SUPPLEMENTARY MATERIALS

MODELLING OF TIME-TO-EVENTS IN AN AMBISPECTIVE STUDY: ILLUSTRATION WITH THE ANALYSIS OF $A B O$ BLOOD GROUPS ON VENOUS THROMBOSIS RECURRENCE

Gaëlle Munsch, Louisa Goumidi, Astrid van Hylckama Vlieg, Manal Ibrahim-Kosta, Maria Bruzelius, JeanFrançois Deleuze, Frits R. Rosendaal, Hélène Jacqmin-Gadda, Pierre-Emmanuel Morange, David-Alexandre Trégouët

CONTENTS:

Supplementary Figures 1-6 2
Supplementary Tables 1-3 5
Supplementary Text 8

Supplementary Figure S1. Flow chart of the MARTHA sub-samples

Supplementary Figure S2. Distribution of the age at enrolment in MARTHA participants ($\mathrm{N}=1,504$)

Supplementary Figure S3. Distribution of the delay between enrolment and the first VT in MARTHA participants $(\mathrm{N}=1,504)$

Supplementary Figure S4. Kaplan Meier plot of the survival probability in MARTHA participants with an available follow up ($\mathrm{N}=1,380$ including 73 deaths)

Supplementary Figure S5. Distribution of the estimated weights for the MARTHA participants ($\mathrm{N}=1,504$)

Supplementary Figure S6. Sensitivity of the association of $A B O$ blood groups with recurrence according to the weights estimation in MARTHA ($\mathrm{N}=1,504$)

[^0] Text). The dashed line corresponds to the estimated value in the initial model

Supplementary Table S1. Description of the MARTHA sample for the death risk estimation

Variables	Total $\mathbf{N = 1 , 3 8 0}$
$\mathbf{N (\%)}$	
Gender \quad Men Age at inclusion (mean \pm Standard Deviation (SD))	47.1 ± 15.3
Age at the first VT (mean \pm SD)	41.3 ± 15.7
Delay between inclusion and first VT (In years, mean \pm SD)	5.8 ± 9.6
Type of the first VT \quad DVT only	$1,087(78.8 \%)$
Characteristic of the first VT	$911(66.0 \%)$
\quad Provoked	11.8 ± 5.3
Delay of follow-up in years* (In years, mean \pm SD)	

[^1]Supplementary Table S2. Association of ABO haplotypes with first VT recurrence in MARTHA ambispective and MEGA stratified on the type of the first VT

Variables	MARTHA Ambispective $\mathbf{N}=\mathbf{1 , 5 0 4}$ Nb recurrences $=565$		MEGA$\mathrm{N}=1,248$Nb recurrences $=428$		Meta-Analysis Fixed-effects	
	HR (95\% CI)	P	HR (95\% CI)	P	HR (95\% CI)	P
ABO haplotypes - PE as first VT	$\mathbf{N}=\mathbf{3 1 5}$; 111 rec	rrences	$\mathbf{N}=\mathbf{4 8 5}$; 158 recc	rrences		
A1	1.10 (0.82-1.48)	0.536	1.38 (1.05-1.82)	0.020	1.24 (1.02-1.51)	0.029
A2	1.87 (1.04-3.37)	0.039	0.79 (0.49-1.27)	0.329	1.11 (0.80-1.55)	0.554
O1	Refere		Referenc		Reference	
O2	0.65 (0.13-3.24)	0.600	0.70 (0.28-1.72)	0.434	0.69 (0.36-1.32)	0.250
B	0.85 (0.47-1.53)	0.574	0.83 (0.51-1.36)	0.447	0.84 (0.59-1.20)	0.318
ABO haplotypes - DVT as first VT	$\mathrm{N}=1,189$; 454 re	urrences	$\mathrm{N}=763$; 270 rec	rences		
A1	1.16 (0.99-1.36)	0.063	1.14 (0.94-1.39)	0.211	1.15 (1.00-1.32)	0.045
A2	1.20 (0.91-1.58)	0.180	1.29 (0.94-1.77)	0.104	1.24 (1.00-1.54)	0.059
O1	Refere		Referenc		Reference	
O2	1.41 (0.85-2.35)	0.180	0.94 (0.46-1.90)	0.872	1.23 (0.75-2.01)	0.422
B	1.06 (0.84-1.34)	0.612	1.08 (0.79-1.48)	0.637	1.07 (0.86-1.33)	0.566

HR: Hazard Ratio
CI: Confidence Interval

Supplementary Table S3. Definition of the provoked character in MARTHA and MEGA

MARTHA study	MEGA study
- Surgery within 3 months before VT	- Surgery within 3 months before VT
- Pregnancy/ puerperium within 3 months before VT	- Pregnancy/ puerperium within 3 months before VT
- Oral contraceptive use within 3 months before VT	- Hormone use at the time of VT, including: hormone replacement therapy and hormonal contraceptives
	- Plaster cast within 3 months before VT
- Immobilization for 7 days or more within 3 months before VT	- Immobility in bed, in hospital: Confinement to bed ≥ 3 days in hospital, confinement to bed ≥ 3 days at home, within 3 months before VT
- Long travel (by car >10 hours; by plane > 5 hours) within 3 months before VT	- Prolonged travel >4 hours within 2 months before VT
- Trauma of the lower limb within 3 months before VT	- Leg injury in 3 months before VT
- Pneumonia in year before VT	- Pneumonia in year before VT
- Infection in year before VT (urinary tract infection, pyelonephritis, arthritis, bursitis, sinusitis, pulpitis, inflammation elsewhere, hepatitis A, B or C)	- Infection in year before VT (urinary tract infection, pyelonephritis, arthritis, bursitis, sinusitis, pulpitis, inflammation elsewhere, hepatitis A, B or C)

Supplementary Text. Sensitivity analysis on the weights estimation for MARTHA participants

Methods: To investigate the variability of the weights estimated from the MARTHA study and their impact on the weighted Cox model, we used a Monte Carlo method. From the death risk model, we estimated the survival function $\hat{S}\left(t_{i} \mid Z_{i}\right)=\exp \left(-\hat{A}\left(t_{i} \mid Z_{i}\right)\right)$ of each individual i up to the time t_{i} (which corresponds to the time of collection of the information on VT recurrence). Assuming that the cumulative risk $\hat{A}\left(t_{i} \mid Z_{i}\right)$ follows a normal distribution, for each individual we randomly draw 1,000 values of the his/her cumulative risk from the distributions $N\left(\hat{A}\left(t_{i} \mid Z_{i}\right), S E\left(\hat{A}\left(t_{i} \mid Z_{i}\right)\right)\right.$) and computed the corresponding survival probabilities $\hat{S}_{k}\left(t_{i} \mid Z_{i}\right)=$ $\exp \left(-\hat{A}_{k}\left(t_{i} \mid Z_{i}\right)\right)$ to obtain the set of individual weights $w_{i k}$ for $\mathrm{k}=1, \ldots, 1000$. Then 1,000 weighted Cox model for the VT recurrence were estimated.

Results: The distributions of the HR for the ABO blood groups from the 1,000 models for VT recurrence are shown in Supplementary Figure 6 where the value of the HR estimated in the initial model is presented as a dashed line. The empirical distributions are well centred at the initial estimated HRs and, for both A1 and A2, all estimated HRs are above 1 supporting our conclusions.

[^0]: Note: The 4 panels show the distribution of the Hazard Ratio in the Monte Carlo resampling analysis (See Supplementary

[^1]: *According to the death event

