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Abstract1

Infectious diseases are a unique challenge for genome-wide association studies (GWAS) be-2

cause pathogen, host, and environmental factors can all a↵ect disease traits. Previous GWAS3

have successfully identified several human genetic variants associated with HIV-1 set point viral4

load (spVL), among other important infectious disease traits. However, these GWAS do not5

account for potentially confounding or extraneous pathogen e↵ects that are heritable from donor6

to recipient in transmission chains. We propose a new method to consider the full genome of7

each patient’s infecting pathogen strain, remove strain-specific e↵ects on a trait based on the8

pathogen phylogeny, and thus better estimate the e↵ect of human genetic variants on infectious9

disease traits. In simulations, we show our method can increase GWAS power to detect truly10

associated host variants when pathogen e↵ects are highly heritable, with strong phylogenetic11

correlations. When we apply our method to HIV-1 subtype B data from the Swiss HIV Cohort12

Study, we recover slightly weaker but qualitatively similar signals of association between spVL13

and human genetic variants in the CCR5 and major histocompatibility complex (MHC) gene14

regions compared to standard GWAS. Our simulation study confirms that based on the esti-15

mated heritability and selection parameters for HIV-1 subtype B spVL, standard GWAS are16

robust to pathogen e↵ects. Our framework may improve GWAS for other diseases if pathogen17

e↵ects are even more phylogenetically correlated amongst individuals in a cohort.18

Introduction19

A key goal of genome-wide association studies (GWAS) is to understand the genetic basis of phe-20

notypic variation among individuals. In a typical GWAS, millions of genetic variants from across21

the human genome are screened for statistical association with a trait of interest. Ideally, this22

procedure identifies variants that are located in, or are in linkage disequilibrium with, alleles that23

directly a↵ect the trait. If GWAS finds a variant strongly associated with a disease trait, the gene24

product may be a good drug target (Okada et al., 2014). Even if no single variant has a strong asso-25

ciation, many small associations can be aggregated into a polygenic risk score to identify high-risk26

individuals (Dudbridge, 2013).27

For HIV, GWAS have used a trait called set point viral load (spVL) to identify human variants28

associated with the severity of disease course. spVL is generally defined to be the average con-29

centration of viral RNA copies in host plasma during the asymptomatic phase of infection in the30

absence of treatment (see e.g. Alizon et al. (2010)). In untreated individuals, spVL is predictive31

of the duration of asymptomatic infection (Mellors et al., 1996) and infectiousness (Quinn et al.,32

2000). If viral load can be reduced to undetectable levels, an individual is e↵ectively uninfectious33

and the risk of disease progression is massively reduced (Panel on Antiretroviral Guidelines for34

Adults and Adolescents, 2019). Notably, spVL varies by orders of magnitude between individuals35

(Mellors et al., 1996). Thus, spVL measurements point to a wide range in natural HIV control36

amongst individuals.37
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To understand HIV pathogenicity, it is important to understand to what extent spVL is deter-38

mined by host genetic factors (Bartha et al., 2013; Dalmasso et al., 2008; Fellay et al., 2007, 2009;39

McLaren et al., 2012; Pelak et al., 2010; Pereyra et al., 2010; van Manen et al., 2011). Heritability40

is a key measure of how genetically-determined a trait is. Here we distinguish between two dif-41

ferent heritability measures that are used in di↵erent contexts in the study of infectious diseases.42

Broad-sense heritability H
2 measures the fraction of total trait variance that is heritable, i.e. due to43

inherited di↵erences. In the infectious disease case, broad-sense heritability from pathogen factors,44

which are inherited by recipients from their infection partners, is typically measured. On the other45

hand, narrow-sense heritability h
2 measures the fraction of total trait variance due specifically to46

additive genetic e↵ects, i.e. the sum of independent e↵ects from all genetic variants. GWAS for47

infectious disease traits typically measure the narrow-sense heritability of a trait based on human48

genetic variants.49

Several GWAS have been done to measure the narrow-sense heritability of spVL and identify50

associated host genetic variants (Bartha et al., 2013; Dalmasso et al., 2008; Fellay et al., 2007, 2009;51

McLaren et al., 2012; Pelak et al., 2010; Pereyra et al., 2010; van Manen et al., 2011). The largest52

study to-date by McLaren et al. (2015) estimated the narrow-sense heritability of spVL from human53

genetic variants to be approximately 25%. All but 5% of this was attributed to two regions in the54

human genome, the major histocompatibility complex (MHC) and C-C motif chemokine receptor 555

(CCR5 ). Both associations are biologically relevant: the MHC encodes proteins that present viral56

epitopes at the cell surface and CCR5 encodes a co-receptor for HIV-1 cell entry. In other words,57

MHC proteins match bits of the virus like puzzle pieces and display these to signal that a cell is58

infected. CCR5 proteins help the virus infect target cells.59

In addition to these human genetic factors, it is well-recognized that viral genetic factors a↵ect60

spVL. As mentioned, heritability from the viral side is typically measured using broad-sense her-61

itability. Estimates di↵er depending on the methods employed and the cohort studied (see Mitov62

and Stadler (2018) for a discussion of this uncertainty). Estimates using phylogenetic methods on63

large UK and Swiss cohorts by Mitov and Stadler (2018) and Bertels et al. (2018) measured the64

broad-sense heritability of spVL from the virus to be 21% - 29%. However, variation in the MHC is65

known to exert strong selective pressure on the virus (Kløverpris et al., 2016; Nguyen et al., 2021).66

If the virus can change its “puzzle piece” shape to escape MHC-presentation, infected cells can go67

undetected. This means that MHC variants a↵ect spVL largely via selection on the virus (Bartha68

et al., 2017). In summary, human genetic factors play a role in determining spVL, but these e↵ects69

may be due to interaction with specific viral genetic variants.70

Most of the GWAS for human genetic determinants of spVL conducted so far (Dalmasso et al.,71

2008; Fellay et al., 2007, 2009; McLaren et al., 2012, 2015; Pelak et al., 2010; Pereyra et al., 2010;72

van Manen et al., 2011) do not explicitly consider any viral e↵ect on spVL. In these GWAS,73

viral genetic e↵ects are lumped in with residual variance due to other, non-genetic factors. This74
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has several potential negative consequences. (i) Viral e↵ects may be confounding or extraneous75

variables that bias estimates of host genetic e↵ects. (ii) Variability due to viral e↵ects would make76

it more challenging to identify human variants of small e↵ect. Finally, (iii) spVL values from a77

cohort are not truly independent samples, given that patients closer in the transmission chain have78

more similar strains and therefore more similar spVL values.79

Issue (iii) is closely related to a well-known problem in standard GWAS. Shared (human) an-80

cestry, especially between close relatives, can also give rise to spurious genetic correlations with a81

trait. Corrections for these correlations are well-developed and widely accepted (Astle and Balding,82

2009; Price et al., 2006). More recently, Power et al. (2017) emphasized the need to do similar cor-83

rections for shared pathogen ancestry in microbial GWAS. Two state-of-the-art methods exist for84

this (Collins and Didelot, 2018; Earle et al., 2016). However, these approaches are only suitable to85

quantify e↵ects from pathogen genetic variants on a trait. In contrast, we want to estimate e↵ects86

of human genetic variants on a trait, while accounting for pathogen e↵ects. Naret et al. (2018)87

developed a relevant method for this in the context of a genome-to-genome GWAS framework. The88

authors suggest adding principle components derived from the pathogen phylogeny as covariates89

to the linear regression models for association testing. This should correct for trait correlations90

due to shared pathogen ancestry. However, the top principle components capture only some of91

the information from the full pathogen phylogeny. Furthermore, we would like to simultaneously92

address issues (i) and (ii).93

In this work, we draw from the field of phylogenetic comparative methods to develop a new94

GWAS framework that estimates and removes trait variability due to the pathogen using informa-95

tion from the full pathogen phylogeny. Our approach should help identify human genetic variants96

that a↵ect disease traits and more accurately estimate their e↵ects.97

In the following we describe a statistical model for the spVL trait, derive a maximum likelihood98

estimate for the viral part of spVL under this model, and describe a new infectious disease GWAS99

framework using this information. In simulations, we show that this framework can improve GWAS100

power to detect host genetic variants that a↵ect disease traits. Finally, we apply our framework to101

human and viral genome data from the Swiss HIV Cohort Study (SHCS) and show that associations102

with spVL are robust to a correction for viral e↵ects. Although we developed our framework in the103

context of HIV-1 spVL, this approach can readily be applied to other heritable infectious disease104

traits.105
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New Approaches106

A statistical model for spVL107

Variation in spVL comes from several sources: direct host genetic e↵ects, pathogen e↵ects, inter-108

action e↵ects between the host and the pathogen, and other environmental e↵ects. Of these, only109

pathogen e↵ects are heritable from one transmission partner to another (Leventhal and Bonhoef-110

fer, 2016). To characterize these e↵ects, we use a phylogenetic mixed model (PMM) (Housworth111

et al., 2004). PMMs assume continuous traits like spVL are the sum of independent heritable and112

non-heritable parts. In our case, pathogen e↵ects comprise the heritable part and all other e↵ects113

comprise the non-heritable part. The heritable part is modeled by a random process occurring in114

continuous time along the branches of the pathogen phylogeny, as in Figure 1A. The non-heritable115

part is modeled as Gaussian noise added to sampled individuals at the tips of the phylogeny.116

Figure 1: A high-level schematic of our POUMM-based simulation framework. (A) shows how
pathogen genetic e↵ects on spVL evolve along the pathogen phylogeny according to an Ornstein-
Uhlenbeck process. (B) shows how host genetic e↵ects are the sum of independent e↵ects from
several causal variants. Each variant can be present in 0, 1, or 2 copies. Half the variants have
a positive e↵ect of size � and half have a negative e↵ect of size �. (C) shows how environmental
e↵ects are independently drawn from a Gaussian distribution centered at 0. These three e↵ects
sum to the trait value for each simulated individual.

So far, PMMs with two types of random processes have been used to model spVL evolution. The117

Brownian Motion (BM) process assumes unbounded trait values, i.e. spVL can attain any value.118

The Ornstein-Uhlenbeck (OU) process assumes trait values fluctuate around an optimal value, i.e.119

extreme spVL values are unlikely. Mitov and Stadler (2018) and Bertels et al. (2018) previously120

showed the OU process has higher statistical support for spVL. This makes sense given that spVL121

is likely under stabilizing selection to maximize viral transmission potential (Fraser et al., 2014).122

Therefore, we assume the OU process. The full model is called the phylogenetic Ornstein-Uhlenbeck123

mixed model (POUMM) and is described in detail by Mitov and Stadler (2018). Here, we review124
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the main points in the spVL context.125

Under the POUMM, the spVL trait z is the sum of viral e↵ects gv, host genetic e↵ects gh, and126

other environmental or interaction e↵ects ✏. We can group the non-heritable e↵ects gh and ✏ into127

a broader category of “environmental” e↵ects e:128

z = gv + e (1)

gv is a viral trait that evolves along the phylogeny according to an OU process. The OU process129

is defined by a stochastic di↵erential equation with two terms. The first term represents a deter-130

ministic pull towards an optimal trait value and the second term represents stochastic fluctuations131

modelled by Brownian motion (Butler and King, 2004):132

dgv(t) = ↵[✓ � gv(t)]dt+ �dWt

gv(0) = g0

(2)

Here the parameter ↵ represents selection strength towards an evolutionarily optimal value133

represented by parameter ✓. The parameter � measures the intensity of stochastic fluctuations in134

the evolutionary process. Finally, dWt is the Wiener process underlying Brownian motion. The OU135

process is a Gaussian process, meaning that gv(t) is a Gaussian random variable. Assuming gv(t)136

starts at initial value g0 at time t = 0 at the root of the phylogeny, we can write the expectation137

for gv(t) at time t:138

E[gv(t)] = g0e
�↵t + (1� e

�↵t)✓ (3)

and the variance in gv(t) if we were to repeat the random evolutionary process many times (Butler

and King, 2004):

V ar[gv(t)] =
�
2

2↵
(1� e

�2↵t) (4)

gv evolves independently in descendent lineages after a divergence event in the phylogeny. The139

covariance between gv(t) in a lineage i at time ti and another lineage j at time tj , Cov
�
gvi(ti), gvj (tj)

�
,140

increases with the amount of time between t0 and the divergence of the two lineages, t0(ij), and141

decreases with the total amount of time the lineages evolve independently, dij (Butler and King,142

2004):143

Cov
�
gvi(ti), gvj (tj)

�
=

�
2

2↵
[e�↵dij (1� e

�2↵t0(ij))] (5)

Next, we remember that e is the non-heritable, environmental part of spVL. e is modeled as a144

Gaussian random variable that is time- and phylogeny-independent. The expectation of e is 0,145
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meaning environmental e↵ects are equally likely to raise or lower spVL from the virus-determined146

level. The parameter �2
e measures the between-host variance of the environmental e↵ect.147

E(e) = 0

V ar(e) = �
2
e

(6)

Finally, broad-sense trait heritability can be calculated as the fraction of total trait variance148

that is heritable:149

H
2
t̄ =

V ar[gv(t)]

V ar[gv(t)] + V ar(e)
=

�2

2↵(1� e
�2↵t)

�2

2↵(1� e�2↵t) + �2
e

(7)

Teasing apart pathogen and non-pathogen e↵ects on spVL150

Given the assumptions of the POUMM, we can estimate a heritable pathogen e↵ect on spVL and151

a non-heritable, host and environmental e↵ect on spVL. Here, we derive a maximum-likelihood152

estimate for these values for individuals in a cohort, given measured spVL values and a pathogen153

phylogeny linking the infecting strains.154

Let gv(t) be a vector of gv values, one for each individual in the cohort. t are the sampling times155

of each individual relative to the root of the phylogeny. To simplify notation, we omit the t from156

here on. gv is a realization of a Gaussian random vector Gv ⇠ N
�
µOU ,⌃OU

�
. The expectation157

µOU is defined by equation 3, the diagonal elements of the covariance matrix ⌃OU are defined by158

equation 4, and the o↵-diagonal elements of ⌃OU by equation 5.159

Similarly, let e be a vector of the environmental part of spVL for each individual. e is a160

realization of a Gaussian random vector E ⇠ N
�
0,⌃E

�
, where ⌃E is a diagonal matrix with161

diagonal elements equal to �
2
e .162

Considering that Gv and E are independent random vectors and that their realizations gv and e163

must sum together to equal the observed spVL values z, we can write the following proportionality164

for the joint probability density of gv and e:165

f
�
gv, e

�
/ N

�
gv;µG,⌃G

�
(8)

where the expected value of gv and the covariance matrix ⌃G are defined as:166

Exp(gv) = µG = ⌃G
�
⌃�1

OUµOU +⌃�1
E z

�
(9)

⌃G =
�
⌃�1

OU +⌃�1
E

��1
(10)
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Proof.

f
�
gv, e

�
= f

�
gv| e

�
⇥ f

�
e
�

= f
�
gv
�
⇥ f

�
e
�

= N
�
gv; µOU ,⌃OU

�
⇥N

�
e; 0,⌃E

�

= N
�
gv; µOU ,⌃OU

�
⇥N

�
z � gv; 0,⌃E

�

= N
�
gv; µOU ,⌃OU

�
⇥N

�
gv; z,⌃E

�

(11)

Equations 9 and 10 follow from eq. 11 and eq. 371, p. 42, section 8.1.8 “Product of Gaussian167

densities” in Petersen and Pedersen (2012).168

Importantly, equation 9 is the maximum likelihood estimate for gv, the viral e↵ect on spVL,169

taking into account all available information - measured spVL, the pathogen phylogeny, and inferred170

POUMM parameters. This estimator is an inverse-variance weighted average of measured spVL171

(z) and information from the POUMM evolutionary model (µOU ). In other words, gv will be closer172

to measured spVL if spVL is not very heritable. If spVL is highly heritable, gv will be closer to the173

expected value under the POUMM, i.e. take more information from the phylogenetic relationships174

between infecting strains.175

Given the estimator we just derived for gv, we can now estimate e, the spVL value without176

pathogen e↵ects:177

ê = z � Exp(gv) (12)

We will use this value to try to improve upon standard GWAS methods in infectious disease.178

A POUMM-based GWAS framework for infectious disease179

We propose to improve standard GWAS for infectious diseases by estimating and removing trait180

variability due to pathogen e↵ects. Our new framework is as follows:181

1. Sample host genotypes, trait values, and pathogen genome sequence data from a cohort.182

2. Construct a pathogen phylogeny using the pathogen genome sequences.183

3. Estimate the parameters of the POUMM based on the trait values and the pathogen phy-184

logeny. This can be done with e.g. the R package POUMM (Mitov and Stadler, 2017).185

4. Generate maximum-likelihood estimates for the pathogen and corresponding non-pathogen186

e↵ects on the trait using equations 9 and 12.187

5. Perform GWAS with only the non-pathogen e↵ects on the trait as the response variable.188
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Results189

Simulation study190

To test the theoretical best-case performance of our method, we simulated data under the POUMM191

and applied our framework to the simulated data. Figure 1 shows a high-level schematic of our sim-192

ulation framework and Table 2 gives the value or expression for each parameter. For a description193

of the full simulation scheme, see Figure S1. In a nutshell, we simulated independent, additive host194

genetic e↵ects, independent environmental e↵ects, and heritable pathogen genetic e↵ects under dif-195

ferent scenarios of trait heritability and selection strength. To maintain the same heritability while196

varying selection strength, we counter-balanced by varying the intensity of stochastic evolutionary197

fluctuations accordingly. We fixed other variables to plausible values based on the spVL literature.198

Estimator accuracy199

First, we evaluated how well our method estimated the additive host genetic e↵ects from the200

simulated data. Additive host genetic e↵ects represent an ideal (albeit unattainable) baseline for201

infectious disease GWAS. Figure 2A shows that our method incorporating phylogenetic information202

can more accurately estimate these value compared to the trait value. To ensure a fair comparison,203

we scaled trait values to have the same mean, zero, as host genetic e↵ects so as not to bias the204

root mean squared error (RMSE) by a constant factor. In the supplemental material, we show why205

the scaled trait value is expected to have an RMSE of approximately 0.74 under our simulation206

scheme. By incorporating phylogenetic information, we can improve upon this error in scenarios207

where the trait is highly heritable, under low selection pressure, and with relatively moderate208

stochastic fluctuations compared to outbreak duration. This is because high heritability means209

the trait value is highly pathogen-dependent. Then, when the trait is under weak selection, the210

pathogen e↵ects can drift far from the long-term optimum and stochastic fluctuations are low to211

maintain the same heritability. Thus, our method performs well when an infectious disease trait is212

highly heritable and trait values are strongly correlated amongst close transmission partners.213

Theoretical GWAS improvement214

Next, we characterized the evolutionary scenarios under which our framework can actually improve215

GWAS power. We used the true positive rate (TPR) to evaluate the fraction of simulated causal host216

genetic variants we could recover as being significantly associated with the trait. We performed217

three di↵erent GWAS for each simulated dataset: the first represents an ideal in which we can218

exactly know and remove pathogen e↵ects from trait values, the second is using our method to219

estimate this value and remove it, and the third represents a standard GWAS using the scaled220

trait value. Figure 2B shows that our framework can improve the TPR in simulated scenarios221
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where selection strength < 10 time�1 and heritability > 45%. If we were able to perfectly estimate222

and remove pathogen e↵ects from a trait, the TPR would increase across all values of selection223

strength so long as the trait is more than marginally heritable. We estimate approximately 25% to224

be the heritability threshold above which GWAS power is negatively impacted by pathogen e↵ects.225

In summary, we show it is theoretically possible to improve GWAS power for heritable infectious226

disease traits by estimating and removing pathogen e↵ects using information from the pathogen227

phylogeny.228

Figure 2: Results from the simulation study. We simulated host, pathogen, and environmental
e↵ects on a trait under the POUMM with di↵erent heritability (y-axis) and selection strength (x-
axis) parameters. For each simulated dataset, we applied our method to estimate the non-pathogen
e↵ects and performed GWAS with these values. (A) shows that our method (left) can generate
more accurate estimates of additive host genetic e↵ects than the trait value, scaled by its mean
(right). (B) shows how GWAS power can improve given the true, simulated non-pathogen e↵ect
on spVL (left) and using our estimate for this value (middle) compared to using the scaled trait
value (right). Each tile’s color corresponds to the average value across 20 simulated datasets of
500 samples. The black point represents our estimates for the heritability and selection strength
of spVL based on Swiss HIV Cohort Study data. RMSE = Root mean square error, TPR = True
positive rate.
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GWAS on the Swiss HIV Cohort229

Finally, we applied our framework to empirical data from the Swiss HIV Cohort Study (SHCS). We230

used data collected from 1,392 individuals in Switzerland infected with HIV-1 subtype B between231

1994 and 2018. The SHCS provided viral load measurements, pol gene sequences, and human232

genotype data for these individuals. We followed the framework outlined above to estimate the233

pathogen and non-pathogen e↵ects on spVL for the cohort from these data. Figure S2 shows the234

calculated (total) spVL values, which vary between approximately 1 and 6 log copies/mL in the235

cohort. Figure S3 shows that this trait is not strongly phylogenetically structured in the cohort,236

despite high heritability. Finally, figure S4 shows that the estimated non-pathogen e↵ects on spVL237

correlate quite strongly with total spVL. We estimated spVL heritability in this cohort to be 45%238

(95% highest posterior density, HPD, 24 - 67%) and selection strength to be 58 time�1 (95% HPD239

19 - 95) (Figure S5, Table S1). To put these values into the context of our simulation study, they240

are shown as black points on Figure 2.241

We compared our proposed GWAS framework with a more standard approach by performing242

two di↵erent GWAS on the same SHCS human genotypes. In the “GWAS with standard trait value”243

we used the total trait value, our calculated spVL values, as the GWAS response variable. In the244

“GWAS with estimated non-pathogen part of trait” we used our estimates for the non-pathogen245

e↵ects on spVL. Figure 3A shows that results are qualitatively similar between the two GWAS.246

Q-Q plots show the distribution of p-values are very similar as well (Figure S6). Figure 3B shows247

how the strength of association changed for some variants in the MHC and CCR5 regions. Taking248

into account phylogenetic information slightly decreased association strength for most variants in249

the CCR5 region. Association strength increased for some variants in the MHC, for example, SNP250

rs9265880 had the greatest increase in significance in the MHC region, from a p-value of 3.5⇥10�07
251

to 7.7⇥10�09. However, the top-associated variants in the MHC and CCR5 regions were consistent252

regardless of the GWAS response variable used (Table S2). Finally Table 1 shows how our GWAS253

results compare for the two top-associated SNPs identified by McLaren et al. (2015). In summary,254

there are no clear patterns that point to new regions of association in the human genome with255

spVL when we take into account the pathogen phylogeny.256
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Figure 3: Results from comparative GWAS. (A) shows association p-values for the same host
variants from the SHCS cohort in GWAS with two di↵erent response variables. On the left, we used
unmodified (total) spVL values. On the right, we used our estimates for the non-pathogen e↵ects
on spVL. The alternating shades correspond to di↵erent chromosomes. (B) compares the strength
of association for variants in the CCR5 and MHC regions between the two GWAS (positions 45.4 -
47Mb on chromosome 3 and 29.5 - 33.5Mb on chromosome 6 for the CCR5 and MHC, respectively).
Base positions are with reference to genome build GRCh37. The color of each point represents the
di↵erence in -log10 p-value between the two GWAS. Red means taking into account phylogenetic
information decreased the strength of association and blue means it increased it. The dashed lines
show genome-wide significance at p = 5⇥ 10�8.

Table 1: Top association results from McLaren et al. (2015) compared to results from this study.
Results from this study are for host variants from the SHCS in GWAS with two di↵erent response
variables. “Standard trait value” means we used the unmodified (total) spVL value and “Estimated
non-pathogen part of trait” means we used our estimates for the non-pathogen e↵ects on spVL.

McLaren

et al.

Standard

trait value

Estimated non-pathogen

part of trait

Region Variant p-value E↵ect size p-value E↵ect size p-value

MHC rs59440261 2.0⇥ 10�83 -0.4 3.3⇥ 10�11 -0.22 2.6⇥ 10�10

CCR5 rs1015164 1.5⇥ 10�19 0.15 7.5⇥ 10�7 0.078 8.5⇥ 10�6

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 2, 2021. ; https://doi.org/10.1101/2021.11.22.21266687doi: medRxiv preprint 

https://doi.org/10.1101/2021.11.22.21266687
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion257

In this paper, we presented a new phylogeny-aware GWAS framework to correct for heritable258

pathogen e↵ects on infectious disease traits. By using information from the pathogen phylogeny,259

we show it is possible to improve GWAS power to detect host genetic variants associated with a260

disease trait. This should help us better understand which host factors are protective against a261

disease versus which increase susceptibility or disease severity.262

Our method relies on the POUMM, a model of continuous trait evolution that accounts for263

heritable and non-heritable e↵ects on a trait, as well as selection. Using this model, we estimated264

HIV-1 spVL heritability to be 45% (95% HPD 24 - 67%) in the Swiss HIV Cohort Study. Compared265

to previous studies, this estimate is at the higher end (see Mitov and Stadler (2018) and references266

therein). Also using the POUMM, Bertels et al. (2018) estimated a spVL heritability of 29% (N =267

2014, CI 12 - 46%) from the same cohort and Blanquart et al. (2017) estimated 31% (N = 2028,268

CI 15 - 43%) from a pan-European cohort. We note that our sample size (N = 1493 individuals)269

is smaller than in these other studies. This might be because we restricted samples based on270

having pol gene sequences with at least 750 non-ambiguous bases. Our aim was to reconstruct a271

high-quality phylogeny, since the POUMM does not account for phylogenetic uncertainty and the272

POUMM parameter estimates are key to our downstream trait-correction method. Although our273

heritability estimate is rather high, the confidence interval largely overlaps that of other studies274

and we note that estimating heritability per se was not our primary focus.275

Instead, the main novelty of our approach was to correct the spVL trait prior to performing276

the GWAS, thereby estimating and removing pathogen e↵ects. In simulations, we show that when277

trait heritability amongst infection partners is greater than approximately 25%, GWAS power to278

detect host genetic variants associated with the same trait is reduced. Our method can correct for279

this e↵ect in certain evolutionary scenarios by using information from the full pathogen phylogeny.280

Based on our simulation results, our method is anticipated to be very useful for disease traits281

that are highly heritable from donor to recipient and maintain a high correlation between sampled282

individuals. In simulations, we showed this is the case when heritability is high, selection strength283

is low, and trait values are not subject to strong stochastic fluctuations. So, cohort-level, phy-284

logenetically structured di↵erences in the measured trait value are necessary for our approach to285

outperform state of the art methods.286

Given our estimates for the heritability of spVL and the selection strength on this trait using287

Swiss HIV cohort data, our simulation results reveal that we cannot expect a significant improve-288

ment in GWAS power for human genetic determinants of spVL (Figure 2). Our method slightly289

decreases p-values for variants in CCR5 and slightly decreases some and increases other p-values290

for variants in the MHC (Figure 3B). Simulations show we shouldn’t expect a net p-value decrease,291

but our simulations represent an ideal scenario since we simulate under the POUMM. In real life,292
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un-modeled evolutionary pressures like drug treatment and host-specific HLA alleles might cause293

the reduced p-values. However, the overall picture is consistent between the two GWAS (Figure294

3A). Therefore, we conclude that GWAS for host determinants of HIV-1 subtype B spVL is robust295

to our correction for pathogen e↵ects.296

Our method is convenient for GWAS because it is simply a pre-processing step that produces297

an alternate response variable for GWAS association tests. It is still possible to use previously de-298

veloped, well-documented, and fast tools for the actual association testing (we used PLINK (Chang299

et al., 2015)). The method relies on the freely available R package POUMM (Mitov and Stadler,300

2017) and all the code we wrote is available on the project GitHub at https://github.com/cevo-301

public/POUMM-GWAS. Future applications of our method might investigate other clinically sig-302

nificant disease traits and outcomes that are a↵ected by both host and pathogen genetic factors, for303

instance Hepatitis B Virus-related hepatocellular carcinoma (An et al., 2018), Hepatitis C treat-304

ment success (Ansari et al., 2017), and susceptibility to or severity of certain bacterial infections,305

e.g. Donnenberg et al. (2015); Messina et al. (2016).306

In summary, we argue that infectious disease GWAS should take the pathogen phylogeny into307

account when searching for host determinants of a disease trait. We give a practical threshold for308

identifying when GWAS su↵er from pathogen e↵ects (heritability of the trait amongst infection309

partners > 25%) and provide a method that can help in scenarios where trait values are highly310

heritable and phylogenetically-structured amongst members of a cohort.311

Materials and Methods312

Simulation model313

Whenever possible, we tried to parameterize our simulation model for spVL using empirical data.314

We set the total variance in spVL to 0.73 log copies2 mL�2 based on UK cohort data (Mitov315

and Stadler, 2018). Other studies have estimated slightly lower values though (Table S3). After316

allotting 25% of this variance to the host part of spVL gh based on results by McLaren et al.317

(2015), we partitioned the remaining variance between the viral part gv and the environmental318

part ✏ in di↵erent ratios to assess estimator performance across a range of spVL heritabilities. gh319

was simulated as the sum of contributions from 20 causal host genetic variants, 10 of which had an320

e↵ect size of 0.2 log copies mL�1 and 10 of which had an e↵ect size of -0.2 log copies mL�1. Host321

genetic variants were generated from a binomial distribution with probability p calculated such that322

gh had the appropriate variance (see Table 2). We generated a random viral phylogeny with branch323

lengths on the same time scale as a previously inferred UK cohort HIV tree (Hodcroft et al., 2014)324

using the R package ape (Paradis and Schliep, 2018). gv was simulated by running an OU process325

along the phylogeny using the R package POUMM (Mitov and Stadler, 2017) and sampling values326
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at the tips. For the OU parameters ✓ and g0 we used 4.5 log copies mL�1 based on fitting the same327

model to SCHS data (Table S1). This is similar to values previously inferred for HIV (Table S4).328

To assess our estimator’s performance under a range of evolutionary scenarios, we co-varied the329

OU parameters for selection strength, ↵, and intensity of random fluctuations, �, so that di↵erent330

proportions of the variability in gv were attributable to selection and drift, respectively. Finally,331

the environmental component of spVL ✏ was generated from a normal distribution with mean 0.332

For a full graphical model representation of the simulation scheme, see Figure S1.333

Table 2: Simulation model parameters. For a full graphical model representation of the simulation
scheme, including how these parameters are related, see Figure S1.

Variable Expression Definition

�
2
z 0.73 log copies2/mL2 Total spVL variance

H
2
h 0.25 Host heritability of spVL

H
2
t̄ varied Viral heritability of spVL at t̄

�
2
gh �

2
gh = 0.25 ⇤ �2

z Variance in host part of spVL

�
2
gv(t̄) �

2
gv(t̄) = H

2
t̄ ⇤ �2

z Variance in viral part of spVL at t̄

�
2
✏ �

2
✏ = �

2
z � �

2
gv � �

2
gh Variance in environmental part of spVL

t̄ 0.14 substitutions site�1 yr�1 Mean root-tip time in viral phylogeny

gv gv ⇠ Norm(µOU ,⌃OU ) Viral part of spVL for all individuals

✓ 4.5 log copies/mL Optimal spVL value

g0 4.5 log copies/mL gv at the root of the phylogeny

↵ varied Selection strength of OU process

� � =
q

2↵�2
gv (t̄)

1�exp(�2↵t̄) Time-unit standard deviation of OU process

 branch lengths ⇠ Exp(t̄) Viral phylogeny

ghi

ghi = �
Pj=M/2

j=1 Gij�
�
Pj=M

j=M/2Gij

Host part of spVL for individual i

GN⇥M
Gij ⇠ Binom(2, p)

8i 2 1...N, 8j 2 1...M
Host genotype matrix

p p = 1
2 �

q
1
4 � H2

h�
2
z

2�2M Host variant allele frequency

� 0.2 Host variant e↵ect size

M 20 Number of causal host variants

✏i ✏i ⇠ Norm(0,�2
✏ ) Environmental part of spVL for individual i

N 500 Number of simulated samples
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Swiss HIV-1 data334

Human genotypes, viral load measurements, and HIV-1 pol gene sequences from HIV-1 positive335

individuals were all collected in the context of other studies by the Swiss HIV Cohort Study (SHCS)336

(www.shcs.ch, Scherrer et al. (2021); Schoeni-A↵olter et al. (2010)). All participants were HIV-337

1–infected individuals 16 years or older and written informed consent was obtained from all cohort338

participants. The anonymized data were made available for this study after the study proposal was339

approved by the SHCS.340

For phylogenetic inference, we retained sequences from 1,493 individuals with non-recombinant341

subtype B pol gene sequences of at least 750 characters and paired RNA measurements allowing for342

calculation of spVL, as well as 5 randomly chosen subtype A sequences as an outgroup. We used343

MUSCLE version 3.8.31 (Edgar, 2004) to align the pol sequences with –maxiters 3 and otherwise344

default settings. We trimmed the alignment to 1505 characters to standardize sequence lengths. We345

used IQ-TREE version 1.6.9 (Nguyen et al., 2014) to construct an approximate maximum likelihood346

tree with -m GTR+F+R4 for a general time reversible substitution model with empirical base347

frequencies and four free substitution rate categories. Otherwise, we used the default IQ-TREE348

settings. After rooting the tree based on the subtype A samples, we removed the outgroup. Viral349

subtype was determined by the SHCS using the REGA HIV subtyping tool version 2.0 (de Oliveira350

et al., 2005). We calculated spVL as the arithmetic mean of viral RNA measurements made prior351

to the start of antiretroviral treatment. For a comparison of several di↵erent filtering methods, see352

Figure S2.353

For GWAS, we retained data from 1,392 of the 1,493 SHCS individuals with European ancestry354

who were not closely related to other individuals in the cohort (Table S5). These were 227 females355

and 1165 males. Ancestry was determined by plotting individuals along the three primary axes of356

genotypic variation from a combined dataset of SHCS samples and HapMap populations (Figure357

S7). Kinship was evaluated using PLINK version 2.3 (Chang et al., 2015); we used the –king-cuto↵358

option to exclude one from each pair of individuals with a kinship coe�cient > 0.09375. Initial359

host genotyping quality control and imputation were done as in Thorball et al. (2021). Subsequent360

genotyping quality control was performed using PLINK version 2.3 (Chang et al., 2015). We used361

the options –maf 0.01, –geno 0.01, and –hwe 0.00005 to remove variants with minor allele frequency362

less than 0.01, missing call rate greater than 0.05, or Hardy-Weinberg equilibrium exact test p-value363

less than 5x10�5. After quality filtering, approximately 6.2 million genetic variants from the 1,392364

individuals were retained for GWAS (Table S6).365

POUMM parameter inference366

We used the R package POUMM version 2.1.6 (Mitov and Stadler, 2017) to infer the POUMM367

parameters g0,↵, ✓,�, and �e from the approximate maximum-likelihood phylogeny and calculated368
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spVL values. The Bayesian inference method implemented in this package requires specification of369

a prior distribution for each parameter. We used the same, broad prior distributions as in Mitov370

and Stadler (2018), namely: g0 ⇠ N (4.5, 3), ↵ ⇠ Exp(0.02), ✓ ⇠ N (4.5, 3), H
2
t̄ ⇠ U(0, 1),371

and �
2
e ⇠ Exp(0.02). We ran two MCMC chains for 4x106 samples each with a target sample372

acceptance rate of 0.01 and a thinning interval of 1000. The first 2x105 samples of each chain were373

used for automatic adjustment of the MCMC proposal distribution. Figure S5 shows the posterior374

distributions for inferred parameters. Table S1 gives the posterior mean values used for subsequent375

calculations.376

Phylogenetic spVL correction377

We corrected calcualted spVL values using the method described in this paper. For each of the378

1,392 individuals in the GWAS cohort, we estimated the viral part of spVL using equation 9 and379

the corresponding non-viral part using equation 12. For the POUMM parameters ↵, �, ✓, and �e,380

we used the posterior mean estimates generated as described above.381

Association testing382

We performed two GWAS using the same human genotype data from the SHCS. For the first383

“GWAS with standard trait value” we used total calculated spVL (z) as the response variable for384

association testing, replicating prior GWAS for host genetic determinants of spVL. For the second385

“GWAS with estimated non-pathogen part of trait” we replaced total spVL with the estimated non-386

viral component of spVL (ê) as the response variable. Association testing was performed using a387

linear association model in PLINK version 2.3 (Chang et al., 2015) with sex and the top 5 principle388

components of host genetic variation included as covariates. The sex and principle components389

covariates were included to reduce residual variance in spVL and control for confounding from host390

population structure, respectively.391

Data availability392

The simulated data underlying this article can be re-generated using the code available on the393

project GitHub at https://github.com/cevo-public/POUMM-GWAS. The HIV pathogen genome394

sequences, clinical data, and human genotypes cannot be shared publicly due to the privacy of395

individuals who participated in the cohort study. The data may be shared on reasonable request396

to the Swiss HIV Cohort Study at http://www.shcs.ch.397
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