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Abstract—Using wastewater surveillance as a continuous
pooled sampling technique has been in place in many countries
since the early stages of the outbreak of COVID-19. Since
the beginning of the outbreak, many research works have
emerged, studying different aspects of viral SARS-CoV-2 DNA
concentrations (viral load) in wastewater and its potential as
an early warning method. However, one of the questions that
has remained unanswered is the quantitative relation between
viral load and clinical indicators such as daily cases, deaths,
and hospitalizations. Few studies have tried to couple viral
load data with an epidemiological model to relate the number
of infections in the community to the viral burden. This
paper proposes a stochastic wastewater-based SEIR model to
showcase the importance of viral load in the early detection
and prediction of an outbreak in a community. We built three
models based on whether or not they use the case count and
viral load data and compared their simulations and forecasting
quality. Our results demonstrate that a simple SEIR model
based on viral load data can reliably predict the number of
infections in the future. Therefore, wastewater-based surveil-
lance is a promising way of monitoring the spread of COVID-
19 and can provide city officials with timely information about
the circulation of COVID-19 in the community.

1. Introduction

The sudden outbreak of the COVID-19 pandemic has
exposed critical vulnerabilities in the healthcare system.
In particular, hospitals located in hotspots were overrun
with COVID-19 patients, placing unprecedented demands
on healthcare workers and depleting hospital resources. In
contrast, other hospitals canceled outpatient appointments

and emptied their wards in preparation for a surge of patients
that never materialized. In the aftermath of this pandemic, it
is now clear that the appropriate regional allocation of medi-
cal resources (including health professionals and specialized
equipment) is critically important in the fight to save lives
in future outbreaks. Nevertheless, the most critical weakness
exposed by the COVID-19 epidemic is that our current
methods for accurately predicting the location of regional
outbreaks are inadequate. Thus improved techniques are
needed to forewarn of surges in case loads.

Accurately characterizing the spread of an infectious
disease and the response of different population segments
throughout an epidemic is critical to implementing effective
mitigation strategies. In addition to the infectivity of the
agent, the risk of an outbreak (i.e., a large percentage of
the population becoming infected) is a function of (i) the
heterogeneity of contacts of the human population, (ii) the
prevalence of individual immunity, and (iii) the successful
implementation of public health strategies. These factors are
challenging to monitor due to incomplete observations of
spatial contact patterns and infeasibility to perform indi-
vidual testing for a large fraction of the population, which
effectively leaves the asymptomatic and latent cases out of
the equation. Moreover, the majority of current approaches
for predicting the spread of COVID-19 rely on lagged indi-
cators like positive test ratio and hospitalizations [1]. Given
a purely reactive approach to testing, the earliest detection
possible comes well after the onset of symptoms, typically
from test results compiled by regional healthcare systems.

Currently, data collection for COVID-19 is conducted
by governmental institutions and universities. Of particular
interest to the scope of this paper, the Virginia Department
of Health (VDH) provides an updated count of all cases,
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divided into a variety of geographic regions, which is freely
accessible [2]. Additionally, Johns Hopkins University main-
tains a dashboard of cases across the United States, divided
by county [3]. Because the existing dataset is reactive,
computational modeling provides health systems with this
much-needed warning.

The limitations of modeling input data described above
suggest a need for more data sources, preferably those that
can forewarn infection surges to medical systems. One of
the most promising data collection methods is a pooled sam-
pling approach, where collective samples are taken from an
entire population. This method aims to estimate the overall
infection rate while using a fraction of the resources that it
would take to sample the whole population individually.

Numerous studies have established wastewater surveil-
lance for monitoring COVID-19 as an effective pooled
sampling technique. Two notable studies at both Yale Uni-
versity and in the Ishikawa and Toyama prefectures in Japan
took samples of sewage sludge and municipal wastewater,
respectively, and performed PCR analysis of the samples to
calculate viral load [4], [5].

COVID-19 infected cases usually excrete SARS-CoV-2
RNA copies in their feces and urine [6] over the course
of their illness. It has been shown that pre-symptomatic,
asymptomatic, and mildly symptomatic (PAMS) patients can
also shed SARS-CoV-2 [7]. According to [8], numerous
studies reported positive viral load samples before the first
infected case was clinically diagnosed in the community.
This is particularly crucial for monitoring the COVID-19
pandemic as a large proportion of the infected population are
PAMS [9]. This implies massive under-reporting that further
accelerates the circulation of the infection in communities.
Jones et al. [7] estimate that by the time that PAMS patients
test positive for COVID-19, they are nearly as infectious
as hospitalized patients and have a comparable viral load.
Therefore, monitoring viral load in wastewater can precede
lagging indicators such as clinically confirmed case counts,
hospitalization, and deaths.

One major gap in wastewater surveillance is relating
viral load data to case counts. Most of the studies relied
only on correlation-based analysis to confirm that viral load
can follow the pattern of prevalence data without providing
a model to back-calculate the number of active shedders
[10], [11], [12], [13], [14]. Few studies have employed
a wastewater-based epidemiological model to explain the
COVID-19 cases with the viral load data. Xiao et al. [15]
used a transfer function in the form of beta distribution with
unknown parameters to map the viral load data onto the
reported case data in the Boston area. While providing a
better picture of the linkage between viral load and active
shedders, this method is incapable of explaining shedding
mechanism like shedding profile of patients.

One of the first studies that introduced wastewater-based
epidemiological model to associate viral load data with
reported COVID-19 cases was done by McMahan et al. [16].
They considered an SEIR compartmental model with a time-
varying shedding rate. They also considered the degradation
of virus RNAs in sewer systems prior to sampling and

(a)

(b)

Figure 1: (a) Schematic of the SEIR model. (b) A simple
Partially Observed Markov model

viral load measurement and related the viral load to active
cases on a given day in a formula. A more comprehensive
epidemiological model is proposed by Nourbakhsh et al.
[17] with more compartments to include severe cases, mild
cases, and recovered cases who still shed the virus. They
accounted for variation in reproduction number and delay
in case count reporting. They showed that models that use
both viral load and confirmed cases have better predictive
power to forecast the infection incidences in three Canadian
cities.

In this paper, we take a similar approach as McMahan et
al. [16] and consider a stochastic epidemiological model that
supplements the conventional reported cases with pooled
samples from wastewater surveillance for assessing the over-
all SARS-CoV-2 viral burden at the community level. Addi-
tionally, we allow for stochasticity, imported infections and
non-homogeneity in the mixing of the population. Then, we
investigate the effectiveness and robustness of our modeling,
comparing both simulations and predictions with the data.

2. Method

We consider a stochastic wastewater-based epidemio-
logical model with four compartments (hidden states) of
susceptible (S), exposed (E), infectious (I), and recov-
ered/removed (R) (Fig. 1a). Stochastic compartment models
are a type of partially observed Markov processes (POMP)
models with stochastic transition rates. These models have
been commonly applied to epidemiological data to model
the evolution of epidemics, extract epidemiological indica-
tors from the observed data, and forecast how the outbreak
will unfold in the future [18].

Partially Observed Markov Processes, also known as
Hidden Markov Models (HMM), are one of the most pow-
erful tools for time series analysis. They are defined over a
sequence of latent (hidden) states and observed states. The
simplest type of a POMP (HMM) model is the first-order
HMM, which is shown in Fig. 1b. X0:N are latent states, and
Y1:N are observed states, and 1 : N are the timesteps of the
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time series. This structure has two underlying assumptions
that are crucial to our modeling:

• Given a specified model (known parameters), the
latent state at time t depends only on the latent state
at time t− 1.

• Given a specified model, the observed state at time
t depends only on the hidden state at time t.

Now suppose that we have a sequence of N observations as
y1:N and a sequence of N + 1 hidden states as x0:N . Also,
suppose that θ is the vector of parameters for our model. We
can write the likelihood of the sequence of the observations
considering our model as:

L(θ) = fY1:N
(y1:N ; θ) (1)

However, considering the aforementioned assumptions, the
conditional probability rules, and the law of total probability,
we can rewrite the likelihood as [19]:

L(θ) =

∫
fX0(x0; θ)ΠN

n=1fYn|Xn
(yn|xn; θ)

fXn|Xn−1
(xn|xn−1; θ)dx0:n

(2)

The right-hand side of Equation (2) is the initial density,
one-step transition density, and measurement density in the
order of appearance. To fully specify a POMP model, one
has to specify a model for these three probability densities.
Nevertheless, it is extremely difficult or impossible to define
an analytical formula for the transition density in many
problems. That is when the simulation-based inference is
needed; Simulation-based inference attempts to simulate the
transitions between the states instead of drawing from a
known distribution. In this study, we use Iterated filtering
[20], [21], to estimate the parameters of our model.

Our SEIR model has four latent states (S,E, I,R) and
two observations (V, Y ), namely viral load and reported
cases per day. We define N := S + E + I + R as the
total number of agents contributing to the dynamics of the
epidemic at any given point in time. Moreover, let br be
the birth rate and means transferring of agents from the
inactive (non-contributing) population into the susceptible
pool. We ignore death from the compartments due to the
short epidemic period under study.

We assume agents in compartments E and I contribute
to the viral load with a constant shedding rate, ρV . Parame-
ters µSE , µEI , and µIR are the rates at which agents transi-
tion from S to E, from E to I and from I to R respectively.
These rates are inversely proportional to the expected time
an agent spends at the respective compartment. We assume
that µEI and µIR are constant over the duration of the
study. The mean latent period that is reported by Centers
for Disease Control and Prevention (CDC) in their summary
reports on March 2021 [22] (time from exposure to symptom
onset) is 6 days. Therefore, we set the µEI to 0.16 day−1.

The mean infectious period has been reported anywhere
between 3.5 days to 11 days [23]. It is noteworthy that the
mean infectious period greatly depends on the severity of the

infection. However, it appears the average infectious period
as a ballpark estimate is in the range of 6-8 days. Therefore,
we set the µIR to be 0.13 day−1, i.e., the mean infectious
period is 7.7 days. We also consider under-reporting in our
model via parameter ρY . CDC in its report on July 2021 [24]
suggests a reporting rate of 1/4.2 ≈ 0.24. However, as we
focus on the beginning of the outbreak, the value of 0.14
seems more appropriate [9]. The parameter µSE , defined
in (15), represents the force of infection and measures the
contact rate of infectious agents and susceptible agents. It
will be a deciding factor on the diffusion of the infection
through the community.

We start off by writing the equations for the number of
agents at each compartment. Using equations 3-6, we update
the state of the system:

S(t) = S(0) + br −NSE(t) (3)
E(t) = E(0) +NSE(t)−NEI(t) (4)
I(t) = I(0) +NEI(t)−NIR(t) (5)
R(t) = R(0) +NIR(t) (6)

where NSE(t), NEI(t), and NIR(t) are the number of
agents transitioning from one compartment to the next one at
a certain time. The initial state of the system is also defined
via the following equations:

N(0) = η × P (7)
S(0) = S0 ×N(0) (8)
E(0) = E0 ×N(0) (9)
I(0) = I0 ×N(0) (10)
R(0) = R0 ×N(0) (11)

where P denotes the total population in the community un-
der study and η is the fraction of them initially contributing
to the spread and are present in one of the compartments
at t = 0. S0, E0, I0, R0 are the initial value parameters
specifying the fraction of agents at each compartment at the
beginning of the study. Now we describe the dynamics of
the transitions using the following ODEs:

dNSE
dt

= µSE(t)× S(t) (12)

dNEI
dt

= µEI × E(t) (13)

dNIR
dt

= µIR × I(t) (14)

We allow for additional stochasticity into the force of
infection µSE (following [25]) as,

µSE(t) = β × (I(t) + ι)α

N(t)
× dw

dt
(15)

β = β0 (16)

Where β = β0 is a constant transmission rate, ι is the
imported infections from outside of the population, α is the
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mixing parameter with α = 1 representing a homogeneous
mixing, and w is the Gamma white noise accounting for
extra-demographic stochasticity.

To specify the measurement models, we consider three
cases: Model ”SEIR-VY” uses both viral load and case
counts to fit the parameters, whereas models ”SEIR-Y”
and ”SEIR-V” consider only case counts and viral load,
respectively. Equations 17-22 define the likelihood of the
three models along with their parameters.

LV Y (θ) = φ(Y ;µY , σY )× φ(V ;µV , σV ) (17)
LV (θ) = φ(V ;µV , σV ) (18)
LY (θ) = ψ(Y ;µY ) (19)
µY = ρY I (20)
σY =

√
µY (21)

µV = ρV (E + I) (22)

Where φ(.;µ, σ) is the likelihood of the normal distri-
bution with mean µ and standard deviation σ. Similarly,
ψ(Y ;µ) is the likelihood for the Poisson distribution.

2.1. Data

We use RNA data derived from our comprehensive
Agent-Based Model (ABM) of the COVID-19 pandemic in
Virginia. Agents in this model move randomly in a grid, and
those in the same space can infect one another. Each agent is
stochastically assigned a prognosis when infected, based on
literature data of outcome and phase residency probabilities
[26], [27]. Agents are then assigned an RNA shedding
rate for each step of their disease course. Symptomatic
agents start shedding RNA five days before symptom onset
and peak two days before symptom onset as per literature
indicated trends. Asymptomatic agents start shedding RNA
when they become infectious and peak two days later. The
primary input of this model is the movement probability of
agents for a given step. This value is only changed for dates
where significant modification to social distancing measures
in Virginia occurs. The ABM fits VHD data of COVID-
19 cases by date of symptom onset and is also checked
against VDH data of cases by date of reporting, concurrent
hospitalizations, and death rates. This ABM assumes that
Virginia is a closed system, that the interactions patterns of
people in Virginia can be simulated as random movement
on a uniform grid, and that RNA shedding after symptoms
abate is negligible.

Finally, for the research purposes of this study, we scaled
down the data to the size of the city of Charlotteville, VA,
and approximated the population of the city to be 50,000.
We also focused on the 100 days of the early stages of the
pandemic starting from March 1st, 2020 for the scope of
this study.

Furthermore, we advanced the case count data to account
for the reporting delays and the mismatch between the viral
load data and case count data. Since most of the mean
reporting delays in the literature are around five days [8],
[28] we advanced the case count data by five days.

3. Results
In this section, we present the results of the three

models, SEIR-VY, SEIR-V, and SEIR-Y. A summary of all
the parameters is presented in Table 1. We assumed the
initial value parameters (η, S0, E0, I0, R0) following [1].
Parameters µSE , µIR, and ρY were taken from the literature.
The remaining seven parameters including β0, ι, α, σSE ,
br, ρV , σV were estimated. We proceed with explaining
the estimated parameters and then comparing the simulation
results of the models and their forecasting quality with the
data.

To better evaluate the predictive power of the models,
we divided the study duration of 100 days into 70 days of
calibration and 30 days of projection. Models were fitted
on the calibration period to find the Maximum Likelihood
Estimation (MLE) parameters, θ̂MLE . The parameter esti-
mation was performed in R using the package “pomp” [29].
The data, along with the R codes for this study, can be found
at (https://github.com/Shakeri-Lab/COVID-SEIR). Also, the
MLE parameters of the three models are summarized in
Table 2.

Models SEIR-VY and SEIR-V seem to be in good
agreement on the optimal parameters. The only parameter
that they estimate differently is the imported infections ι.
SEIR-V estimates a trivial amount of imported infections at
each timestep, while SEIR-VY estimates a non-negligible
amount of imported infections, ι ' 4.27. In spite of the
other two models, SEIR-Y estimates ι ' 65, which seems
unreasonably high for the scale of the population under
study.

Both SEIR-VY and SEIR-V estimate α ' 1 meaning
a homogeneous mixing while SEIR-Y estimate α ' 0.5.
α < 1 corresponds to some lower-level clustering in the sus-
ceptible and infectious pool resulting in a non-homogeneous
transmission [30].

Shedding rates for the individuals are estimated to be
' 150 copies per infected case. We used the SEIR-VY to
estimate the shedding rate and its standard deviation and
then fixed that for the other two models. We averaged over
the top 10 parameter sets with the highest log-likelihood to
fix the ρV and σV for the SEIR-V and SEIR-Y.

3.1. Basic Reproduction Number R0

One parameter that has a significant effect on the out-
come of the model is the transmission rate. The transmission
rate, β, plays a vital role in foreseeing the future of the
epidemic and the proportion of the population that will be
eventually infected. It is also linked to the basic reproduction
number, which is the most important epidemiological indi-
cator. Basic reproduction number, R0, is defined as “the ex-
pected number of secondary cases produced, in a completely
susceptible population, by a typical infective individual”
[31]. For a model with a single infected compartment, it
is equal to the product of transmission rate and the mean
duration of infection [32]:

R0 = β × 1/µIR (23)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 20, 2021. ; https://doi.org/10.1101/2021.10.19.21265221doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.19.21265221
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: summary parameters of the models
Parameter notation value reference
basic transmission rate β0 estimated -
imported infections ι estimated -
mixing parameter α estimated -
extra-demographic stochasticity shape parameter σSE estimated -
birth rate into susceptible br estimated -
mean shedding rate of individual (per 6 hr) ρV estimated -
standard deviation of shedding rate σV estimated -
reporting rate of infected agents ρY 0.14 [9]
mean latent period 1/µEI 6 days [22]
mean infectious period 1/µIR 7.7 days [23]
initial fraction of the population in SEIR η 0.05 assumed
initial fraction of the agents in S S0 0.95 assumed
initial fraction of the agents in E E0 0.04 assumed
initial fraction of the agents in I I0 0.01 assumed
initial fraction of the agents in R R0 0.00 assumed
Total population P 50000 assumed

Given a fixed µIR = 0.13 we can compute the estimated
basic reproduction number of the three models:

• SEIR-VY model: R0 = 1.46.
• SEIR-V model: R0 = 1.08.
• SEIR-Y model: R0 = 1.92.

All of the estimated basic reproduction numbers are in
agreement with previous works. For example, Turk et al.
[33] estimated a basic reproduction number in the range of
1.34 to 1.79 for the city of Charlotte, NC. In another study
by Kain et al. [34] reproduction numbers were calculated for
some of the largest cities in the United States. Their results
suggest a reproduction number of 2-4 at the beginning of
the outbreak and a drastic reduction to near unity after the
social distancing restrictions. Therefore, we expect a lower
R0 for a small city like Charlottesville, VA, which falls in
the range of the estimated R0 of our models.

3.2. Simulation Results

In order to compare the capability of the fitted models
to explain viral load data and, more importantly, case count
data, we first draw 1000 realizations from the three models
using the estimated parameters. We then computed their
mean and standard errors and plotted them against the data.
Fig. 2a shows the simulation results of the models for case
count for the 70 days of calibration. SEIR-VY and SEIR-V
closely follow the pattern of the data, while SEIR-Y fails to
match with the data. Fig. 2b also show the simulations of
the models versus data. Similar to the case count, SEIR-VY
and SEIR-V models can capture the trend of the viral load,
while the SEIR-Y model is not detecting the peak in viral
load.

3.3. Forecast Results

We also compared the prediction of three models with
the data for the projection period. As a baseline, we also fit-
ted an Autoregressive Integrated Moving Average (ARIMA)
model for the case counts and compared it with the models.
Using the Partial Auto Correlation Function (PACF) plots

Table 2: summary of the MLE parameters of the models

parameter SEIR-VY SEIR-V SEIR-Y
β0 0.19 0.14 0.25
ι 4.27 0.21 65.1
α 1.07 1.14 0.51
σSE 1.18 1.11 5.46
br 7.68 7.30 8.84
ρV 158.9 150* 150*
σV 3760 3500* 3500*

*Fixed from the SEIR-VY model.

(a) simulations of the case counts for three models of SEIR-VY,
SEIR-V, and SEIR-Y.

(b) simulations of the viral for three models of SEIR-VY, SEIR-
V, and SEIR-Y.

Figure 2: Comparison of the simulations for the first 70 days

and AIC measures, we found the parameters of the ARIMA
to be p = q = d = 1. The predictions of all four models are
compared with the case count data in Fig. 3. Interestingly,
SEIR-V is the best model in projecting future cases. Even
the SEIR-VY model suffers from a large uncertainty, evident
in its wide 95% confidence interval.

4. Discussion

The simulation and prediction results of the models
confirm the potential of the viral load as an early indicator
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Figure 3: forecasts of the case counts for the four models of
SEIR-VY, SEIR-V, SEIR-Y, and ARIMA. The lines are the
means and the ribbons show the 95% confidence interval.

of an outbreak. However, the case count seems to have a
lot of uncertainty surrounding it. One crucial factor is that
the reporting delays vary from person to person because the
latent period of the disease has a pretty wide distribution
[35]. This is amplified when the number of infections is
small as their mean latent period could differ considerably
from the reported values by literature. Another factor that
can adversely influence the reliability of the case count as
an indicator is the reporting rate. Similar to the reporting
delays, the reporting rate also suffers from large uncertainty
that becomes even larger with a small number of infections.

On the other hand, viral load does not suffer from some
of the same sources of uncertainty as the case counts. As
we discussed earlier, COVID-19 is shown to have a long
incubation period extending to more than ten days in some
cases. However, COVID-19 patients begin excreting SARS-
CoV-2 RNA in the form of urine and stool shortly after being
infected and while not infectious yet [7]. Moreover, the low
reporting rate of COVID-19 associated with the fact that
most infections are asymptomatic or mildly symptomatic
has no impact on the viral load. This is simply because all
infected individuals still shed the virus, regardless of the
severity of their infection.

In Fig. 3 we observe the effect of the uncertainty of the
case count on the prediction of the future. Interestingly the
SEIR-V model has better predictive power and much less
uncertainty compared with the SEIR-VY. Out of the three
SEIR models and ARIMA model, SEIR-V (red) is the only
model that could predict a drop in the number of cases at
the tail of the outbreak (zoomed-in panel).

5. Conclusion and Future Work

In this study, we implemented a SEIR model for three
cases of using merely case count data, viral load data,
and both. We allowed for stochasticity in the transmission
rates and extra-demographic stochasticity accounting for the
unforeseen events. We fitted our models using a simulation-
based inference called Iterated Filtering [21]. We compared

the models from three different aspects, parameter estima-
tion, simulation, and prediction. Our results suggest that the
viral load data is an informative data source for monitoring
the spread of COVID-19 cases on a community level. The
viral load has enough information, which enables it to
approximate the number of infected cases when employed
with a proper epidemiological model. Additionally, viral
load data is more consistent and less uncertain, making it a
critical part of COVID-19 surveillance.

Throughout this study, we made some simplifying as-
sumptions that are important to note. The first assumption is
implicit in our SEIR structure. It is a simple compartmental
model that does not distinguish the infections based on the
severity of their illness and whether or not they will be
hospitalized. Also, we neglected the agent removals from
the compartments, which could not hold in real-world sce-
narios and especially for larger populations. Some COVID-
19 patients are shown to shed virus for a long time after
the symptoms are gone [36]. Although the shedding rate
decreases exponentially with time, it still can have a masking
effect on newly infected cases.

Moreover, we did not take the RNA degradation through
the sewer system into account. We also did not consider the
social, economic, and environmental factors in our mod-
els. Factors like restriction orders can profoundly impact
the behavior of the population and consequently how the
infection spreads out in the community. Another notable
simplification is assuming a constant transmission rate.

Many questions remain to be addressed regarding
wastewater surveillance. We presented a proof of concept
to show that viral load can be intelligently used to extract
useful information about the outbreak. Viral load data con-
tains information on PAMS patients and signals an outbreak
days before lagging indicators like confirmed positive cases,
deaths, and hospitalizations.

Future works can attempt to make the compartmental
model more complex to account for different stages and vari-
ations of the infection. Nevertheless, the complexity comes
at the cost of losing some interpretability, generalization
possibilities and imposing more computational expenses.
The impact of the different viral strains can also be studied.
Other sources of data can be supplied to the model as
covariates. Also, the shedding profile of the patients can be
used instead of a constant shedding rate which could further
improve the reliability of the inference.
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