Title: Significant Excess Mortality probably due to COVID-19 in Tokyo, Japan until May, 2021

Junko Kurita¹, Tamie Sugawara², Yasushi Ohkusa²

¹ Department of Nursing Collage of Nursing, Tokiwa University, Ibaraki, Japan
² Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan

Keywords: excess mortality; COVID-19; all cause death; stochastic frontier estimation; NIID model; Tokyo; Japan

* Correspondence to:
Infectious Disease Surveillance Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
Tamie Sugawara tammy@nih.go.jp

ICMJE Statement
Contributors TS was responsible for the organization and coordination of the study. JK was the chief investigator and responsible for the data setting. YO developed the estimation model. All authors contributed to the writing of the final manuscript.
Abstract

Background: No remarkable mortality attributable to COVID-19 confirmed by PCR test has been observed in Japan.

Object: We sought to quantify excess mortality using the National Institute of Infectious Diseases (NIID) model.

Method: We applied the NIID model to deaths of all causes from 1987 up through July, 2021 for the whole of Japan and up through May, 2021 for Tokyo.

Results: Results in Japan show very few excess mortality in August and October, 2020 and May and June, 2021. It was estimated as 12, 104, 260 and 135, respectively.

Conversely, in Tokyo, 1323 excess mortality was detected

Discussion and Conclusion: We detected substantial excess mortality in Tokyo but a few in Japan. It might be important to continue to monitor excess mortality of COVID-19 carefully hereafter.
1. Introduction

To date, excess mortality has mainly been used to assess the social effects of influenza activity [1–6]. However, since the emergence of COVID-19, excess mortality attributable to COVID-19 has been attracting attention [7] as a measure of the total effects of the disease because it can reflect cases which have not been identified as polymerase chain reaction (PCR) positive. Especially in Japan, PCR tests administered per capita have been few. Therefore, concern has arisen about the possibility that some deaths caused by COVID-19 have not been recognized heretofore. Moreover, excess mortality related to COVID-19 might be expected to contribute to evaluation of vaccine effects. For these evaluations, the estimated excess mortality without the effects of a vaccine should be regarded as a baseline. Nevertheless, no such a trial has been undertaken to date. This study might be the first trial to measure that figure in Japan.

As of the end of July, 2021, the COVID-19 outbreak showed about 926 thousand patients and about 15 thousand deaths from the outbreak have been reported in Japan. Although Japan has about one third of the population of the U.S., these figures are vastly different in scale from those of the U.S., which has reported 33.5 million cases of morbidity and 600 thousand cases of mortality (deaths) [8]. In light of the much lower number of patients in Japan, some criticism has arisen that low PCR testing rates might have led to the lower number of documented patients [9]. In this sense, one might regard the number of deaths as reflecting the actual situation in Japan, but with no testing-related bias.

Concerning deaths, the case-fatality rate (CFR) is about 5%. In fact, the CFRs in both countries are not much different. The lower PCR testing in Japan might be related to some problems. Therefore, we specifically examined excess mortality attributable to

In Japan, excess mortality was estimated using the National Institute of Infectious Diseases (NIID) model [10], which has been the official procedure for more than ten years. It was applied to two data sources: the national monthly deaths of all causes and the respective weekly pneumonia and influenza deaths in the 21 largest cities and their total. The latter is published regularly in Japanese during the influenza season as https://www.niid.go.jp/niid/ja/flu-m/2112-idsc/jinsoku/131-flu-jinsoku.html. Unfortunately, that publication ceased in March 2020 because it is intended for influenza. The first peak in Japan was April 3, 2020[11]: excess mortality cannot be detected until March. Instead, we applied NIID model to the all causes of death in the whole of Japan to evaluate impact of the outbreak of COVID-19.

2. Method

Excess mortality is defined as the difference between the actual number of deaths and an epidemiological threshold. The epidemiological threshold is defined as the upper bound of the 95% confidence interval (CI) of the baseline. The baseline is defined as the number of deaths that are likely to have occurred if an influenza outbreak had not occurred. Therefore, if the actual deaths are fewer than the epidemiological threshold, then excess mortality is not inferred.

The data used for this study were monthly deaths of all causes from 1987 through July 2021[12]. NIID model, the Stochastic Frontier Estimation [13–19], is presented as
\[
\log D_t = \alpha + \beta T_t + \gamma T_t^2 + \sum \eta_i M_{it} + \varepsilon_t \quad \text{and} \quad (1)
\]

\[
\varepsilon_t = \nu_t + |\omega_t|, \quad (2)
\]

where \(D_t\) represents all causes of death in month/year \(t\), \(T_t\) denotes the linear time trend, and \(M_{it}\) is the dummy variable for a month, which is one if \(t\) is the \(i\)-th month and otherwise zero. Moreover, \(\nu_t\) and \(\omega_t\) are stochastic variables as \(\nu_t \sim N(0, \mu^2)\) and \(\omega_t \sim N(0, \xi^2)\); they are mutually independent. Although \(\nu_t\) represents stochastic disturbances, \(\omega_t\) denotes non-negative deaths attributable to influenza. These disturbance terms in this model are parameterized by two parameters: \(\zeta/\mu\) and \((\mu^2 + \xi^2)^{0.5}\). If the null hypothesis \(\zeta/\mu = 0\) is not rejected, then the Stochastic Frontier Estimation model is inappropriate.

Study areas were the whole of Japan and its capital, Tokyo. Study period for estimation was from 1987 to July 2021 for the whole of Japan and up through May, 2021 for Tokyo. We adopted 5% as significant level.

3. Results

Table 1 summarized the estimation results in the whole of Japan and Table 2 for Tokyo. Figure 1 presents observed deaths, the estimated baseline, and its threshold in Japan. Figure 2 specifically depicts the last year in Japan. We found 12 and 104
excess mortality in August and October, 2020, and 260 and 165 in May, and June, 2021. These were 0.0, 0.1, 0.2 and 0.1% of the baseline.

Figure 3 and 4 showed the estimated result in Tokyo. We found 595 excess mortality in August and 150 excess mortality in September 76 in October, 458 in December, 44 in January, and 60 in April which were 6.3, 1.7, 0.8, 4.1, 0.4 and 0.6 % of the baseline.

4. Discussion

This study applied the NIID model to all causes of death to detect excess mortality attributable to COVID-19. We found 376 excess mortality in August and October, 2020, and in May and June, 2021, in Japan.

Moreover, we found 1383 excess mortality in Tokyo. It may not be a few excess mortality. Until May, 2021. Tokyo had 2038 deaths due to COVID-19 confirmed PCR test. It means that excess motility was smaller than the confirmed death due to COVID-19. It may imply that some mortality due to COVID-19 was cancelled by reduction in pneumonia death. [20].

Some researchers in Japan have emphasized considerable excess mortality from all causes of death through June 2021 of around 49 thousand at maximum due to COVID-19 [21, 22] using the Farrington algorithm [23] and EuroMOMO [24], which was more than three times larger than the number of death confirmed by PCR test until
June, 2021, 15 thousands. Their study measured excess mortalities as the gap between observation and beeline, not threshold as, in prefectures where observation was higher than threshold. Therefore, their estimated too huge excess mortality may seriously mislead the risk participation for COVID-19 among the general population. In particular, in Tokyo, they found 4649 excess mortality until June, 2021. It was more than twice higher than PCR confirmed death in Tokyo, 2211.

At the same time, they also found approximately 60.5 thousands negative excess mortality in Japan until June, 2021 and 3911 negative excess mortality in Tokyo until June, 2021. Conversely, we found only 3 persons as negative excess mortality in February, 2020 in Tokyo, and 751 negative excess mortality in April, 2020, in the whole of Japan, as shown in Figure 2 and 4. Such a huge negative excess mortality may doubt validity of their procedures. Their estimated baseline might be upward biased. It probably suggested that their adopted procedure have upper biased for excess mortality comparison with NIID model, which was suggested logically [25]. Moreover, they used only five years to estimate and thus volatility in data might be too small to obtain more appropriate threshold.

Using pneumonia death data instead of total death data might be better to evaluate excess mortality caused by COVID-19. However, application rule of the International
Classification of Diseases was revised on January 2017, after which pneumonia deaths decreased by approximately 25%. April 2020 was the fourth April since that of 2017. However, excess mortality in pneumonia death should be our next challenge.

5. Conclusion

We found substantial excess mortality since the outbreak of COVID-19 had emerged in Tokyo between August and October and December. It might be increasing rapidly in winter season. Conversely, we found few excess mortality in the whole of Japan. It should be important to continue to monitor excess mortality of COVID-19 carefully hereafter.

The present study is based on the authors’ opinions: it does not reflect any stance or policy of their professionally affiliated bodies.

6. Acknowledgement

We acknowledge Dr. Nobuhiko Okabe, Kawasaki City Institute for Public Health, Dr.Kiyosu Taniguchi, National Hospital Organization Mie National Hospital, and Dr.Nahoko Shindo, WHO for their helpful support.

7. Conflict of interest

The authors have no conflict of interest to declare.
8. Ethical considerations

All information used for this study was published on the web site of MHLW [12].

Therefore, no ethical issue is presented.

9. References

11) Kurita J, Sugawara T, Ohkusa Y. Mobility data can explain the entire COVID-19
outbreak course in Japan. medRxiv 2020.04.26.20081315; doi:
https://doi.org/10.1101/2020.04.26.20081315

demographicshttps://www.mhlw.go.jp/toukei/list/81-1a.html (in Japanese)
[accessed on July 26, 2020]

13) Aiger AD, Lovell K, Schmittdt P. Formulation and estimation of stochastic

14) Jondrow J, Lovell K, Materov S, Schmidt P. On the estimation of technical
inefficiency in the stochastic frontier production function model. Journal of

15) Li T, Rosenman R. Cost inefficiency in Washington Hospitals: A stochastic
frontier approach using panel data, Health Care Management Science 2001; 4:
73-81.

16) Newhouse JP. Frontier Estimation: How useful a tool for health economics?

18) Jacobs R. Alternative methods to examine hospital efficiency: Data envelopment

20) Kurita J, Sugawara T, Ohkusa Y. Negative Excess Mortality in Pneumonia Death caused by COVID-19 in Japan. medRxiv 2021.01.22.21250283; doi: https://doi.org/10.1101/2021.01.22.21250283

doi:10.4236/jbm.2019.76002
Table 1 NIID Model estimation results since 1987 until July 2021 in Japan

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Estimated coefficients</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>11.12</td>
<td><0.0004</td>
</tr>
<tr>
<td>Time trend</td>
<td>0.001537</td>
<td><0.0004</td>
</tr>
<tr>
<td>Time trend 2</td>
<td>0.0000009763</td>
<td>0.423</td>
</tr>
<tr>
<td>January</td>
<td>0.07075</td>
<td><0.0004</td>
</tr>
<tr>
<td>February</td>
<td>-0.05631</td>
<td><0.0004</td>
</tr>
<tr>
<td>March</td>
<td>-0.01671</td>
<td>0.053</td>
</tr>
<tr>
<td>April</td>
<td>-0.1027</td>
<td><0.0004</td>
</tr>
<tr>
<td>May</td>
<td>-0.1247</td>
<td><0.0004</td>
</tr>
<tr>
<td>June</td>
<td>-0.2126</td>
<td><0.0004</td>
</tr>
<tr>
<td>July</td>
<td>-0.1776</td>
<td><0.0004</td>
</tr>
<tr>
<td>August</td>
<td>-0.1710</td>
<td><0.0004</td>
</tr>
<tr>
<td>September</td>
<td>-0.2083</td>
<td><0.0004</td>
</tr>
<tr>
<td>October</td>
<td>-0.1197</td>
<td><0.0004</td>
</tr>
<tr>
<td>November</td>
<td>-0.08768</td>
<td><0.0004</td>
</tr>
<tr>
<td>ξ/μ</td>
<td>2.386</td>
<td><0.0004</td>
</tr>
<tr>
<td>$(\mu^2+\xi^2)^{0.5}$</td>
<td>0.04934</td>
<td><0.0004</td>
</tr>
</tbody>
</table>

Note: For the 412 observations, the log likelihood was 915.5. ξ^2 denotes the variance of the non-negative disturbance term. μ^2 is the variance of the disturbance term.
Table 2 NIID Model estimation results since 1987 until April 2021 in Tokyo

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Estimated coefficients</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>8.55</td>
<td><0.0004</td>
</tr>
<tr>
<td>Time trend</td>
<td>0.00186</td>
<td><0.0004</td>
</tr>
<tr>
<td>Time trend^2</td>
<td>-0.726*10^-6</td>
<td>0.001</td>
</tr>
<tr>
<td>January</td>
<td>0.0759</td>
<td><0.0004</td>
</tr>
<tr>
<td>February</td>
<td>0.137</td>
<td><0.0004</td>
</tr>
<tr>
<td>March</td>
<td>0.0292</td>
<td>0.015</td>
</tr>
<tr>
<td>April</td>
<td>0.0479</td>
<td><0.0004</td>
</tr>
<tr>
<td>May</td>
<td>-0.0271</td>
<td>0.111</td>
</tr>
<tr>
<td>June</td>
<td>-0.0584</td>
<td><0.0004</td>
</tr>
<tr>
<td>July</td>
<td>-0.111</td>
<td><0.0004</td>
</tr>
<tr>
<td>August</td>
<td>-0.0664</td>
<td><0.0004</td>
</tr>
<tr>
<td>September</td>
<td>-0.0719</td>
<td><0.0004</td>
</tr>
<tr>
<td>October</td>
<td>-0.108</td>
<td><0.0004</td>
</tr>
<tr>
<td>November</td>
<td>-0.0253</td>
<td>0.102</td>
</tr>
<tr>
<td>(\frac{\xi}{\mu})</td>
<td>2.44</td>
<td><0.0004</td>
</tr>
<tr>
<td>((\mu^2 + \xi^2)^{0.5})</td>
<td>0.684</td>
<td><0.0004</td>
</tr>
</tbody>
</table>

Note: For the 408 observations, the log likelihood was 817.9. \(\xi^2\) denotes the variance of the non-negative disturbance term. \(\mu^2\) is the variance of the disturbance term.
Figure 1: Observations of the estimated baseline and threshold since 1987 until July 2021 in Japan (persons)

Note: The blue line represents observations. The red line represents the estimated baseline. The green line shows its threshold.
Figure 1: Observations of the estimated baseline and threshold since 1987 until July 2021 in Japan (persons)

Note: The blue line represents observations. The red line represents the estimated baseline. The green line shows its threshold.
Figure 3: Observations of the estimated baseline and threshold since 1987 until May 2021 in Tokyo (persons)

Note: The blue line represents observations. The red line represents the estimated baseline. The green line shows its threshold.
Figure 4: Observation of the estimated baseline and threshold since May 2019 until May 2021 in Tokyo
(persons)

Note: The blue line represents observations. The red line represents the estimated baseline. The green line shows its threshold.