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Abstract: 

Psychotic and affective disorders often aggregate in the relatives of probands with schizophrenia (SCZ), 

and genetic studies show substantial genetic correlation among SCZ, bipolar disorder (BIP) and major 

depressive disorder (MDD). However, the nature of this genetic overlap in polygenic risk score (PRS) 

analyses of multiplex families has not been fully dissected. In the current study, we investigated the 

polygenic risk burden of BIP and MDD in a sample of 257 multiplex SCZ families (N=1,005) and 

population controls (N=2,205). Furthermore, due to the strong genetic correlation among SCZ, BIP, and 

MDD, we examined whether increased BIP or MDD PRS in members of multiplex SCZ families can be 

attributed to latent genetic factors unique to BIP or MDD, or latent genetic factors that each of these two 

disorders share with SCZ. Our results indicate that members of multiplex SCZ families have an increased 

PRS for BIP and MDD, however, this observation is largely attributable to latent genetic factors that BIP 

or MDD share with SCZ, rather than latent genetic factors unique to them. These results provide new 

insight for cross-disorder PRS analyses of psychiatric disorders, by cautioning that for complete 

interpretation of observed cross-disorder PRS enrichment, we should account for genetic correlations 

across psychiatric disorders. Our findings further indicates that members of multiplex SCZ families may 

have an increased genetic vulnerability to both psychotic and affective disorders, and for full assessment 

of an individual’s genetic risk, familial backgrounds should be taken into consideration.  

   

 

 
 
 
 
 
 
 
 
 



 2

Introduction: 
 

Psychotic and affective disorders have long been viewed as two separate axes of mental illness, 

but early practitioners of psychiatry like Emil Kraepelin and Eugen Bleuler observed that relatives of 

patients with schizophrenia (SCZ) have an increased rate of psychotic and affective disorders, many of 

which appeared to be milder versions of the symptoms observed in patients with SCZ (1). Some of the 

first family studies of SCZ conducted in the early 20th century, confirmed that in addition to SCZ, a range 

of other psychiatric disorders also aggregate in the relatives of probands with SCZ (2). These findings 

were later solidified by the Danish Adoption Study of Schizophrenia, which showed that biological 

relatives of patients with SCZ were at an increased risk for SCZ and a spectrum of other psychiatric 

disorders (3,4).   

The Irish Study of High-Density Schizophrenia Families (ISHDSF) (5,6) consists of 257 multiplex SCZ 

families with genotype data, ascertained to have two or more first-degree relatives meeting the Diagnostic 

and Statistical Manual of Mental Disorders (DSM-III-R) criteria for SCZ or poor-outcome schizoaffective 

disorder (Supplementary Table 1). In line with previous epidemiological observations in the relatives of 

probands with SCZ (5,7,8), a broad spectrum of other psychiatric diagnoses, including psychotic, 

affective, personality, and substance use disorders, are also present in the ISHDSF sample (6,9–12), with 

previous polygenic risk score profiling in the ISHDSF sample showing that all family members, including 

the unaffected individuals, have an increased burden of SCZ common genetic risk variation compared to 

population controls (13).  

Results from the Psychiatric Genomics Consortium (PGC) Cross-Disorder Group (14,15), and 

other cross-disorder analyses of psychiatric disorders (16,17) (Supplementary Figure 4), have provided 

robust, replicable evidence for strong genetic correlation (rG) between SCZ and bipolar disorder (BIP), 

and to a lesser degree between SCZ and major depressive disorder (MDD). The genetic correlation 

between SCZ and BIP is estimated to be rG = 0.68, and of the 64 genome-wide significant loci associated 

with BIP, 10 have previously reached genome-wide significance level in SCZ (18). SCZ and MDD also 
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have a significant positive genetic correlation estimated to be rG = 0.35, and in addition to substantial 

overlap among genes identified to be involved in the genetic architecture of MDD and SCZ, 6 of the 44 

loci associated with MDD, are also associated with SCZ (19). BIP and MDD also have significant 

positive genetic correlation estimated to be rG = 0.44 (18) .  

The high baseline risk of SCZ observed across all diagnostic categories of ISHDSF sample, 

coupled with the evidence for cross-trait genetic correlations among SCZ, BIP, and MDD, and the 

presence of a wide spectrum of psychiatric disorders that aggregate in ISHDSF sample, raises two 

important questions. First, do members of multiplex SCZ families have an increased genetic risk for BIP 

and MDD? We constructed univariate BIP and MDD polygenic risk scores (PRS) to address the first 

question. Second, is the increased BIP or MDD genetic risk in multiplex SCZ families attributable to 

underlying latent genetic factors that BIP or MDD share with SCZ, or are they attributable to underlying 

latent genetic factors that are unique to BIP or MDD (hence, not shared with SCZ)? We used genomic 

structural equation modelling (genomicSEM) (20) and GWAS-by-subtraction (21) to perform a GWAS of 

latent, unmeasured factors underlying BIP or MDD to answer the second question. GWAS-by-subtraction 

is a newly developed method that facilitates the study and interpretation of residual values from 

genomicSEM models and provides insight into previously unmeasured latent genetic factors that are 

unique to individual phenotypes (21).  

In addressing these two questions, we attempt to investigate the common risk variation burden of 

BIP and MDD, two co-morbid psychiatric disorders with SCZ, in families with multiply affected 

individuals with SCZ and related psychiatric disorders. Furthermore, we shed light on the complexity of 

cross-disorder PRS analyses of psychiatric disorders in multiplex families, by taking into consideration 

the underlying genetic correlation among SCZ, BIP, and MDD. 

Materials and Methods:  

Sample Description 

Irish Study of High-Density Schizophrenia Families (ISHDSF)  
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Fieldwork for the ISHDSF sample was carried out between 1987 and 1992, with probands 

ascertained from public psychiatric hospitals in the Republic of Ireland and Northern Ireland with 

approval from local ethics committees (6). Selection criteria were two or more first-degree relatives 

meeting DSM-III-R criteria for SCZ or poor-outcome schizoaffective disorder (PO-SAD), with all four 

grandparents being born in either Ireland or the United Kingdom. Relatives of the probands suspected of 

psychotic illness were interviewed by trained psychiatrists, and trained social workers interviewed other 

relatives of the probands. To avoid bias and detect possible mistakes in diagnosis, independent review of 

all diagnostic information was made blind to family assignments by two trained psychiatrists, with each 

psychiatrist making up to 3 best estimate DSM-III-R diagnoses, with high agreement (weighted k= 0.94 

+- 0.05). 

The concentric diagnostic schema of the ISHDSF (Supplementary Figure 21), ranked by the 

degree to which they reflect the core vs periphery of the psychosis spectrum, includes 4 case definitions in 

the families as follows: narrow (SCZ, PO-SAD and simple SCZ), intermediate (adding schizotypal 

personality, schizophreniform, and delusional disorders, psychosis not otherwise specified (NOS), and 

good-outcome schizoaffective disorder, diagnoses that robustly and replicably aggregate in the relatives 

of SCZ probands), broad (adding psychotic affective illness, paranoid, avoidant and schizoid personality 

disorders and other disorders that significantly aggregated in relatives of SCZ probands in the 

Roscommon Family(10)), and very broad (adding any other psychiatric illnesses in the families). The 

ISHDSF sample also includes unaffected family members with no diagnosis of any psychiatric illness. 

Details of the ISHDSF sample are described elsewhere (6,22). 

 
Population controls and replication singleton cases from Irish Schizophrenia Genomics Consortium 

The Irish Schizophrenia Genomic Consortium (ISGC) sample was assembled for a GWAS of 

SCZ in Ireland. Details of recruitment, screening, and quality control (QC) are described elsewhere (23). 

Briefly, controls from the Irish Biobank used in ISGC were blood donors from the Irish Blood 

Transfusion Service recruited in the Republic of Ireland. Individuals reported all four grandparents born 
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in either Ireland or the United Kingdom, with no reported history of psychotic illness. Due to the 

relatively low lifetime prevalence of SCZ in the general population (~1%), misclassification of controls 

should have a minimum impact on power (24). Singleton SCZ cases used as a replication in this study 

were recruited through community mental health service and inpatient units in the republic of Ireland or 

Northern Ireland following protocols with local ethics approval. All participants were interviewed using a 

structured clinical interview for DSM-III-R or DSM-IV, were over 18 years of age and reported all four 

grandparents born in Ireland or the United Kingdom. Cases were also screened to exclude substance-

induced psychotic disorder or psychosis due to a general medical condition. Detailed description for 

sample recruitment is provided in detail elsewhere (13,25) .  

 
Genotyping and QC 

 Genotyping was carried out on 3 different arrays. 830 individuals from ISHDSF sample were 

genotyped on the Illumina 610-Quad Array. An additional 175 ISHDSF individuals, which either were 

not included in the Illumina Array study or did not pass QC, were later genotyped on the Infinium 

psychArray V.1.13 Array (the psychArray). For the ISGC sample, 1,730 population controls and 1,627 

singleton cases were genotyped using the Affymetrix V.6.0 Array. An additional 475 population controls 

and 487 singleton cases that either did not pass the QC or were not included in the Affymetrix Array 

study were later genotyped on the psychArray along with the additional ISHDSF individuals. The same 

QC protocols were applied to all three datasets. In brief, exclusion criteria for samples were a call rate of 

<95%, more than one Mendelian error in the ISHDSF sample, and difference between reported and 

genotypic sex. Exclusion criteria for SNPs were MAF <1%, call rate <98%, and p<0.0001 for deviation 

from Hardy-Weinberg expectation. The final ISHDSF sample includes 1,005 individuals from 257 

pedigrees whose SNP data from the Illumina Array and the psychArray passed all the QC filters. The 

final ISGC sample includes 2,205 controls and 2,114 singleton cases whose SNP data from the 

Affymetrix and the psychArray passed all the QC filters (Supplementary Table 2). 
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Imputation:  

Genotypes passing QC were phased using Eagle V.2.4 (26) and imputed to the Haplotype 

Reference Consortium (HRC) reference panel (27) on the Michigan Imputation Server using Minimac4 

(28). The HRC panel includes 64,975 samples from 20 different studies that are predominantly of 

European ancestry, making the HRC suitable for imputation of our homogenous sample from Ireland. 

Each of the three genotype sets described in the previous step was imputed separately, and the imputed 

genotype probabilities were downloaded in VCF format from the Michigan Imputation Server. Genotype 

dosages were extracted and used for all downstream analyses. As part of the post-imputation QC, variants 

with MAF <1% and r2 score of < 0.3 (29) were excluded. After imputation and all QC measurements, 

9,298,012 SNPs on the Illumina Array, 11,080,279 SNPs on the Affymetrix Array, and 11,081,999 SNPs 

on the psychArray, remained for analysis. Of these three sets of SNPs, 9,008,825 SNPs were shared 

across all three imputed arrays and were used for downstream analyses. Description of QC steps for the 

imputation are described in the Supplementary Materials and Supplementary Figures 1-3.  

 

Summary statistics acquisition 

We made use of the publicly available summary statistics data. PGC3-SCZ (67,390 cases and 

94,015 controls) (30) and PGC3-BIP (41,917 cases and 371,549 controls) (18) summary statistics were 

downloaded from the PGC website. We used the 2019 MDD GWAS summary statistics from a meta-

analysis of the PGC2-MDD and UK Biobank (excluding 23andMe), containing 170,756 cases and 

329,443 controls (31). Low-density lipoprotein (LDL) summary statistics (N=87,048) (32) used as a 

negative control in this study was obtained from the ENGAGE Consortium website. 

 
GWAS-by-subtraction  

We investigated whether increased BIP and MDD PRS in multiplex families can be attributed to 

underlying latent genetic factors that are unique to BIP or MDD (not shared with SCZ), or underlying 
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latent genetic factors that BIP or MDD share with SCZ. We performed GWAS-by-subtraction within the 

genomicSEM framework by analyzing summary statistics data for SCZ (N=161,405), BIP (N=413,466), 

and MDD (N=500,199), by regressing SCZ and BIP or SCZ and MDD summary statistics on two latent 

variables that we called SCZ factor and nonSCZ factor. Subsequently, we regressed SCZ factor and 

nonSCZ factor on each SNP from the summary statistics, which allowed for two paths of association with 

BIP or MDD for each SNP: 1) a first path that is fully mediated by SCZ factor, and 2) a second path that 

is fully independent of SCZ factor, called nonSCZ factor (Supplementary Figure 5). Detailed description 

of GWAS-by-subtraction framework is provided in the original publication by Demange et al (21) and 

description of the current analysis, path estimates as well as the formula used to estimate the effective 

sample size for GWAS-by-subtraction analyses are provided in the Supplementary Materials and 

Supplementary Table 4.  

Estimation of SNP based heritability  

We used LDSC (33) to estimate the SNP-based heritability of the genomicSEM GWAS results 

and partition the heritability into functional categories and cell types. Since genomicSEM results rely on 

latent factors, it is not possible to estimate the heritability on liability scale, therefore, all the SNP-based 

heritability estimates are reported on the observed scale. 

 
Construction of Polygenic Risk Score  

           Summary statistics for BIP (N=413,466), MDD (N=500,199, SCZ factor underlying BIP (Neff 

=149,460), nonSCZ factor underlying BIP (Neff = 312,118), SCZ factor underlying MDD (Neff = 149,464), 

and nonSCZ factor underlying MDD (Neff = 461,356) were first QC’d by excluding variants with MAF < 

1% or imputation quality score of < 0.9, and removing strand ambiguous and in/del polymorphisms. We 

then constructed PRS using a Bayesian regression framework by placing a continuous shrinkage prior on 

SNP effect sizes using PRS-CS (34). PRS-CS uses LD information from an external reference panel (the 

1000 Genomes European Phase 3 European sample here) (35), to estimate the posterior effect sizes for 

each SNP. Although p-value thresholding and clumping method (P-T) have been traditionally used for 
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PRS construction (36), PRS-CS has shown substantial improvement in predictive power over P-T (37). 

Similar to LDSC, PRS-CS limits the SNPs for PRS construction to around 1.2 million high-quality 

variants from the HapMap3 variants which provides ~ 500 SNPs per LD block which substantially 

reduces memory and computational costs.  

To show the specificity of the PRS constructed in our analysis, an additional PRS for low-density 

lipoprotein (LDL, N=87,048) from the ENGAGE Consortium (32) was also constructed using the same 

protocol described above. Genetic correlation estimates show that there is no significant correlation 

between LDL and psychiatric disorders, making LDL an appropriate phenotype as a negative control for 

this analysis (38,39). 

Genomic Relationship Matrix, Principal Component and Statistical Analyses  

To account for the high degree of relatedness among individuals, analyses were carried out using 

a mixed-effects logistic regression model fitted by maximum likelihood by Nelder-Mead optimization 

using the GMMAT package (40) in R (41) The family structure was modelled as a random effect, with 

genomic relationship matrix (GRM) calculated using LDAK with LD correction parameters suited for 

families (42). In order to account for batch effects due to genotyping carried out on different arrays, we 

also included platform as a covariate. Principal component analysis (PCA) shows that all individuals in 

the sample are of European ancestry (Supplementary Figure 6-8). But to account for fine-scale structure 

within the Irish population (Supplementary Figure 9), the top 10 principal components (PC) were also 

included as covariates in the analysis. The final mixed regression model included GRM as a random 

effect covariate, with top 10 PCs, platform, and sex as fixed effect covariates. The final results were 

adjusted for multiple-comparison using the Holm method. In order to generate comparable odds ratios, all 

PRS underwent Z-score normalization. 
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Results: 
 
Multiplex SCZ families have an increased PRS for BIP and MDD.  

Table 1 presents the results from logistic mixed models per comparison group. As expected, LDL PRS 

used as the negative control in this study, shows no significant increase in members of multiplex SCZ 

families compared to population controls. Univariate BIP PRS was significantly higher in all diagnostic 

categories of multiplex SCZ families compared to population controls, except the unaffected individuals 

(only nominally significant). The highest odds ratio (OR) was observed in the broad category (OR = 2.21, 

95% CI = 1.57-2.89), which includes 17 of the 21 BIP diagnosis in the ISHDSF. (Table 1). With the 

exception of the unaffected individuals in the families, MDD PRS was also significantly higher in all 

diagnostic categories compared to population controls, with the highest OR observed in the very broad 

category (OR = 1.52, 95% CI = 1.20-1.75), which includes 80 of 102 MDD diagnosis in the ISHDSF, 

excluding MDD cases with psychotic features (Supplementary Table 1). 

Table 1 

 
Increased BIP and MDD PRS in multiplex SCZ families are due to underlying SCZ factors 

 Next, we investigated whether the increased BIP and MDD polygenic risks in members of multiplex SCZ 

families are attributable to latent genetic factors that BIP or MDD share with SCZ, or to latent genetic 

factors that are unique to each disorder. (Supplementary Figure 4 for path diagram of the Cholesky 

decomposition). Using LDSC, we estimate the SNP-based heritability for SCZ factor underlying BIP hSNP
2 

= 0.3384 (se = 0.0112), nonSCZ factor underlying BIP hSNP
2 = 0.0448 (se = 0.0023), and SCZ factor 

underlying MDD hSNP
2 = 0.3397 (se = 0.0116), nonSCZ factor underlying MDD hSNP

2 = 0.0556 (se = 

0.0022) (Supplementary Table 3). Manhattan and Q-Q plots for GWAS-by-subtraction models are 

represented in Figure 1 and 2, with full GWAS-by-subtraction results reported in in Supplementary 

Figures 6-11 and Supplementary Tables 3,4 and 13-18. 

Figure 1 
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Figure 2 

The PRS constructed for SCZ factor underlying BIP and SCZ factor underlying MDD were 

significantly higher in all diagnostic categories of multiplex SCZ families compared to population 

controls, with the highest OR observed in the narrow category (SCZ factor in BIP OR = 6.11, 95% CI = 

5.41-7.02; SCZ factor in MDD OR = 6.06, 95% CI = 5.25-6.99) (Table 1, Figures 3,4). PRS constructed 

from nonSCZ factor in BIP and nonSCZ factor in MDD showed no significant increase in members of 

multiplex SCZ families compared to population controls (Table 1, Figures 3,4), indicating that the 

increased polygenic risk burden of BIP and MDD in multiplex SCZ families is likely to be fully 

attributable to the underlying latent genetic factor that BIP or MDD share in common with SCZ, as 

opposed to latent genetic factors or liabilities that are unique to BIP or MDD.  

Figure 3 

Figure 4 

 
 

Replication. To demonstrate the generalizability of the results beyond multiplex families, we attempted 

a replication of the PRS comparison, in an independent sample of ancestry-matched singleton SCZ cases 

(N=2,224) from Ireland. The observed pattern of PRS enrichment in singleton SCZ cases is similar to the 

narrow category in multiplex SCZ families (which includes familial SCZ cases), showing the 

generalizability of these results in a cohort of non-related singleton SCZ cases from the sampe population. 

(Table 1).   

  
 
 

 
Discussion and Conclusions: 
  

Large-scale GWAS of SCZ, BIP, and MDD (18,19,30,31,43–45), have shown that many common 

risk variants with small effect sizes contribute to disease risk in psychiatric disorders, with cross-disorder 
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analyses of psychiatric disorders also providing consistent evidence that SCZ, BIP, and MDD share 

substantial genetic risk at common variation level (16,17,46). In light of these observations, we 

investigated the common genetic risk variation burden of BIP, MDD in multiplex SCZ families, and 

further disentangled the observed increased polygenic risks into underlying latent genetic factors. Our 

results indicate that members of multiplex SCZ families have an increased PRS for BIP and MDD, with 

GWAS-by-subtraction analyses showing that this increased polygenic risk is likely to be entirely 

attributable to genetic risk factors that BIP or MDD share with SCZ. In addition, LDL PRS used as a 

negative control, showed no significant difference between members of multiplex SCZ families and 

population controls, validiting the observed patterns of PRS enrichment for underlying genetic factors 

generated in this study. Furthermore, we replicated our findings in an independent, ancestry-matched 

sample of singleton SCZ cases, to show the generalizability of this observation in a cohort of singleton 

SCZ cases. Our results provide genetic evidence in support of previous epidemiological findings that 

shows an increased incidence of both psychotic and affective disorders in families with multiple SCZ 

cases (5,6,13,47). Therefore, individuals in multiplex families may be genetically vulnerable to a range of 

psychotic and affective disorders, and in order to properly assess an individual’s genetic risk for 

psychiatric disorders, familial backgrounds should be taken into consideration.  

GenomicSEM framework results rely on latent factors that are inferred from the molecular data 

(20). Therefore, we attempted to further validate the GWAS-by-subtraction models by conducting 

comprehensive downstream follow-up analyses. We show that SCZ and nonSCZ factor GWAS results 

generated from GWAS-by-subtraction models show strong polygenic signals with no evidence for 

confounding (Figures 1,2), and partitioning the heritability of these results into functional categories (48) 

reveals that both underlying factors for BIP or MDD are enriched in similar functional categories 

(Supplementary Tables 5-8). Furthermore, we show that GWAS-by-subtraction results are also 

significantly enriched in CNS tissues relevant to psychiatric disorders (Supplementary Figure 14 and 

Supplementary Table 17), and MAGMA tissue expression profile analysis (49) using GTEx v8 (50) also 

shows that genes from GWAS-by-subtraction analyses were significantly enriched for expression in 
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nearly all central nervous system (CNS) tissues (Supplementary Figures 10-13 supplementary Table 15 ), 

with cell-type stratified LDSC (51) analyses also showing significant enrichment of genes found in 

neurons for GWAS-by-subtraction results, with no significant enrichment in oligodendrocytes and 

astrocytes (Supplementary Figure 14 and Supplementary Table 16), further underlining the validity of 

these results.  

We note that increased polygenic risk for psychiatric disorders has been observed in other family 

and pedigree studies (52–54), however, the scope of the current study differs from previous studies. A 

distinct feature of the ISHDSF sample, is the presence of a broad range of psychiatric disorders, which 

allows for proper cross-disorder PRS analysis. In addition, to our knowledge, the ISHDSF sample also 

has the largest sample size (N=1,005) among currently published multiplex family PRS studies, and is the 

first to dissect polygenic risks into underlying genetic factors. Andlauer et al. (52) analyzed multiplex BIP 

families (N=395) consisting of 166 BIP and 78 MDD cases, and showed that familial BIP cases and their 

unaffected relatives, had a higher PRS for SCZ and BIP compared to population controls. Szatkiewicz et 

al. (53) used a densely affected pedigree from Northern Sweden (N=418) and showed an increased SCZ 

PRS in affected members compared to unaffected members and population controls.  De Jong et al. (54) 

also used a dense pedigree (N=300) with BIP and MDD cases and showed nominally significant BIP and 

SCZ PRS in affected members compared to unaffected members and population controls. Our results, 

combined with previous cross-disorder analyses of multiplex families referenced above, suggest that we 

are only just beginning to tease apart the complex interactions underlying psychiatric disorders. Thus, as 

current GWAS sample sizes continue to increase, we will continue to reveal how these underlying genetic 

factors, both independently and through their covariance, contribute to complex psychiatric disorders and 

their genetic architectures at common variation level.  

The analyses presented in this study should be interpreted in the context of some limitations.  

The ISHDSF sample was ascertained to have 2 or more probands with SCZ or poor-outcome 

schizoaffective disorder. Therefore, some diagnostic categories in the families (e.g the broad category), 

have a lower number of individuals, which may potentially bias some of the results due to lower power. 
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We addressed this by repeating the PRS analysis by grouping the individuals in a concentric manner as 

described in the original ISHDSF publication (6). The concentric comparison versus population controls 

showed similar patterns of PRS enrichment as observed in the separate comparisons presented in the main 

text, indicating that lower numbers of individuals in some of the diagnostic categories is unlikely to be a 

source of bias (Supplementary Table 19). Given that environmental factors have not been assessed here, 

future analyses could integrate environmental influences unique to the families to further elucidate the 

role of environmental factors on the elevated polygenic risk for BIP and MDD in multiplex SCZ 

families.   

In conclusion, in this study we showed that members of multiplex SCZ families have an increased 

polygenic risk for BIP and MDD compared to ancestry-matched population controls. However, this 

observation is likely to be entirely attributable to latent genetic factors shared between SCZ and BIP, or 

SCZ and MDD, rather than latent genetic factors unique to BIP or MDD. These findings provide new 

insight for cross-disorder PRS analyses in psychiatric disorders, by cautioning that for complete 

interpretation of observed cross-disorder PRS enrichment, we must account for genetic correlations across 

correlated psychiatric disorders, as failure to do so, may result in erroneous conclusions about not only 

independent factors that contribute to polygenic architecture of complex psychiatric disorders, but also the 

degree to which complex psychiatric disorders are unique or related to each other. 
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Figures: 

Figure 1. Manhattan and quantile-quantile plots for SCZ factor and nonSCZ factor in BIP. A. 
Manhattan plot corresponding to the SNP effects for SCZ factor in BIP. B. Manhattan plot 
corresponding to the SNP effects for nonSCZ factor in BIP. The x-axis in A and B corresponds 
to the chromosome and the y-axis shows the p-value on the -log10 scale. The dotted line denotes 
genome-wide significance level of 5x10-8. Lead SNPs are marked in bold. C. Quantile-quantile 
plot for SCZ factor in BIP. D. Quantile-quantile plot for nonSCZ factor in BIP. The x-axis in C 
and D refers to expected p-value while the y-axis refers to the observed p-value.  

14
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Figure 2. Manhattan and quantile-quantile plots for SCZ factor and nonSCZ factor in MDD. A. 
Manhattan plot corresponding to the SNP effects for SCZ factor in MDD. B. Manhattan plot 
corresponding to the SNP effects for nonSCZ factor in MDD. The x-axis in A and B corresponds 
to the chromosome and the y-axis shows the p-value on the -log10 scale. The dotted line denotes 
genome-wide significance level of 5x10-8. Lead SNPs are marked in bold. C. Quantile-quantile 
plot for SCZ factor in MDD. D. Quantile-quantile plot for nonSCZ factor in MDD. The x-axis in 
C and D refers to expected p-value while the y-axis refers to the observed p-value. 
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Figure 3. Density plots visualizing the distribution of BIP PRS in the ISHDSF sample. All PRS are Z-score 
standardized with mean of 0 and standard deviation of 1. A. Distribution of nonSCZ factor in BIP PRS. B. 
Distribution of univariate BIP PRS. C. Distribution of SCZ factor in BIP PRS.  No significant difference is observed 
for the nonSCZ factor PRS between different diagnostic categories in ISDHSF versus to population controls, 
whereas SCZ factor PRS is significantly higher in all categories compared to population controls. Each color 
represents one of the diagnostic categories in ISHDSF sample on the psychosis spectrum (Supplementary Table 1 
and Supplementary Figure 16) 
 
 
 

 
 
Figure 4. Density plots visualizing the distribution of MDD PRS in the ISHDSF sample. All PRS are Z-score 
standardized with mean of 0 and standard deviation of 1. A. Distribution of nonSCZ factor in MDD PRS. B. 
Distribution of univariate MDD PRS. C. Distribution of SCZ factor in MDD PRS.  No significant difference is 
observed for the nonSCZ factor PRS between different diagnostic categories in ISDHSF versus to population 
controls, whereas SCZ factor PRS is significantly higher in all categories compared to population controls. Each 
color represents one of the diagnostic categories in ISHDSF sample on the psychosis spectrum (Supplementary 
Table 1 and Supplementary Figure 16) 
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Table: 
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Table 1: Comparison of the PRS in all diagnostic categories of ISHDSF from mixed-effects logistic 
regression models. All the p-values are one-sided and results are following the hypothesis that diagnostic 
categories in the families have higher PRS than population controls. P-value column represents the 
significance level before multiple testing corrections. Holm-adjusted P-value column represents the p-
values adjusted for multiple testing correction using the Holm method OR and 95% CI are provided for 
effect sizes. Singleton cases versus population controls comparison follows the hypothesis that singleton 
cases have higher PRS than population controls. 
  
 
 

Code Availability: 
 
All the scripts used in this study will be made publicly available upon publication. 
 
We made use of various freely available software tools in this study:  
Plink2: https://www.cog-genomics.org/plink/2.0/  
GenomicSEM: https://github.com/GenomicSEM/GenomicSEM  
PRS-CS: https://github.com/getian107/PRScs  
MiXeR: https://github.com/precimed/mixer  
LDSC: https://github.com/bulik/ldsc  
GMMAT: https://github.com/hanchenphd/GMMAT  
LDAK: http://dougspeed.com/ldak/  
 

  

Data Availability: 
 
 GWAS summary statistics for SCZ, BIP, MDD, and LDL are publicly available. 
PGC3-SCZ: https://www.med.unc.edu/pgc/download-results/  
PGC3-BIP: https://www.med.unc.edu/pgc/download-results/  
PGC2-MDD-UKB Meta-analysis: https://datashare.ed.ac.uk/handle/10283/3203  
LDL: http://diagram-consortium.org/2015_ENGAGE_1KG/  
 
GWAS-by-subtraction summary statistics generated in this study will be made publicly available upon 
publication. 
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