
 

 

SUPPLEMENTARY INFORMATION 
 
Model Structure and the Action of Boosters 
The modelling of booster vaccination outlined in the main paper is based upon the mathematical 
model of SARS-CoV-2 infection and COVID-19 disease that has been developed in the University 
of Warwick since early 2020. The model has been used in a number of settings [1,2] and has been 
described in detail in multiple publications [3,4]; here we provide a synopsis of the model structure 
and focus on the new elements that are key to modelling waning efficacy and immunity as well as 
the action of booster vaccines. 
 
We use a compartmental, deterministic age-structured model, developed to simulate the spread of 
SARS-CoV-2 within seven regions in England (corresponding to NHS regions: East of England, 
London, Midlands, North East & Yorkshire, North West, South East and South West), with 
parameters inferred to generate a fit to deaths, hospital admissions, hospital occupancy, ICU 
occupancy, proportion of tests that are positive and serological testing [5]. The model population is 
stratified into 5-year age classes (0-4yrs, 5-9yrs, …, 95-99yrs, 100+yrs), with the force of infection 
determined by the use of an age-dependent (who acquires infection from whom) social contact 
matrix for the UK [35]. Additionally, we allow susceptibility and the probabilities of becoming 
symptomatic, being hospitalised and the risk of dying to be age dependent; these are all matched 
to UK outbreak data. Finally, we account for the role of household isolation, by separating primary 
and secondary infections within a household (more details may be found in [3,5]). This allows us to 
capture household isolation by preventing secondary infections from playing a further role in onward 
transmission. Model parameters were inferred on a regional basis matching to epidemiological 
observations in the seven NHS regions of England. More details of the model structure are provided 
at the end of the Supplementary material, but here we focus on the novel aspects of third dose 
vaccine boosting (Figure S1).      
 

 
Figure S1. Two alternative models of vaccine booster doses, that give rise to longer-lasting boosters (left) 
and repeated waning boosters (right). Here the complex infection dynamics have been encapsulated within a 
single box, and we focus on the transitions of non-infected individuals. All individuals begin the simulations as 
susceptible and move through the vaccinated classes (VS1 and VS2) on receipt of first and second doses of 
the vaccine although this eventually wanes as part of a two-step process (WS1 and WS2); those that recover 
from infection (class R) also experience waning immunity (classes WR1 and WR2), although over slower time-
scales. For longer-lasting immunity (left-hand diagram) the booster vaccine provides similar protection and 
over a similar time scale as recovery from infection. In contrast, for waning boosters the third dose takes 
waned individuals back to the ‘double vaccinated’ state (VS2); the only exception is those in class WR1 (very 
early stages of waning after recovery) who return to the R class. 



 

 

 
The pathway for non-infected individuals is governed by vaccination and waning. Susceptible 
individuals transition into different classes on receiving their first and second dose of vaccine; 
individuals in these classes have a lower risk of infection and, if infected, a lower risk of severe 
outcomes (hospital admission or death) - see Table 1. 
 
Individuals wane from these vaccinated states in a two-step process to capture the observed decay 
in vaccine efficacy. Efficacy in state WS2 is lower than in VS2 and the asymptotic waning efficacy 
against infection is assumed to take one of three values: VE → 50%; VE → 30%; or VE → 0%, 
where VE → 50% corresponds to limited decay in efficacy beyond what has already been observed 
at six months after the second dose of vaccine whilst VE → 0% corresponds to an eventual complete 
loss of protection against infection. In this waning state, there is still a 70% reduction in severe 
disease following infection, compared with naive susceptible individuals.  
 
Table 1. Efficacy for two doses of Pfizer (BNT162b2) and AstraZeneca (ChAdOx1) vaccine and for 
the three waning efficacy assumptions used throughout the paper. The term in brackets in the top 
row shows the compartments in Figure S1 where the VE assumptions apply. For the waning 
assumptions we also give the mean time to reach this reduced efficacy from deployment of the 
second dose. 

 
VE against 

Following 
infection 
(R, WR1) 

Pfizer 2 
doses 

(VS2, WS1) 

 
AZ 2 doses 
(VS2, WS1) 

Assumption  
VE → 50% 

(WS2, WR2) 

Assumption  
VE → 30% 

(WS2, WR2) 

Assumption  
VE → 0% 

(WS2, WR2) 

Infection 100% 85% 70% 50% 30% 0% 

Symptoms 100% 90% 75% 55% 35% 5% 

Hospital 
Adm. 

100% 95% 95% 85% 79% 70% 

Death 100% 98% 98% 85% 79% 70% 

Waning 
time (mean 
days to 
asymptote) 

R→WR2 

1860 
- - VS2→WS2 

180 
VS2→WS2 

310 
VS2→WS2 

460 

 
The average times in states VS2 and WS1 (where efficacy is identical to being in state VS2) are 
dependent on the level of asymptotic efficacy and are parameterised to match the efficacy values 
estimated at different times from second dose (Table 1). 
 
We make the simplifying assumption that the immunity gained from infection dominates any 
immunity from vaccination. Thus, individuals that are recovered from infection and receive the 
vaccine remain in the recovered class (R in Figure S1); similarly, vaccinated individuals who get 
infected and recover are placed in the same recovered class. The immunity derived from infection 
also wanes, such that recovered individuals follow a similar path of waning as vaccinated individuals 
(shown as R, WR1 and WR2 in Figure S1). Waning of infection-derived immunity is assumed to wane 
more slowly than vaccine efficacy (with mean time to progress from R to WR2 approximately 5 years) 
in keeping with the observation that re-infection events remain relatively uncommon. In the absence 
of other data we assume that the asymptotic level of protection is the same as for waning after 
vaccination, following the three assumptions in Table 1. Over the time-scales simulated here, our 



 

 

results are not highly sensitive to this speed of waning nor the asymptotic level associated with 
recovered individuals, as these parameters are compensated for within the inference framework to 
enable good fit to the data. 
   

 
 
Figure S2. Comparison between model assumptions (curves) and data [6-8] for the three different 
measures of vaccine efficacy (against infection, hospital admissions and deaths). The curves represent the 
average efficacy from those in compartments VS2, WS1, WS2 where 50% of those in VS2 (which sets the early 
efficacy) are assumed to have the AstraZeneca (ChAdOx1) vaccine, while the remainder had an mRNA 
vaccine considered to have the same characteristics of Pfizer (BNT162b2). The data point show 95% 
confidence intervals and range of times since second dose from three studies [6-8], noting that [8] is from the 
USA while [6,7] are from the UK. 
 
Booster doses (shown as red or green arrows in Figure S1) act to overcome waning and increase 
individual-level protection. Throughout the paper, we consider two assumptions for the action of 
booster doses, labelled longer-lasting boosters and waning boosters. Longer-lasting boosters (left-
hand diagram) assume that boosters have the same effect as recovery from infection and generate 
strong and relatively long-lasting immunity. In contrast, for the rapidly waning assumption, boosters 
effectively act in a similar manner to second doses of vaccine, generating high levels of immunity 
that wane relatively quickly (Table 2). 
 
Table 2. Efficacy following the third booster dose, either generating longer-lasting immunity or 
waning boosters. When the booster wanes rapidly, the three time-scales are associated with the 
three assumptions about efficacy in the waned state (VE → 50%, VE → 30%, and VE → 0%).  

VE against Longer-lasting boosters Waning boosters 

Infection 100% 92% 

Symptoms 100% 95% 

Hospital Adm. 100% 97% 

Death 100% 99% 

Waning time (mean days to 
asymptote) 1860 180, 310, 460 

 
 
In total we therefore consider six different combinations of assumptions that determine long-term 
dynamics: three that investigate the impact of varying the asymptotic level of vaccine efficacy and 
two that explore the action of boosters.  



 

 

Implication of Boosters for COVID-19 Deaths 
Here we show the projected number of daily deaths in England until October 2023. As such this is 
derived from the same simulations as Figure 2 in the main paper and reflects the eight booster 
scenarios considered. In general, the results echo the findings for hospitalisations, with longer-
lasting boosters able to drive deaths to a relatively low level but when boosters wane rapid additional 
booster programmes may be needed.  
 

 

 
Figure S3 Comparison of the impact on deaths of boosters to the counterfactual of no boosters. The 
top four graphs show projected daily deaths in England over time (on a logarithmic scale) with data (red dots); 
the left-hand graphs are for the longer-lasting booster assumption while the right-hand graphs are for waning 
boosters. The lower graph shows the number of lives saved per booster dose (means and 95% prediction 
intervals) for the seven booster strategies considered relative to not offering boosters. 
 
  



 

 

Implication of Boosters for COVID-19 Hospital Admissions (linear scale) 
Throughout we have shown all model projections on a logarithmic scale, as this more accurately 
allows visualisation of all results which can differ by orders of magnitude. However, the pressure on 
public health services is clearly related to the number of hospital admissions which can be assessed 
more easily on a linear scale. This is presented in Figure S4, which is the same as Figure 2 in the 
main text but shown on a linear scale. 
 

 
 
Figure S4. Comparison of the impact of boosters on hospital admissions per day to the 
counterfactual of no boosters. The four graphs show projected hospital admissions per day in 
England over time (on a linear scale) with data (red dots); the left-hand graphs are for the longer-
lasting booster assumption while the right-hand graphs are for waning boosters. The top graphs 
show annual boosters (starting in September each year) given to different age-groups, the lower 
graphs show different temporal patterns of boosters given to the over fifties.  



 

 

Separating the heterogeneity in assumptions about waning efficacy. 
In the main paper, to reduce the combinatorial dimension of the uncertainty, the results for the three 
waning assumptions (where VE→0%, VE→30%, VE→50%, see Figure 1 of the main text) were 
combined. Here we separate this additional uncertainty, with Figure S5 showing the number of 
hospital admissions in England under the assumption of long-lasting boosters, and Figure S6 
showing the results for the more rapid waning of booster assumption. 
 

 
 
Figure S5 Comparison of the impact of boosters to the counterfactual of no boosters for the longer-
lasting booster assumption. The four graphs show projected daily hospital admissions in England over time 
(on a logarithmic scale) with data (red dots); the left-hand graphs are for the optimistic assumption where 
vaccine efficacy against infection only wanes to 50%, the central graphs are when this efficacy wanes to 30%, 
and the right-hand graphs are for the pessimistic case where vaccine efficacy against infection wanes to 0%. 
As shown in Figure 1 of the main text, the waning time associated with each of these assumptions is tuned to 
match the currently available data. 
 



 

 

 
 
Figure S6 Comparison of the impact of boosters to the counterfactual of no boosters for the 
assumption where the efficacy from boosters wane in a similar manner to the efficacy from two doses of 
vaccine. The four graphs show projected daily hospital admissions in England over time (on a logarithmic 
scale) with data (red dots); the left-hand graphs are for the optimistic assumption where vaccine efficacy 
against infection only wanes to 50%, the central graphs are when this efficacy wanes to 30%, and the right-
hand graphs are for the pessimistic case where vaccine efficacy against infection wanes to 0%. As shown in 
Figure 1 of the main text, the waning time associated with each of these assumptions is tuned to match the 
currently available data 
 
  



 

 

Incremental Benefits per Booster 
In the main text we presented estimates of the number of hospital admissions prevented per booster 
dose. Here we adapt the concept of incremental cost-effectiveness analysis to consider the 
additional benefit from expanding each booster vaccination programme (Figure S7). We start with 
the current (minimal) strategy of a single booster dose being offered to all adults over 50 (pink), 
which is compared with the counterfactual of no booster vaccine. Subsequent extensions of this 
strategy are then compared to the previous largest strategy (such as the move to annual vaccination 
of over 50s (orange) is compared to the single dose to over 50s (pink), while the annual booster 
vaccination of over 40s (yellow) is compared to the annual booster vaccination of over 50s). As such 
each bar quantifies the benefit (in terms of hospital admission or deaths prevented per booster dose) 
of each increment in the booster programme.  
 
Strategies written in bold have a statistically significant advantage over preceding strategies (the 
lower bound of the 95% prediction interval is greater than zero). For the longer-lasting booster, the 
single booster campaign to the over 50s is hugely beneficial, with some very weak support for annual 
boosters to everyone over 40. For the assumption where the efficacy from boosters wanes more 
rapidly, annual vaccination for the over 50s gets the strongest support, with some weak support for 
either annual boosting of the over 40s or adding an additional booster for the over 50s after another 
six months. 
 

 
 

 
 
Figure S7. Incremental Benefit Analysis of booster vaccinations against hospital admissions (top) and 
deaths (bottom). The left-hand set of bars is for longer-lasting boosters, the right-hand set is for more rapidly 
waning boosters. Each bar represents the additional benefit per additional vaccine dose of extending the 
programme to include a large amount of vaccination (compared to the bar to the left) - the single dose booster 
given to the over 50s is compared to not giving any boosters. Strategies written in bold have a statistically 
significant benefit over less intensive strategies.  



 

 

It is worth stressing two important points about the analysis in Figure S7. Firstly, it only considers 
the total number of hospital admissions (or deaths) over the period October 2021 to October 2023; 
it does not account for peaks in admission which may place the health system under more stress 
than a prolonged wave of similar numbers. Secondly, there are no costs in this analysis, only benefits 
per dose; the move toward endemicity may necessitate a more traditional cost-benefit analysis 
where the costs of the vaccine are compared to the costs of treatment and the associated quality of 
life (QALY) impacts [9-13]  
 
Effects of lower booster uptake. 
Throughout this manuscript we have assumed that uptake of boosters by anyone that has already 
received two doses of vaccine will be high: 95% for those over 70 years of age, and 90% for 
everyone else. In Figure S8, we consider relative changes to this uptake level for annual boosting 
of the over 50s; as such 100% relative uptake corresponds to 95% for those over 70 and 90% for 
those under 70, whereas 50% relative uptake corresponds to 47.5% in the older age group and 45% 
in the younger age group. For comparison we also show no boosters (which can be considered as 
0% uptake).  
For long-lasting booster, there is a very pronounced impact of booster uptake with a large advantage 
for high uptake. For the waning booster the case is less clear; higher levels of uptake generate an 
advantage, but waves of infection in mid-2022 partially compensate for some of the early gains. 
 

 
 
Figure S8. Comparison of booster uptake on hospital admissions assuming annual boosters 
given to the over 50s. The left and centre graphs show projected hospital admissions per day in 
England over time (on a logarithmic scale) with data (red dots); the left-hand graph is for the longer-
lasting booster assumption while the centre graph is for waning boosters. The right-hand graph is 
the total number of projected hospital admissions from Oct 2021 to Oct 2023 for the two booster 
assumptions and seven levels of relative uptake (error bars show the 95% prediction intervals). 
  



 

 

Model Description     
Here we detail the underlying mathematical framework that defines the model. We break the model 
into multiple sections that combine to generate a picture of SARS-CoV-2 transmission in the UK. 
This model structure has already been detailed in previous publications [1-3] but we review the 
details here for completeness. 
 
Infection modelling 
As is common to most epidemiological modelling we stratify the population into multiple disjoint 
compartments and capture the flow of individuals between compartments in terms of ordinary 
differential equations. At the heart of the model is a modified SEIR equation, where individuals may 
be susceptible (S), exposed (E), infectious with symptoms (I), infectious and either asymptomatic or 
with very mild symptoms (A) or recovered (R). Both symptomatic and asymptomatic individuals are 
able to transmit infection, but asymptomatics do so at a reduced rate given by !. Hence the force of 
infection is proportional to I+!A. To some extent, the separation into symptomatic (I) and 
asymptomatic (A) within the model is somewhat artificial as there are a wide spectrum of symptom 
severities that can be experienced, with the classification of symptoms changing over time. Here our 
classification reflects early case detection, when only relatively severe symptoms were recognised. 
To obtain a better match to the infection time scales, we model the exposed class as a 3-stage 
process - this provides a better match to the time from infection to becoming infectious, such that in 
a stochastic formulation the distribution of the latent period would be an Erlang distribution. 

 
where "-1, and #-1 are the mean latent and infectious periods, while d is the proportion of infections 
that develop symptoms. 

 
Age Structure & Transmission Structure 
The simple model structure is expanded to twenty-one 5-year age-groups (0-4, 5-9, .... ,95-99, 
100+). Age has three major impacts on the epidemiological dynamics, with each element 
parameterised from the available data: 

● Older individuals have a higher susceptibility to SARS-CoV-2 infection. 
● Older individuals have a higher risk of developing symptoms, and therefore have a greater 

rate of transmission per contact. 
● Older individuals have a higher risk of more severe consequences of infection including 

hospital admission and death. 
The age-groups interact through four who-acquired-infection-from-whom transmission matrices, 
which capture the epidemiological relevant mixing in four settings: household ($H), school ($S), 



 

 

workplace ($W) and other ($O). We took these matrices from Prem et al. [14] to allow easy translation 
to other geographic settings, although other sources such as POLYMOD [15] could be used.  
One of the main modifiers of mixing and therefore transmission is the level of precautionary 
behaviour, % (see Figure 1 of the main text). This changes the who-acquired-infection-from-whom 
transmission matrices in each transmission setting, such that when %=1 mixing in workplaces and 
other settings take their lowest value, whereas when %=0 the mixing returns to pre-pandemic levels. 
Mixing within the school setting follows the prescribed opening and closing of schools. 

  
For simplicity of notation, we write the sum of the age-structured mixing matrices as $(%). 
To ensure that we can replicate the long-term dynamics of infection we allow the population to age. 
The aging process occurs annually (corresponding to the new school year in September) in which 
approximately one fifth of each age-group moves to the next oldest age cohort — small changes to 
the proportion moving between age-groups are made to keep the population size within each age-
group constant. 
 
Capturing Quarantining 
One of the key characteristics of the COVID-19 pandemic in the UK has been the use of self-isolation 
and household quarantining to reduce transmission. We approximate this process by distinguishing 
between first infections (caused by infection related to any non-household mixing) and subsequent 
household infections (caused by infection due to household mixing). The first symptomatic case 
within a household (which might not be the first infection) has a probability (H) of leading to 
household quarantining; this curtails the non-household mixing of the individual and all subsequent 
infections generated by this individual. 
                   
In our notation, we let superscripts denote the first infection in a household (F), a subsequent 
infection from a symptomatic household member (SI) and a subsequent infection from an 
asymptomatic household member (SA); the first detected case in a household who is quarantined 
(QF) and all their subsequent household infections (QS). For a simple SEIR model (ignoring multiple 
E categories and age-structure) our extension would give: 



 

 

 
This formation has been shown to be able to reduce R below one even when there is strong within 
household transmission, as infection from quarantined individuals cannot escape the household [3]. 
     
Spatial Modelling 
Within England the model operates at the scale of NHS regions (East of England, London, Midlands, 
North East, North West, South East and South West). For simplicity and speed of simulation we 
assume that each of these regions acts independently and in isolation - we do not model the 
movement of people or infection across borders. In addition, the majority of parameters are 
regionally specific, reflecting different demographics, deprivation and social structures within each 
region. However, we include a hyper-prior on the shared parameters such that the behaviour of each 
region helps inform the value in others. 
 
Variant Modelling 
The model also captures the three main variants that have been responsible for most infections in 
England: the wildtype virus (encapsulating all pre-Alpha variants), the Alpha variant and the Delta 
variant. Each of these requires a replication of the infectious states for each variant type modelled. 
We assume that infection with each variant confers immunity to all variants, such that there is indirect 
competition for susceptible individuals. This competition is driven by the transmission advantage of 
each variant which is estimated by matching to the proportion of positive community PCR tests (Pillar 



 

 

2 test) that are positive for the S-gene. The TaqPath system that is used for the majority of PCR 
tests in England is unable to detect the S-gene in Alpha variants, due to mutations in the S-gene. 
The switch from S-gene positive to S-gene negative and back to S-gene positive corresponds with 
the dominance of wildtype, Alpha and Delta variants. We infer the transmissibility of Alpha and Delta 
variants to be  52% (35-71%) and 156% (117-210%) greater than wildtype, respectively. 
 
Vaccination Modelling 
We capture vaccination using a leaky approach, although non-leaky (all-or-nothing) models produce 
extremely similar results over the time-scales considered. The model replicates the action of: 

● first and second doses of vaccine, at rates v1 and v2 respectively which move susceptible 
individuals through to vaccinated states (S1 and S2) but have no impact on infected or 
recovered individuals; 

● waning vaccine efficacy at rates &1 and &2, giving a two-step process from fully vaccinated 
to waned efficacy (in the equation below, for simplicity we assume everyone who gets a first 
dose of vaccine also gets a second, so that waning from state S1 is unnecessary); 

● waning immunity at rates '1 and '2 which are assumed to be slower than the waning of 
vaccine efficacy. 

The model also needs to capture the total number of individuals who have been given a first or 
second dose of vaccine (V1 or V2 out of a total population size of N) to ensure that only individuals 
that have not been vaccinated are offered a first dose, and only individuals that have been 
vaccinated once are offered a second dose. 

 
For those in the classes where the vaccines generate protection (VS1, VS2 and WS1), the degree of 
protection is determined by the ratio of AstraZeneca (ChAdOx1) vaccine to mRNA vaccines (either 
Pfizer BNT162b2 or the Moderna COVID-19 vaccine) that has been given to that age group (see 
Table S1). If a vaccinated individual becomes infected, their probability of being admitted to hospital 
or dying - which normally only depends on age - is modified by the appropriate vaccine efficacy 
according to the ratio of the two vaccine types.  
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