reduction in 𝛽 or 𝑝 in the simulation of antivirals so the figure 

applies to both cases. Orange denotes the effect of treatment among individuals who would have 
resolved inflammation in the absence of treatment, whereas pink denotes the effect of treatment 
among individuals who would have had hyperinflammation in the absence of treatment. 
 

Disease Scores. None of the simulations revealed a substantial increase in Disease Score. 

However, the impact of antivirals was very different between inflammation trajectory groups and 

between times of drug administration. Earlier drug administration led to large improvements in 

Disease Score for both groups (Fig 6B). However, administration at peak viral load led to much 

reduced improvements in Disease Score (Fig 6A), in particular for those simulations leading to 

hyperinflammation in absence of treatment. In this case, infection had already driven inflammation 

to high levels by the time peak viral load is reached (although peak inflammation was not reached 

until much later), which translated into a number of damaged cells that corresponded to being 

within the basin of attraction of hyperinflammation (Fig S1). 
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DISCUSSION 

In this work, a mathematical model was formulated to represent the within-host dynamics of 

COVID-19 infection and inflammation. The objective was to provide a quantitative explanation for 

the range of COVID-19 symptom severity among individuals and to reveal the discriminatory 

importance of modeled mechanisms. The hypothesis we explored was that high levels of 

inflammation in COVID-19 may produce a significant amount of damage to uninfected cells. 

These cells would then produce DAMPs that further stimulate the inflammatory response. This 

model produced predictions that are consistent with clinical observations. 

Hyperinflammation and disease severity 

The model predicts that those with higher Disease Scores had substantially higher levels of 

inflammation (Fig 2A). Further, peak inflammation was not reached until much later in those 

simulations leading to hyperinflammation (Fig 3H). These modeling results are consistent with 

clinical findings that revealed non-survivors tend to experience hyperinflammation and increasing 

levels of inflammatory biomarkers up to the time of death.(7,9,47) Our analysis provides an 

explanation of these findings. In particular, the numerical bifurcation analysis suggests that viral 

infection can push the immune system into a self-sustaining high inflammatory state that can 

persist well beyond the resolution of infection. This hyperinflammatory state causes additional 

damage to uninfected cells, consequently leading to much higher Disease Scores. Due to the 

strong association between hyperinflammation and the Disease Score, we used those simulations 

that led to hyperinflammation as an in silico description of severe COVID-19. The percentage of 

simulations exhibiting hyperinflammation (13.5%) closely matched the reported proportion of the 

infected population with severe COVID-19 (14%), further motivating this decision.(1)  

Viral load dynamics and disease severity 
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In terms of viral load, the main difference that was reported between severe COVID-19 and those 

with milder disease pertained to the slope of VL after disease onset.(7)  In particular, a faster VL 

decay was observed for those with milder disease after symptom onset, as measured using 

nasopharyngeal swabs.(7) This finding was also reported for VL sampled using other means and 

from various physiological compartments.(48) Interestingly, disease severity does not correlate 

strongly with peak viral loads.(7,48)  Our simulation results are consistent with these findings (Fig. 

3B and 3C).The model offers an explanation to the slower viral load decay after peak infection in 

cases of severe COVID-19 through parameter 𝜅1; a lower 𝜅1 value both results in slower 

clearance of productively infected cells (see Eq. 3) and increases the risk of hyperinflammation 

(see Fig 5). In fact, having a low 𝜅1 value was the most important predictor of hyperinflammation 

(Fig 5B). In the model, low 𝜅1 values lead to the persistence of 𝐼 and 𝐽 cells, thereby prolonging 

PAMP and DAMP signaling and its downstream impact on the inflammatory response. The 

heightened inflammatory response promotes the generation of damaged cells 𝐽, strengthening 

DAMP signaling. Our analysis suggests that the ensuing feedback loop is the hallmark of 

hyperinflammation and severe COVID-19.  

Characteristics of the innate immune response and disease severity 

Many clinically observed associations were found between components of the innate immune 

response and disease severity. Among them, a dysregulated IFN response has been repeatedly 

associated with severe COVID-19.(10,49) Comparatively, our model suggests that a weaker IFN 

response (lower 𝜅0) leads to a higher likelihood of hyperinflammation (see Fig 4C, 5A and 5B). 

One of the roles of type-I IFN is to limit the number of target cells that can be infected.(31) 

Although it did not have a big impact on peak VL or the time to reach this peak in our simulations, 

an efficient type-I IFN response (higher 𝜅0 values) had a significant impact on inflammation. IFN 

by limiting the rate and shear number of cells that carry PAMPs also constrains inflammation. 
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Poor NK-cell cytotoxic ability was also linked with severe COVID-19.(50) NK-cells are important 

actors in the innate immune response that can target both infected and damaged cells and release 

molecules that precipitate their apoptosis.(29,30) In the model, poorer clearance of cells having 

PAMPs and DAMPs by the innate immune response is represented by lower 𝜅1 values, the most 

important predictor of hyperinflammation and severe COVID-19 (Fig 5B). A poorer response from 

NK cells could hence lead to severe COVID-19 by enabling prolonged PAMP and DAMP 

signaling. Patients with severe COVID-19 also have increased levels of neutrophil extracellular 

traps (NETs).(25,26) These can lead to immunothrombosis and the generation of damaged 

cells.(23,24) In the model, higher generation of damaged cells is represented by larger values of 

the parameter 𝜈 (Eq 5). The bifurcation analysis suggests that larger values of 𝜈 lowers the 

threshold for the number of damaged cells that are required to reach a hyperinflammatory state 

(Fig S1), facilitating severe COVID-19. 

Finally, clinically defined severe COVID-19 has been associated with higher abundance and 

activation of proinflammatory macrophages.(51) In the model, those with higher disease scores 

had a higher number of innate immune cells (𝐷0 + 𝐷1) and a higher proportion of these cells were 

activated. The parameters that dictate innate immune cell recruitment (𝜆) and activation (𝜎) were 

both strongly associated with hyperinflammation and having a high Disease Score. 

 

Effect of corticosteroids and antivirals on disease severity 

We evaluated if the model could replicate clinical findings regarding the treatment of COVID-19. 

We used the model to simulate the treatment of corticosteroid, such as dexamethasone, or an 

effective antiviral. The model predictions are consistent with many clinical findings, suggesting 

that the model we developed here will be a useful tool to understand SARS-CoV-2 pathogenesis 

and predicting the impact of treatment. Indeed, observational studies revealed the use of 

corticosteroids can lead to more severe symptoms in those with milder disease, but generally 
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improves outcomes for those with more severe symptoms.(51,53–56)  Further, it is reported that 

those with milder COVID-19 generally experience slower viral load decay under corticosteroid 

treatment, an effect that was not found to be statistically significant among those with severe 

disease.(53) This latter result was also observed in our simulations (Fig S8). One of the roles of 

inflammation is to stimulate cytolytic and phagocytic activities. By lowering this ability among 

those who experienced milder disease, the use of corticosteroids may lead to slower viral 

clearance. Hence, corticosteroids could have both a negative effect (slower clearance of PAMP 

carrying cells) and a beneficial effect (slower rate of bystander cell damage) on disease 

pathogenesis in those with mild disease. This could result in corticosteroids sometimes improving, 

sometimes worsening disease severity. Comparatively, the net beneficial effect of corticosteroids 

on those with severe COVID-19 may be the result of a smaller downstream impact of the drug on 

already less efficient NK cells.(50) 

For antivirals, simulations suggest that early administration is crucial for antivirals to impact 

disease severity, particularly for those that would have experienced severe COVID-19 in absence 

of treatment (Fig 6). Our results also suggest the existence of an inflammation threshold beyond 

which antivirals may be unable to prevent hyperinflammation. It also suggests that early 

administration could reduce disease severity by preventing the infection from driving inflammation 

across the threshold. Comparatively, many clinical trials failed to show a substantial effect of 

antivirals.(57) More recently, a reduction of around 50% in the risk of hospitalization was observed 

after administering the antiviral molnupiravir.(58) The studied cohort consisted of individuals that 

had mild/moderate symptoms and were not expected to be hospitalized within 48 hours of 

randomization.(58) Our results suggest this latter criteria may be crucial to ensure the beneficial 

effect of antivirals on disease severity. 

 

Other within-host models of SARS-CoV-2 infections 
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The model we propose is unique, but many of the effects it includes are present in other within-

host models of SARS-CoV-2 infection. Despite differences in model formulations, there is a 

general agreement across models about the necessity for early antiviral administration.(12–15) 

However, models differed in terms of the components of the inflammatory, innate or adaptive 

immune response they include.(11–17) Some of the models included an effect of type-I interferon, 

either as a promoter of the pro-inflammatory response or helping susceptible cells resist 

infection.(11–13) One of these models concluded, as per our analysis, that an inefficient type-I 

IFN response can lead to accentuated tissue damage.(11) In comparison, our model 

simultaneously explains the more important clinical associations between severe disease and 

biomarkers of the innate immune response. It distinguishes itself by the inclusion of both a positive 

feedback loop between damaged cells and inflammation and an effect of innate immune cells on 

both infected and damaged cells. This latter effect highlights the importance of cells capable of 

clearing both types of cells in the pathogenesis of severe COVID-19. Although we investigated 

more complex models, we decided against the modeling of individual cytokines or cells, as they 

often exhibit overlapping functions, and because some of these functions have been poorly 

studied leading to uncertainties in parameter values. However, some of the more complex models 

reported in the literature did give rise to interesting hypotheses that may warrant further 

investigation, such as the role of monocyte-to-macrophage differentiation or the role of anti-

inflammatory cytokines.(11,12)  

Conclusion 

Our analysis revealed key aspects of the innate immune response that dictate inflammation 

trajectories and disease severity. The most important parameter suggested by bifurcation and 

decision tree analyses was 𝜅1, representing the ability of the system to rid itself of cells carrying 

PAMPs and DAMPs. The analysis suggested that when this parameter is high enough, 

hyperinflammation can be avoided. The bifurcation analysis also suggested that small values of 
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𝜈, representing the amount of bystander cell damage due to inflammation has a similar effect. In 

other words, the ability of the innate immune response to target PAMPs and DAMPs carrying cells 

appears to be key to the determination of COVID-19 severity. This suggests that therapies that 

specifically target aspects of the innate immune response  may prove beneficial in comparison to 

broadly acting anti-inflammatory agents. The model also underlined the role of DAMPs in 

maintaining high levels of inflammation later in the course of infection. It suggests DAMPs may 

be an interesting therapeutic target for COVID-19. When exploring such novel treatment 

strategies, the model presented here could provide a means of exploring timing of treatment and 

dose effects in silico. Hopefully, a better understanding of the pathology of SARS-CoV-2 will lead 

to decreased mortality in this and similar diseases.  
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