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ABSTRACT
Forecasting infection case counts and estimating accurate epidemi-
ological parameters are critical components of managing the re-
sponse to a pandemic. This paper describes a modular, extensible
framework for a COVID-19 forecasting system, primarily deployed
during the first Covid wave in Mumbai and Jharkhand, India. We
employ a variant of the SEIR compartmental model motivated by
the nature of the available data and operational constraints. We
estimate best fit parameters using Sequential Model-Based Opti-
mization (SMBO), and describe the use of a novel, fast and approx-
imate Bayesian model averaging method (ABMA) for parameter
uncertainty estimation that compares well with a more rigorous
Markov Chain Monte Carlo (MCMC) approach in practice. We ad-
dress on-the-ground deployment challenges such as spikes in the
reported input data using a novel weighted smoothing method. We
describe extensive empirical analyses to evaluate the accuracy of
our method on ground truth as well as against other state-of-the-art
approaches. Finally, we outline deployment lessons and describe
how inferred model parameters were used by government part-
ners to interpret the state of the epidemic and how model forecasts
were used to estimate staffing and planning needs essential for
addressing COVID-19 hospital burden.
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1 INTRODUCTION
The ongoing COVID-19 pandemic has spurred intense interest in
epidemiological forecasting models. The need for robust solutions
has been especially pressing in dense populations across the de-
veloping world, with their limited health resource availability and
long lead times for addressing shortfalls.

To reduce mortality, it is important to ensure adequate capacity
availability of critical health care resources. There is a need for
forecasting reported infections at a local level to inform capacity
planning, model the effects of policy changes and prepare for po-
tential scenarios. In this paper, we describe a deployed forecasting
framework that was used in Mumbai, India, a densely populated
city, as well as in other resource-constrained regions such as the
state of Jharkhand, India, during the first Covid infection wave.
Partners for data and usage of the solution were the Brihanmumbai
Municipal Corporation and the Integrated Disease Surveillance
Programme, respectively, at the two locations.

1.1 Operational Challenges
Successful deployment of epidemiological models requires address-
ing operational challenges inherent in the public health landscape.

Data limitations. Data collection and management activities dur-
ing a pandemic are highly impacted due to severe demands on
public health authorities, leading to data discrepancies. In the face
of these data challenges, it is important to choose model families
whose complexity matches that of the available data.

Need for rich insights and what-if-scenarios. The choice and imple-
mentation of correct policy is often predicated not just on expected
case counts but also on changes in underlying epidemiological pa-
rameters. It is therefore important to construct models that are
highly interpretable with independently verifiable parameters.

Dynamic user requirements. Forecasting needs are highly dy-
namic as the epidemic progresses. In the early stages, when con-
tainment is critical, accurate regional forecasts for short horizons
are valuable. In later stages, the emphasis shifts to estimation of
hospital burden and to uncertainty around those projections. A
robust yet flexible modeling framework that can support multiple
application-specific needs is thus essential.

These challenges motivate the need for a forecasting framework
that can support data-driven parameter estimation and uncertainty
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quantification for interpretable models. Such models cannot be
directly learned using gradient-based learning approaches. Further,
variations in data semantics and user requirements necessitate a
solution approach that is agnostic to the choice of model class and
application-specific prediction quality criteria.

1.2 Epidemiological Forecasting Problem
The general epidemiological model parameter estimation problem
can be stated as follows. For a given spatial region, let 𝑋 [𝑡] denote
a multi-variate time series of case counts corresponding to different
demographics groups and disease stages. Let 𝑀𝜽 be a black-box
epidemiological forecasting model parameterized by 𝜽 ∈ 𝚯 ⊆ IRk
that generates a future forecast from historical observations. Given
a time series loss function ℒ, the objective is to determine the
optimal parameters 𝜽 ∗ such that the loss between the predicted
and observed data over a specified horizon [𝑡𝑖 , 𝑡 𝑗 ] is minimized:

𝜽 ∗ = argmin
𝜽 ∈𝚯

ℒ(𝜽 ) = argmin
𝜽 ∈𝚯

ℒ

(
𝑋 [𝑡𝑖 : 𝑡 𝑗 ], 𝑋𝜽 [𝑡𝑖 : 𝑡 𝑗 ]

)
, (1)

where 𝑋𝜽 [𝑡𝑖 : 𝑡 𝑗 ] = 𝑀𝜽 (𝑋 [0 : 𝑡𝑖 − 1]). To estimate parameter
uncertainty, it is also necessary to generate the resulting forecast
distribution over the time horizon.
Deployment scenario. In our deployment scenario, the primary
data comprised counts of confirmed, active, recovered, and deceased
cases. For certain regions, severity-stratified counts and testing
data were also available. Reliable counts of in-flow and out-flow
cases and within-region mobility indicators were rarely available.
While public health partner requirements changed over time, they
were largely focused on hospital burden estimation over a horizon
of 30–45 days. The main need was to ensure adequate medical
resources while minimizing excess capacity that would remain
under-utilized. A readily interpretable relative accuracy criterion
such as Mean Absolute Percentage Error (MAPE) in primary case
count forecasts was well-aligned with our partner needs, but the
relative importance of the four different case counts could vary.

1.3 Main Contributions
We built a multi-purpose epidemiological forecasting framework
with public health requirements in mind. This system was used
to drive decision-making and planning in Mumbai and Jharkhand,
India during the first Covid wave. Our framework consumes ag-
gregate case count data culled by government officials from health
facilities, and outputs burden estimates that were used by relevant
authorities for subsequent planning of personnel and supplies. This
paper discusses the main elements of our forecasting framework
and makes the following contributions.

• System and Process Design. [Section 3]. We describe a practi-
cal, modular, and extensible learning-based epidemic case forecast-
ing system that is customizable to individual regions and applica-
tion scenarios. The system consists of modules for data ingestion,
preprocessing and exploratory analysis, model fitting, scenario-
conditioned forecasting, and application-specific report generation.

• Modeling Methodology. [Sections 4 and 5]. We present tech-
niques for model and loss-agnostic estimation of parameters via
sequential model based optimization (SMBO) [7]. Combining SMBO
sampling with Bayesian model averaging enables fast approximate

quantification of forecast uncertainty. We demonstrate this is em-
pirically comparable to a more rigorous Markov Chain Monte Carlo
(MCMC) approach but computationally faster. We develop smooth-
ing methods to handle data issues arising out of reporting delays.

• Epidemiological Model Choice. [Section 4]. We argue that condi-
tions of interpretability and identifiability warrant a simple variant
of the SEIR compartmental model especially when only confirmed,
active, recovered and deceased case counts are observed.

• Empirical Results. [Section 5]. We present extensive empirical
analyses detailing the optimization of relevant hyperparameters,
field predictive performance for the city ofMumbai, and comparison
with other state-of-the-art models hosted by ReichLab [1].

• Deployment Lessons. [Section 6]. We summarize the key lessons
from deployment of our modeling framework in Mumbai and Jhark-
hand. The audience for this work consists of applied researchers
working on practical forecasting and public health officials.

2 RELATEDWORK
The work presented here builds on four areas of epidemiological
modeling: a) forecasting, b) parameter estimation (with uncertainty),
c) modeling with data limitations, and d) public health deployment.

Epidemiological Forecasting. The COVID-19 pandemic and associ-
ated global forecasting challenges [1, 24] have spurred new research
on modeling infectious disease spread. There are three broad classes
of models. (a) Compartmental models assume that individuals in a
population at any given time are assigned to one of several states,
called compartments, and move between these compartments. Ex-
amples include the SIR [25] and SEIR [22] models. Over the last
year, variants of the SEIR model have been widely used to study
the COVID-19 pandemic project hospital burden [28, 36, 37], incor-
porating aspects such as age-stratification [2, 20], asymptomatic
transmission [34], and effects of social distancing measures [8, 16].
(b) Agent-based models [17, 38] simulate interactions and disease
stage transitions of individual agents. (c) Curve-fitting models fit
parameterized curves to data. Examples include the exponential
growth model and the IHME CurveFit model [21].

Model Parameters and Uncertainty Estimation. Multiple works
address the problem of epidemiological parameter estimation with
forecast uncertainty [9, 11, 12, 15], but these techniques are usu-
ally specific to the model class and involve assumptions on the
generative process. Recently, there has been increased focus on
the practical aspects of model fitting such as choice of training
duration [30] and identifiability issues [27, 32]. Model-agnostic
evaluation of forecasts is another related area of interest [1, 19, 35].
While our deployment was based on compartmental models, the
proposed techniques are model-agnostic and can be adapted to any
application-specific loss function.

Modeling with Data Limitations. Epidemiological modeling in
the developing world is plagued with data paucity and quality
issues. Various studies have focused on understanding transmission
dynamics in such limited data settings [4, 26, 33]. In our current
work, we discuss some of these challenges and possible resolution
via appropriate model choices and data preprocessing.

Public Health Deployment. Practical use of epidemiological mod-
els in public health response requires a holistic view of government
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Figure 1: COVID forecasting framework. The three-phase pipeline consists of a) data operations: working with government officials to
consolidate and store data collected from various sources throughout the city, b) a modular modelling framework for fitting and forecasting,
and c) report generation of customized forecasts for clients. The specific components for deployment with government partners are highlighted
in orange and connected by a green line delineating the workflow.

priorities, policy levers, and processes.Work in economic epidemiol-
ogy [10, 31] is targeted towards supporting decision-making related
to interventions and policy choices. Multiple organizations [1, 29]
currently share automated COVID case forecasts with relevant pub-
lic health authorities, but the forecasts are not always customized
for decision-making. Our deployment involved a two-way part-
nership with the government, providing precise capacity planning
guidance and insights on the pandemic dynamics per requirements.

3 SOLUTION FRAMEWORK
This section provides an overview of our end-to-end epidemic fore-
casting system, as visualized in Figure 1.

3.1 Data Operations
Partnership with government and official data access was enabled
in the early days of the pandemic by providing proof-of-concept
forecasts that initially used case counts from public sources such
as Covid19India [13] and JHU [18].

Data schema for aggregate case counts was defined to facilitate
automated forecasting. However, realisation of this schema across
upstream providers proved to be a challenge. Issues faced included
those described in the Introduction: duplicate records, point-of-
entry data entry errors, inconsistencies, and errors in reporting
transitions between care levels and disease stages. We therefore
developed point-of-entry validation, along with partial automation
of data consolidation and de-duplication. This semi-automated pro-
cess was aided by sharing spreadsheets with partners on our cloud
storage. Our pipeline performed quality checks and anonymized
sensitive data before exposing it to the modelling team via an SQL-
compliant database.1 We also maintained descriptive data visu-
alizations to monitor abnormal patterns. This pipeline was later
replicated across partners.

3.2 Modelling Framework
In order to flexibly support multiple forms of case count data, epi-
demiological models, and loss functions, our modelling framework
has a modular design with five high-level components: data loaders,
models, learners, loss functions, and publishers,2 each suited to

1Within the Amazon Web Service framework: Lambda functions for ingesting and
cleaning, Glue for collating, Athena for exposing.
2Publishers log to ML tracking platforms such as MLFlow and Weights & Biases.

multivariate time series forecasting. This extensible and scalable
framework allows rapid experimentation with different modelling
techniques and data sources of varying complexity, as well as a
platform for comparing results. Examples of these components are
shown in Figure 1. Modelling details are discussed in Section 4.

3.3 Report Generation
The content and format of forecast presentations varied depending
on the audience. The solution framework allowed for model outputs
to be consumed in a variety of ways: as time-series forecasts, plan-
ning reports (for public authorities) or data pushes (for submissions
to ReichLab (Section 5.5)).

Forecasts were either routine (for monthly planning) or ad hoc (to
address rapidly evolving scenarios). Forecast requests, compiled by
team members physically located in COVID ‘war rooms’, included
information on recent changes in mobility, expected changes in pol-
icy over the planning horizon and notes on data – to appropriately
define plausible parameter ranges. Requests were used to generate
forecasts and organized into deciles of the forecast distribution
(anchored on a future date determined by the planning horizon).
Specific scenarios (mapped to deciles of the forecast distribution)
were selected to represent an appropriate ‘planning scenario’, a ‘low
case scenario’ and a ‘high case scenario’. These interactions not only
allowed public authorities to understand the state of the pandemic
through changes in model parameters, but also led to the consider-
ation of information unavailable to the model (expected changes to
testing strategy, treatment policy, and non-pharmaceutical inter-
ventions such as shelter-in-place orders).

In the capacity computation module, projected active case num-
bers and trends in utilization (occupancy rates and length of stay)
were used to estimate facility-level demand for personnel, quaran-
tine beds, oxygen-supported beds and intensive care units. These
estimates were distilled into final recommendations consisting of
projected cases for a 30–45 day horizon, potential shortfalls, and
recommended increases to capacity, based on resource capacity
proportions shared by government partners (see Figure 12).

4 MODELING METHODOLOGY
This section describes our approach to parameter estimation and
uncertainty quantification. We also discuss smoothing strategies
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for handling data spikes and the choice of epidemiological model
used in the COVID-19 engagement.

4.1 Parameter Fitting with SMBO
Given the nonlinear nature of the optimisation problem of Equa-
tion 1, we employ a Sequential Model-Based Optimization (SMBO)
method to explore the searchspace of parameters. We use the Ex-
pected Improvement (EI) criterion [23] to return the best parame-
ter set at each iteration and the Tree-structured Parzen Estimator
(TPE) [6] to model the loss. We use the Hyperopt implementation
of TPE [7]. Note that this black box optimization method is model-
agnostic and applies to any zeroth order optimization problem.

4.2 Estimation of Forecast Uncertainty
We estimate parameter uncertainty by approximating the posterior
distribution of the parameters given the data. Given a dataset 𝑋
and loss functionℒ(𝜽 ) as defined in Equation 1, we assume that
the likelihood function is tuned to the loss function as

𝑃 (𝑋 |𝜽 ) ∝ 𝑒−𝛼ℒ (𝜽 ) , (2)

where 𝛼 is a concentration parameter to be estimated as described
below. When the loss function ℒ(·) is a regular Bregman diver-
gence, the distribution corresponds to a uniquely determined ex-
ponential family [3, 5]. Choosing the parameter prior 𝑃 (𝜽 ) to be
from the conjugate prior family of the resulting exponential family
yields a posterior distribution of the form

𝑃 (𝜽 |𝑋 ) = 𝑒−𝛼ℒ (𝜽 ) ℎ(𝜽 )𝑃 (𝜽 ), (3)

where ℎ(𝜽 ) is uniquely determined by the loss function [14].
Expected values under the posterior distribution can be com-

puted by first sampling from the prior 𝑃 (𝜽 ) with appropriate re-
weighting and then computing importance sampling estimates.
Thus, given 𝑛 parameter samples {𝜽 𝑖 }𝑛𝑖=1 from the reweighted prior,
and the corresponding loss function value ℒ(𝜽 𝑖 ) for each sample,
the expected value of any function 𝑔(𝜽 ) is estimated as

𝐸 [𝑔(𝜽 )] ≈
∑𝑛
𝑖=1 𝑒

−𝛼ℒ (𝜽 𝑖 ) · 𝑔(𝜽 𝑖 )∑𝑛
𝑖=1 𝑒

−𝛼ℒ (𝜽 𝑖 )
. (4)

Approximate Bayesian Model Averaging. A limitation of this ap-
proach is that importance sampling with a broad prior as proposal
distribution may require a prohibitively large number of samples.
We therefore considered an approximation, hereafter referred to
as Approximate Bayesian Model Averaging (ABMA), where we
apply Equation 4 not to samples from the prior, but rather to the
sequential samples obtained through SMBO. The intuition behind
doing so is that these samples represent regions close to the op-
timal parameter values where the loss is likely to be small, and
hence should capture the dominant behavior in sample averages
like Equation 4. Additionally, the SMBO implementation is com-
putationally efficient. In Section 5, we show via comparison with
an MCMC approach that this is a reasonable approximation. The
term ensemble mean, used throughout this paper in the context
of parameter and forecast averaging, refers to taking the sample
means according to Equation 4.

In the application of ABMA, it remains to fix the values of 𝛼 and
𝑛. We estimate 𝛼 by minimizing the ensemble mean forecast and the
ground truth on a validation time interval. To fix 𝑛, we just choose

a value of 𝑛 large enough such that the mean and variance of the
parameter samples, computed through application of Equation 4,
converges.

MCMC-based Estimation of Parameter Uncertainty. A more rig-
orous method to sample parameter values is via Markov Chain
Monte Carlo (MCMC) sampling from the posterior distribution of
the parameters given the data, i.e., P(𝜽 |𝑋 ). Assuming an appro-
priate prior over 𝜽 and a likelihood function 𝑃 (𝑋 | 𝜽 , 𝑠), where 𝑠
denotes additional parameters in the likelihood function (analogous
to 𝛼 in Equation 2), we may consider the larger problem of sampling
from the extended posterior distribution

𝑃 (𝜽 , 𝑠 | 𝑋 ) ∝ 𝑃 (𝑋 | 𝜽 , 𝑠) 𝑃 (𝜽 )𝑃 (𝑠), (5)

where we assume 𝜽 and 𝑠 have independent priors. This larger sam-
pling problem is solved by a combination of MCMC and Gibbs sam-
pling steps, using a truncated Normal distribution 𝑄 (·) (truncated
at the boundaries of the search space) as a proposal distribution
for MCMC moves. We choose an initial 𝑠0, 𝜽 0, and then employ the
following Metropolis-within-Gibbs procedure to alternately sample
from the posterior distributions 𝑃 (𝜽 | 𝑋, 𝑠) and 𝑃 (𝑠 | 𝑋, 𝜽 ).
1) MCMC sampling with target distribution 𝑃 (𝜽 | 𝑋, 𝑠). Given sam-
ples 𝑠𝑘−1,𝜽𝑘−1 from iteration𝑘−1, sample a new𝜽𝑘 according to the
Metropolis criterion, using the proposal distribution 𝑄 (𝜽𝑘 | 𝜽𝑘−1).
2) Sampling 𝑠 from the posterior distribution 𝑃 (𝑠 | 𝑋, 𝜽 ). Given a
𝜽𝑘 sampled in the previous step, sample 𝑠𝑘 ∼ 𝑃 (𝑠 | 𝑋, 𝜽𝑘 ). This
sampling can be made straightforward by choosing a prior for 𝑠
that is conjugate to the likelihood distribution.

The steps above together constitute the Gibbs sampling updates,
and are repeated alternately until convergence of the Markov chain.
This eventually results in a sample from the extended distribution
𝑃 (𝜽 , 𝑠 | 𝑋 ).

4.2.1 Estimating Quantiles for Forecasted Case Count. Given an
ensemble of ABMA parameter samples {𝜽 𝑖 }, one can compute fore-
cast trajectories for each parameter set in the sample. For a forecast
trajectory 𝑋𝜽 𝑖

(𝑡), the effective probability density function (pdf) is
proportional to 𝑒−𝛼ℒ (𝜽 𝑖 ) . The forecast quantiles on a given day 𝑡∗
are obtained by sorting the forecasted case counts corresponding to
different parameter sets on day 𝑡∗ and using the cumulative distribu-
tion function (CDF) to find the quantile of interest. This procedure
has the desirable property that a trajectory at a fixed quantile value
corresponds to a single parameter set. However, forecast trajectories
for different parameter sets can cross in time. Therefore quantiles
computed at one time point are generally not preserved in time.
A work-around is to re-estimate quantiles on each day and piece
together a “fixed quantile” trajectory using the forecasted values
for that quantile on each day. A trajectory so constructed, however,
does not correspond to a single set of epidemiological parameters
and is therefore difficult to interpret. We use the former method for
the sake of interpretability in our deployment and specify the 𝑡∗ at
which quantiles are computed, while the latter method is used for
“fixed quantile” forecast comparisons.

4.3 Data Spike Smoothing
One of the practical issues we faced was spikes in case count data,
originating in delayed reporting of test results and tracking of
recoveries and deaths. This leads to accumulated occurrences from
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Figure 2: SEIARD Model Structure. Individuals transition be-
tween states of disease progression: Susceptible (S), Exposed (E),
Infectious (I), Recovered (R), and Deceased (D). Active cases are
split between Arecov and Afatal. Details in Section 8.3.

the past being reported on a single day. Such spikes therefore need
to be smoothed by distributing them several days into the past, even
though actual attributed dates were unavailable. We implemented
a smoothing technique that carries out this redistribution under
some assumptions.

Consider a spike on day 𝑡𝑒 in cumulative case counts 𝑋 , given
by Δ = 𝑋 [𝑡𝑒 ] − 𝑋 [𝑡𝑒−1] that can be attributed to delayed activity
since day 𝑡𝑏 . We construct a smoothed time series by redistributing
Δ as follows:

𝑋smooth [𝑡] =
©«

𝑡∑
𝑗=𝑡𝑏

𝑤 [ 𝑗]ª®¬ Δ + 𝑋 [𝑡], (6)

where 𝑡 ∈ {𝑡𝑏 , . . . , 𝑡𝑒−1} and
∑𝑡𝑒
𝑡=𝑡𝑏

𝑤 [𝑡] = 1. The weights𝑤 [𝑡] can
be computed in different ways:

• Uniform :𝑤 [𝑡] constant.
• Proportional increments :𝑤 [𝑡] ∝ 𝑋 [𝑡] − 𝑋 [𝑡 − 1]
• Proportional counts:𝑤 [𝑡] ∝ 𝑋 [𝑡]

Note that a spike in one compartment could correspond to a
compensatory dip or a spike in a different compartment such that
the total case count stays constant. For example, a spike in recover-
ies must be compensated by a dip in active cases, since recoveries
deplete the active cases. Thus, over the duration of smoothing, the
active cases are adjusted by additional recoveries, resulting in a
smoothed version of active cases. The model is then fitted on the
smoothed case time series rather than on the raw counts.

4.4 Epidemiological Model Structure
Model Choice Criteria. The choice of epidemiological model was
driven by four main criteria: expressivity, or the ability to faithfully
capture the disease dynamics; learnability of parameters condi-
tioned on the available data; interpretability in order to understand
the evolution of the pandemic; and generalizability to future sce-
narios by incorporating additional information. We observed that
simple exponential growth based models that do not account for
decreasing susceptibility and finite populations became inaccurate
as the pandemic progressed. Agent-based models [17, 38], on the
other hand, are overparameterized, with a low level of learnability.
While curve-fit models and compartment models had similar levels
of accuracy, the parameters of the latter were readily interpretable;3
compartmental models, therefore, represented a natural choice.

3Application of compartmental models to a few Indian districts led to estimates of
recovery period exceeding 50 days, leading to the discovery of a serious data reporting
gap. Interpretability of these parameters, therefore, turned out to be important.
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Figure 3: Identifiability of parameters in the SEIARD
model. Latent ratio posterior distributions when fitted on synthetic
data generated by the true parameter values shown. Distributions
were estimated using the MCMC method of Section 4.2 under a
broad prior as well as under fixed choices of 𝑇inc, 𝑇inf , and 𝑃fatal.

SEIARD Model.We chose a simple, minimal complexity compart-
mental model that only included compartments for primary case
counts or those essential for expressivity. Accessible case count
data typically comprised cumulative counts of confirmed cases (𝐶),
active cases (𝐴), recovered cases (𝑅), and deceased cases (𝐷) with
𝐶 = 𝐴 + 𝑅 + 𝐷 . We assumed confirmed cases to be post-infectious
owing to strict quarantining measures. We explicitly modeled the
latent “incubation” and “infectious” stages that occur prior to de-
tection so as to allow what-if scenario modeling with changes in
isolation and testing policies. Figure 2 depicts the structure of this
SEIARD model (see Supplement for the equations). The population
is split into compartments [S, E, I, Arecov,Afatal,R,D]. The states
S (Susceptible), E (Exposed), and I (Infectious) and the associated
parameters (transmission rate 𝛽 , incubation period 𝑇inc = 𝜎−1,
and the infectious period 𝑇inf = 𝛾−1) are defined as in the clas-
sic SEIR model [22]. An individual who tests positive moves to a
post-infectious but active phase, which is split intoAfatal andArecov
based on the eventual outcome: fatality (D) with probability 𝑃fatal or
recovery (R).𝑇fatal and𝑇recov are the mean durations from detection
to eventual death or recovery respectively. Observed case count
data is mapped to compartment populations as follows: 𝑅 = |R|,
𝐷 = |D|, 𝐴 = |Arecov | + |Afatal |.

Interpretable parameters such as reproduction numberR0 = 𝛽/𝛾 ,
𝑇recov, and 𝑇fatal provid an understanding of the pandemic evolu-
tion and reporting gaps, and allow scenario-conditioned forecasting.
Changes in the recovery policy and upcoming events such as festi-
vals can be simulated by appropriate adjustment of 𝑇recov and 𝛽 .

Parameter Fitting Considerations. Estimating the parameters of
this model from case counts posed challenges: a) Parameter drift
due to changes in social distancing policy necessitated refitting the
model to a recent time window for every forecast round, b) Initial
values of the latent compartments4 E and I could not be set to 0
because the fitting time interval could occur at an intermediate
stage. We treat these latent variables as additional parameters to

4𝑆 is not viewed as latent since the net population can be assumed to be nearly constant.
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be optimized during model fitting. More precisely, we consider the
ratios of these variables with respect to the initial active counts (at
start of fitting interval [𝑡𝑖 , 𝑡 𝑗 ]) as latent parameters: 𝐸active_ratio =

𝐸 [𝑡𝑖 ]/𝐴[𝑡𝑖 ] and 𝐼active_ratio = 𝐼 [𝑡𝑖 ]/𝐴[𝑡𝑖 ]. c)While undetected cases
are not explicitlymodeled, they are partially accounted for by letting
𝐸 [𝑡𝑖 ] and 𝐼 [𝑡𝑖 ] to be free parameters whose fitted values adjust to
accommodate the effect of undetected cases. d) Identifiability of all
key parameters was addressed by incorporating existing domain
knowledge about𝑇inc,𝑇inf , and 𝑃fatal from raw (possibly incomplete)
case line lists, when available (Figure 3).

5 EXPERIMENTAL RESULTS
To demonstrate the value of the proposed framework, we report
(a) empirical results validating choices of hyperparameters, uncer-
tainty estimation, and data preprocessing, (b) field performance
and impact of the deployed system in Mumbai, and (c) empirical
comparison of our approach with other state-of-the-art (SOTA)
models in Reich Lab on COVID-19 case data from the US. The main
elements of our experiment setup are:

Data. We consider time series of confirmed (𝐶), active (𝐴), re-
ported (𝑅), and deceased (𝐷) cases. Results shown are based on
real data from the city of Mumbai except for the hyperparameter
optimization discussion (Covid19India data) and the comparison
with Reich Lab models (JHU data on 45 US regions).

Algorithms. Various alternatives within our proposed framework
(ABMA vs. MCMC, smoothing variants) as well as 26 different
models from Reich Lab were considered.

Evaluation Metric. Mean Absolute Percentage Error (MAPE)
along each of the four variables (𝐶,𝐴, 𝑅, 𝐷) and aggregated over
the compartments with weights is used as the primary metric for
evaluation and comparisons. Uncertainty estimation is discussed
in terms of credible intervals.

5.1 Data Spike Smoothing
Our experiments indicated that smoothing (in particular, the Pro-
portional count variant) leads to better prediction of future cases.
We evaluated the smoothing variants discussed in Section 4.3 on
simulated incident (new) raw data 𝑋inc [𝑡] with a simulated spike
caused due to delays in data reporting between dates 𝑡𝑏 and 𝑡𝑒 .
Following on-the-ground reporting discrepancies, we assume that
only a fraction 𝛿𝑡 of the true incident cases 𝑋inc [𝑡] on day 𝑡 are
actually reported on that day, i.e., 𝑋 [𝑡] = 𝑋 [𝑡 − 1] + 𝛿𝑡𝑋inc [𝑡].
The remaining (1 − 𝛿𝑡 )𝑋inc [𝑡] cases are reported on the end date
𝑡𝑒 , resulting in a case spike on day 𝑡𝑒 , i.e., 𝑋 [𝑡𝑒 ] = 𝑋 [𝑡𝑒 − 1] +
𝑋inc [𝑡𝑒 ] +

∑𝑡𝑒−1
𝑡=𝑡𝑏

(1 − 𝛿𝑡 ) · 𝑋inc [𝑡] . For the simulation, we assume
that the 𝛿𝑡 are i.i.d. samples from a Beta distribution (here, chosen
as Beta(2, 2)). Other parameters are chosen according to Table 4.
Smoothing methods are then applied to the simulated data gener-
ated after the dependent case counts are adjusted to sum to the
confirmed cases.

Table 1 and Figure 4 show the results of smoothing experiments.
Overall, we found that the “Proportional counts” smoothingmethod
works best at reconstructing the raw data with reasonable accuracy.
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Figure 4: Performance of smoothing algorithm on simulated
spike andMumbai data. Smoothing is done via the “Proportional
counts” method.

Table 1: Comparison of smoothing methods on simulated
spiky data. Spikes were generated as described in the text on
5000 simulated time series, generated via uniform sampling of pa-
rameter values in Table 4 (a, b) (Supplement). MAPE loss on Active
(𝐴) and Recovered (𝑅) compartments was computed between the
smoothed and the true, unspiked series.

Smoothing Method MAPE (A) MAPE (R)

Proportional counts 4.84 ± 0.26 2.51 ± 0.018
Proportional increments 5.15 ± 0.18 3.17 ± 0.022
Uniform 5.16 ± 0.40 2.53 ± 0.018

5.2 Hyperparameter Optimization
Within our modeling framework, the following hyperparameters
need to be tuned to achieve good performance: a) 𝑇𝜽 , the length of
the fitting period in days to estimate model parameters 𝜽 , b)𝑇𝛼 , the
number of days of data used to tune the concentration parameter
𝛼 , and c) 𝑛, the number of trials used to optimise 𝜽 . In addition, it
was also necessary to identify a suitable loss function and compare
the performance of the TPE to other fitting techniques. Details of
these tuning experiments are given in the Supplement.

5.3 Parameter and Uncertainty Estimation:
ABMA vs. MCMC

We compared the ABMA method of Section 4.2 to the MCMC sam-
pling approach described there, along three dimensions: a) com-
parison of the lowest loss values achieved, b) comparison of case
count forecasts, and c) distributional comparison of the sampled
parameters. For these comparison experiments we chose a duration
of 28 days for fitting, from 1 October to 28 October 2020, and a
duration of 21 days, from 1 November to 21 November 2020, for
evaluation. The three days in between were used for fitting 𝛼 in
the ABMA procedure. The time taken to generate MCMC samples
was noticeably higher than that for ABMA: under a controlled
compute setting, ABMA was found to be an order of magnitude
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Figure 5: Comparison of test losses for MCMC and
ABMA. MAPE losses for the ensemble mean forecast on
the test period are shown for each compartment under the two
methods. Error bars denote the standard error across 10 runs.

faster. This was one of the principal motivations behind the choice
of ABMA. Details of MCMC sampling as well as comparison of
sampled parameters are given in the Supplement.

Comparison of the best loss values achieved. We evaluated the
MAPE losses across forecasted ensemble mean time series 𝑋 on the
test duration, corresponding to parameters sampled by ABMA vs.
MCMC algorithms (Figure 5). Note that for MCMC samples, the
ensemble mean forecasts are generated by simply averaging the
forecasts for the sampled parameter sets, while for ABMA sam-
ples, the ensemble mean forecasts are generated by weighting each
forecast by its importance sampling factor. The figure illustrates
that the differences between the MAPE loss values are minor when
comparing both ensemble means on the test set.

Comparison of case count forecasts. We now turn to a compar-
ison of the forecasts themselves. Figure 6 shows comparisons of
ensemble mean forecasted values, and their 95% credible intervals
for the four compartments studied which were generated using
quantiles recomputed daily. We find that mean values and intervals
agree quite well for all compartments except active cases. Also,
for active cases, interestingly the true case count is observed to
fluctuate between the MCMC and ABMA values.
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5.4 Field Deployment Performance
The ABMA framework was used to provide actionable insights for
the city of Mumbai, India from May 2020 to October 2020. It is
also currently being used to forecast hospital burden in the state
of Jharkhand, India. Figure 7, showing the ensemble mean forecast
against the ground truth, and Table 2, showing the estimated param-
eters and loss values, confirm the high accuracy and interpretability
of our methodology across different phases of the first wave of the
pandemic.

Recommendationsmade using this forecasting framework helped
increase Mumbai’s ICU bed capacity by over 1200 units, with 95%
utilization of ICUs at when hospitalizations peaked. Moreover, over
the deployment period, no absolute shortfall of critical health care
resources became apparent.

5.5 Comparison with SOTA Models
We used the ReichLab forecasting hub [1] for US states as a basis
for comparing the performance of our forecasting framework with
other methods (Table 3). The source of data for the forecasts is the
JHU CSSE data [18]. We evaluated our method only on regions
for which all four primary case counts were available (44 states
plus Washington D.C.). Parameter and hyperparameter choices
for the evaluation are in the Supplement (Table 4). The basis for
comparison with other models is the MAPE value on deceased case
counts.

We found that 26 models submitted to ReichLab had submissions
for at least 45 regions over the duration studied, with a range of
median MAPE values between 1.21% and 4.26%. The top 10 models
by median MAPE are shown in Table 3. Our forecasts have low
error and compare well to other models without the need for any
region-specific customisation of hyperparameters or fitting method.

We further analyzed the distribution of errors across regions
(Figure 8) and assessed performance relative to other modeling
approaches for each US region using normalized MAPE defined as

NMAPE(m) =
L(m) −MEDm′∈M {L(m′)}

MADm′∈M {L(m′)}) , (7)

where L(𝑚) is the MAPE loss for model𝑚, M is the set of all mod-
els, MED and MAD denote the Median and the Median Absolute
Deviation operators respectively. The variation in relative model
performance across states could be attributed to changes in social
distancing policies and the consequent variations in disease spread
dynamics.

6 LESSONS LEARNED
Dynamic data entails human in the loop. The data-related challenges
mentioned in the Introduction led to us relying heavily on humans
in the loop for tracking evolving data definitions and carrying out
semi-automated quality checks. Data versioning and pre-processing
prior to modeling (Section 5.1) were also essential.

Model interpretability and identifiability is paramount.Our choice
of the SEIARD model (Section 4.4) over other model families was
motivated by planning needs and policy choices. Therefore the
parameters had to be interpretable, independently verifiable where
possible, and robustly estimable from the available data.
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Table 2: Quantitative Performance of ABMA on Mumbai. Ensemble mean (ABMA) parameters, and test MAPE loss (%) for each
compartment of the ABMA forecasts. Note that the ABMA forecast is the mean forecast, not the forecast of the mean parameters.

Phase Parameter values Compartment MAPE loss (%)

R0 𝑇inf 𝑇inc 𝑇recov 𝑇fatal 𝑃fatal 𝐸active_ratio 𝐼active_ratio C A R D

Early 1.18 3.59 4.29 30.14 14.70 0.07 0.95 0.12 6.91 11.33 12.91 3.78
Middle 0.83 3.86 4.17 19.32 24.32 0.05 0.30 0.18 3.10 9.04 2.39 1.05
Late 0.81 3.72 4.42 11.75 11.87 0.02 0.35 0.37 1.20 17.54 2.39 1.43

Table 3: Performance of top 10 Reichlab models submit-
ting forecasts for at least 45 regions on cumulative death
counts. All models were fitted on data from 18 Aug to 19 Sept
2020. Based on hyperparameter optimisation for Mumbai, we chose
𝑇𝜽 = 30,𝑇𝛼 = 3. Model forecasts four weeks into the future starting
20 Sept 2020, aggregated every week, were evaluated by computing
their MAPE values for every region, and then taking the median
value across all regions (reported here).

Rank Model Median MAPE (%)

1 UMass-MechBayes 1.21
2 Karlen-pypm 1.32
3 SteveMcConnell-CovidComplete 1.33
4 ABMA 1.38
5 YYG-ParamSearch 1.44
6 UCLA-SuEIR 1.49
7 PSI-DRAFT 1.65
8 DDS-NBDS 1.70
9 CEID-Walk 1.77
10 COVIDhub-baseline 1.81

Application needs should dictate modeling choices. Focus on ca-
pacity planning had a tangible meaning for the horizon of interest:
policies around capacity took about a month to implement. We
customized our model fitting with loss computed over this time
horizon. When provided with information on upcoming policy
changes and events—festivals, for example—we adapted the models
accordingly to generate accurate forecasts.

Insights must be actionable.Model insights had to be translated to
concrete action guidance to enable smooth planning. Uncertainty es-
timation (Section 4.2) allowed us to provide three relevant scenarios:
a) a planning b) a high case, c) a low case scenario. Region-specific
testing levels, evolving severity of cases and sero-surveillance in-
formation to understand the state of the pandemic were important
factors informing the selection of planning scenarios.

Capacity gaps at the last mile are hard to anticipate. Although
there were no apparent capacity shortfalls at a city level, the ability
of a critical patient to access these resources is mediated by granular
factors such as access to information on the availability of beds,
local emergency transportation, ability to pay, and other equity
considerations, which need to be factored in.

7 CONCLUSIONS AND FUTURE DIRECTIONS
We have presented a flexible modeling framework and demon-
strated its value for epidemic forecasting using the kind of case
count aggregate data that is typically available in a constrained pub-
lic health setting. The deployed system was used to drive decision-
making and planning with good accuracy (worst case MAPE < 20%)
during the COVID-19 pandemic in Mumbai and Jharkhand, India.
Our framework enables rapid forecasting with uncertainty esti-
mates, and is extensible to other model families and to different
loss functions. It also enables the optimization of hyperparameters
such as fitting durations and ensemble weights. We motivated the
choice of the specific compartmental model used via identifiability
of the underlying parameters given the data constraints. Empirical
comparison of our methods with other advanced models in the
ReichLab hub on real-world data further points to their efficacy.
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Figure 8:Model Performance on US States. NMAPE is the nor-
malized MAPE (green values correspond to lower error) defined in
the text (Equation 7).

In future work, we plan to open-source this framework, create
a playbook around it, and apply it to the estimation of case bur-
den in other infectious diseases, such as Tuberculosis, which are
widespread across the developing world. One of the limitations of
the current framework that we recognize is that the underlying
parameters are static. We plan to extend this modeling approach
to capture time-varying parameters that are yet interpretable, and
thus enable better forecasting.
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8 SUPPLEMENT
We list additional details required to reproduce the reported results.

8.1 Parameter Searchspace
Table 4 below lists the parameter searchspace and hyperparameter
ranges used in the experiments described in the main text.

Table 4: Parameter and hyperparameter ranges for all exper-
iments (a-b) simulated smoothing data and spikes; (c-d) ReichLab
comparison experiments; (e-f) ABMA approach applied to Mumbai
data; (g-h) MCMC approach applied toMumbai data. Subscript “init”
subscript refers to the corresponding initial value. The four loss
weight values are for the four series C, A, R, D respectively.

Param Range Range Range Range Prop. var.

R0 [0.6, 1.2] [0.7, 1.5] [0.7, 1.2] [0.7, 1.2] 0.1
𝑇inc [4, 6] [4, 5] [4, 5] [3, 5] 0.3
𝑇inf [3, 4] [3, 4] [3, 4] [3, 5] 0.1
𝑇recov [0, 40] [49, 50] [0, 40] [0, 40] 1.25
𝑇fatal [0, 40] [0, 100] [0, 40] [0, 40] 1.25
𝑃fatal [0, 0.5] [0, 0.1] [0, 0.1] [0, 0.2] 0.01
𝐸active_ratio [0, 2] [0, 2] [0, 2] [0, 2] 0.1
𝐼active_ratio [0, 2] [0, 1] [0, 1] [0, 1] 0.1

(a) Synthetic (c) US (e) ABMA (g) MCMC

Hyper
Param Value Value Hyper

Param Value Value Value

Rinit [50k, 100k] 𝑛 3000 3000 2000
Ainit [50k, 100k] 𝑇𝜽 30 28 28
Dinit 7500 𝑇𝛼 3 3
Spike
length [7, 21] Loss

weights 0,0,0,1 0.25,0.25,
0.25,0.25

0.25,0.25,
0.25,0.25

𝛼 range [0.1, 10] [0.1, 10]

(b) Synthetic (d) US (f) ABMA (h) MCMC

8.2 Hyperparameter Optimisation
Since we wished to assess the robustness of optimal hyperparam-
eters to choice of location, we performed experiments for several
regions of India that were highly impacted by the pandemic: Mum-
bai, Pune, Delhi and Kerala. To facilitate comparisons, we used case
count data from public sources [13], across two different stages of
the pandemic: our evaluations were carried out on case counts from
July 1 to 28, 2020 and November 1 to 28, 2020. Fitting was carried
out over durations prior to these dates. The evaluation metric used
was the MAPE value on the entire evaluation period.

Due to the prohibitively large search space, a complete grid
search over the hyperparameter choices was not feasible. We thus
ordered the experiments and performed them sequentially, opti-
mising one or more parameters in each step and fixing them in
subsequent experiments to optimise other parameters.

We first performed a grid search over combinations of 𝑇𝜽 and
𝑇𝛼 (Figure 9) to find the best choices. We found within the selected
fitting period 𝑛 ⪆ 3000 trials were sufficient for convergence of
sample mean parameters, and thus chose this value of 𝑛. The ap-
plication loss of interest is MAPE, however, in addition to this,
we explored two other loss functions during fitting as well as 𝛼
estimation:root mean square error (RMSE) and root mean square
logarithm error (RMSLE). The MAPE on the evaluation period with
the three different fitting configurations was 5.50 (MAPE), 5.96
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Figure 9: Heatmap of MAPE values on test periods as a func-
tion of 𝑇𝜽 and 𝑇𝛼 .MAPE is computed on a four week evaluation
period and averaged across experiments for two time periods. The
optimal values of (𝑇𝜽 ,𝑇𝛼 ) are –Mumbai: (21, 2), Pune: (30, 4), Delhi:
(33, 4), Kerala: (30, 4), Overall: (30, 3). “Overall” corresponds to the
lowest mean MAPE across all four regions.

(RMSE) and 15.81 (RMSLE). Based on the results, the loss function
selected was MAPE for both fitting and 𝛼 estimation.

8.3 SEIARD Model Dynamics
The dynamical equations governing the transitions in SEIARD
model ( Figure 2) are

𝑑𝑆

𝑑𝑡
= −𝛽 𝐼𝑆

𝑁
;
𝑑𝐸

𝑑𝑡
= 𝛽

𝐼𝑆

𝑁
− 𝜎𝐸;

𝑑𝐼

𝑑𝑡
= 𝜎𝐸 − 𝛾𝐼, (8)

𝑑𝐴recov
𝑑𝑡

= (1 − 𝑃fatal) · 𝛾𝐼 −
𝐴recov
𝑇recov

, (9)

𝑑𝐴fatal
𝑑𝑡

= 𝑃fatal · 𝛾𝐼 −
𝐴fatal
𝑇fatal

, (10)

𝑑𝑅

𝑑𝑡
=
𝐴recov
𝑇recov

;
𝑑𝐷

𝑑𝑡
=
𝐴fatal
𝑇fatal

, (11)

where 𝑁 is the city population, 𝛽 , 𝜎 , and 𝛾 are the standard epidemi-
ological parameters for a SEIR model, 𝑃fatal is the transition proba-
bility to the mortality branch, and 𝑇recov and 𝑇fatal are timescales
that govern transitions out of the Arecov and Afatal compartments.
Variables 𝑆 , 𝐸, 𝐼 , 𝐴recov, 𝐴fatal, 𝑅, 𝐷 denote the populations of the
similarly named compartments.

8.4 MCMC Implementation Details
Let 𝑋 [𝑡] = [𝑋ℎ [𝑡]]ℎ∈H be a multivariate time series with 𝑋ℎ [𝑡]
denoting the ℎth compartment time-series, and H be the set of
indices of components. Let the fitting period be given by [𝑡𝑖 , 𝑡 𝑗 ].
The key components of our MCMC-within-Gibbs sampling are:

Likelihood function.We assume a likelihood function of the form

𝑃 (𝑋 | 𝜽 , 𝑠) =
∏
ℎ∈H

𝑡 𝑗∏
𝑡=𝑡𝑖+1

N(𝑧ℎ,𝜽 [𝑡] | 𝑧ℎ [𝑡], 𝑠), (12)

where N(𝑧 | `, 𝜎2) denotes the Normal distribution pdf with mean
` and variance 𝜎2 following an appropriate conjugate prior. Further,
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Figure 10: Empirical distributions of ABMA and MCMC sam-
ples.We observe large distributional overlap for all parameters.

𝑧ℎ [𝑡] = log(𝑋ℎ [𝑡]) − log(𝑋ℎ [𝑡 − 1]), and 𝑧ℎ,𝜽 [𝑡] is the forecast
equivalent of 𝑧ℎ [𝑡].

Proposal distribution. At iteration 𝑘 , we generate the samples
from the proposal distribution for accept-reject step as

𝜽 ∼ 𝑄 (𝜽𝑘−1, Σprop, 𝜽min, 𝜽max),

where 𝜽𝑘−1 is the parameter vector chosen at 𝑘 − 1, and𝑄 (·) is the
pdf of a multivariate truncated Gaussian with the parameter range
[𝜽min, 𝜽max] and covariance matrix Σprop as listed in Table 4(g)
(columns: Range and Prop. var).

We further assume that 𝑠 , the variance of the normal likelihood,
has the conjugate prior 𝑠 ∼ InvGamma(𝑢, 𝑣). Thus, it is straight-
forward to show, by multiplying the Normal likelihood with the
prior, that if the MCMC chain has sampled parameters 𝜽𝑘 , the
sample 𝑠𝑘 ∼ 𝑃 (𝑠𝑘 | 𝜽𝑘 , 𝑋 ) is also drawn from an Inverse Gamma
distribution with parameters

𝑢𝑘 = 𝑢 + 2(𝑡 𝑗 − 𝑡𝑖 − 1), 𝑣𝑘 = 𝑣 +
∑
ℎ∈H

𝑡 𝑗∑
𝑡=𝑡𝑖+1

(𝑧ℎ [𝑡] − 𝑧ℎ,𝜽𝑘
[𝑡])2

2
.

Parameter ranges for our implementation are in Table 4. TheMCMC
implementation was adapted for 𝑋 = [𝐶,𝐴, 𝑅, 𝐷] with 5 chains of
length 25𝑘 , a stride of 5 for sampling, a burn-in length of 50% of
the chain, 𝑢 = 40, and 𝑣 = 2/700.

8.5 Parameter distribution: ABMA vs. MCMC
To validate the uncertainty estimates of Section 5.3, we compared
the samples collected from both methods aggregated over 10 runs
of each method (Figure 10). Major distributional differences are
found only in R0 and 𝐸active_ratio, but even for these parameters
there is significant overlap between the distributions sampled by
the two methods. Note that distributions for the ABMA approach
are weighted by the importance sampling factor exp(−𝛼ℒ(𝜽 )).
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Figure 11: Median Quantile MAPE Loss for 26 models from
ReichLab.Median is taken across all states. Our model and the top
ranked model in Table 3 are marked.

8.6 Uncertainty Evaluation
To compare the efficacy of our uncertainty estimation, we compared
the forecast distributions of the models submitted to ReichLab
(Section 5.5) using the quantile loss described below:

𝒬(𝑞, Y) =
{
𝑞 · Y, if Y ≥ 0
(𝑞 − 1) · Y, if Y < 0

(13)

where Y is the error between the forecasted quantile 𝑞 and the
ground truth. In our case, the error is measured by the MAPE loss
function. For every (model, quantile) tuple, we computed a median
quantile loss value aggregated across regions. ABMA quantiles
are generated by recomputing them daily. Figure 11 shows the
variation of the median quantile loss across quantiles for all models.
The loss curves of our model and the UMass-MechBayes model, the
top performing model according to Table 3 are highlighted. While
our model is one of the best around the 50𝑡ℎ percentile, it exhibits
higher relative loss at extreme quantiles.

8.7 Report Template

Figure 12: Sample report template shared with city officials:
Personnel recommendations and shortfall (red boxes) for
various facilities The facilities are CCC (Covid Care Center), DCH
(Dedicated Covid Hospital), DCHC (Dedicated Covid Health Cen-
ter), ICU (Intensive Care Unit).
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