Disparities in accessibility to oncology care centers in France

Eric Daoud1,2, Anne-Sophie Hamy-Petit1,3, Elise Dumas1,4,5, Lidia Delrieu1, Beatriz Grandal Rejo1,6, Christine Le Bihan-Benjamin3, Sophie Houzard3, Philippe-Jean Bousquet2,9, Judicaël Hotton10, Aude-Marie Savoye11, Christelle Jouannaud11, Chloé-Agathe Azencott4,5,12, Marc Lelarge2, Fabien Reyali1,6,10

1. Residual Tumor & Response to Treatment Laboratory, RT2Lab, INSERM, U932 Immunity and Cancer, Institut Curie, Université Paris, 75005 Paris, France
2. INRIA, DI/ENS, PSL Research University, Paris, France
3. Department of Medical Oncology, Institut Curie, Paris, France
4. INSERM, U900, 75005 Paris, France
5. MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, 75006 Paris, France
6. Department of Surgery, Institut Curie, Paris, France
7. Health Data and Assessment Department, Survey Data Science and Assessment Division, National Cancer Institute, 52 avenue André Morizet 92100 Boulogne-Billancourt, France
8. Aix Marseille Univ, Inserm, IRD, SESSTIM, Equipe Labellisée Ligue Contre le Cancer, Marseille, France
9. Survey Data Science and Assessment Division, National Cancer Institute, 52 avenue André Morizet 92100 Boulogne-Billancourt, France
10. Department of Surgery, Institut Jean Godinot, Reims, France
11. Department of Medical Oncology, Institut Jean Godinot, Reims, France
12. Institut Curie, PSL Research University, 75005 Paris, France

*Correspondence to: Eric Daoud, Residual Tumor & Response to Treatment Laboratory, Institut Curie, 26 rue d’Ulm, 75011 Paris, France. E-mail: eric.daoud@curie.fr.

Abstract

Background: Cancer caused nearly 10 million deaths in 2020. While most of the ongoing research focuses on finding new treatments, accessibility to oncology care receives less attention. However, access to health services plays a key role in cancer survival. Spatial accessibility methods have been successfully applied to measure accessibility to primary care. Yet, little research to date focused on oncology care specifically.

Methods: We focused on all care centers with medicine, surgery, or obstetric activity in metropolitan France. We propose a clustering algorithm to automatically label the hospitals in terms of oncology specialization. Then, we computed an accessibility score to these hospitals for every municipality in metropolitan France. Finally, we proposed an optimization algorithm to increase the oncology accessibility by identifying centers which should increase their capacity.

Results: We labelled 1,662 care centers into 8 clusters. Half of them were eligible for oncology care and 118 centers were identified as experts. We computed the oncology accessibility score for 34,877 municipalities in metropolitan France. Half of the population lived in the top 20% accessibility areas, and 6.3% in the bottom 20% zones. Accessibility was higher near dense cities, where the experts care centers were located. By combining the care centers clusters and the accessibility distributions, our optimization algorithm could identify hospitals to grow, to reduce accessibility disparities.

Conclusion: Our method made it possible to quantify oncology care accessibility across all metropolitan France, as well as to make suggestions on where to increase hospital capacity to improve accessibility, especially in more populated suburban areas. Our approach was deliberately non-specific to cancer type nor to the kind of stays, but it could be adapted to more specific scenarios. We packaged our method into a web application allowing the users to run the algorithms with various parameters and visualize the results.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

Keywords: Spatial Accessibility, Cancer, Clustering, Linear Programming, France
Highlights

- We computed the oncology accessibility score for 34,877 municipalities and highlighted disparities.
- Our optimization algorithm can identify hospitals to grow, to reduce accessibility disparities.
- We packaged our algorithms and results into a web application, opened to healthcare professionals.

Introduction

Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. While a lot of the ongoing research is focusing on finding new cancer treatments, accessibility to oncology care receives less attention. Yet, several studies have showed that access to health services plays a key role in cancer survival. For instance, geographic residency status and social environment seem to explain treatment and prognosis disparities for patients with non-small cell lung cancer [1]. In France, increases in travel times to health services were associated with lower survival rates for patients with a colorectal cancer [2]. In New Zealand, living in deprived areas, far from a cancer center or from primary care was associated with lower survival chances for patients with colorectal, lung and prostate cancers [3].

Spatial accessibility methods have been widely applied to assess the distribution of public services. Considering demand and supply locations, spatial accessibility is expressed as the travel impedance between demand and supply, as well as the availability of supply for demand locations. In what follows, we restrict accessibility to spatial accessibility and use both terms interchangeably. Such methods have been successfully used to measure access to healthcare, such as primary care [4] or oncology care [5–7] in several countries including France [8–10].

Computing healthcare accessibility scores on population locations is a way to outline potential disparities in access to healthcare. For instance, Weiss et al. [11] showed that 8.9% of the global population could not reach healthcare within one hour if they have access to motorized transport. In Germany, Bauer et al. [12] shown that 10% of the population lived in areas with low accessibility for internal medicine and surgery. Several optimization algorithms have been proposed to overcome accessibility disparities [7]. Luo et al. developed an optimization algorithm to improve the healthcare planning in rural China by finding the best place and capacity for new health facilities [13]. Tao et al. worked on a spatial optimization model to maximize equity in accessibility to residential care facility in Beijing, China [14].

The goal of this paper is to apply accessibility methods to oncology care centers in metropolitan France. There are many care centers in France, which do not share the same degree of oncology specialization. Therefore, we first run a clustering algorithm to automatically group the care centers based on their medical statistics and attributes. Using these clusters, we label the care centers in terms of hospital development and oncology specialization. Then, we compute an oncology accessibility score for every municipality in metropolitan France. We then propose an optimization algorithm, based on Linear Programming, which uses the clusters of care centers and the accessibility scores to suggest, given a limited budget, where to increase hospital capacity to improve the oncology accessibility. Finally, our method is packaged into a web application that could be used by
health professionals to visualize the accessibility results and the resulting optimization, for any region.

Methods

Data collection

Health data is collected from two sources: the French national administrative database (PMSI) and the French annual health facilities statistics (SAE). PMSI data includes discharge summaries for all inpatients admitted to public and private hospitals in France. The SAE database is a compulsory and exhaustive administrative survey of all public and private hospitals in France. The survey is sent every year and describes the activities of the hospitals as well as the list of services and their staff. We restricted the analysis to the year 2018. We include every hospital in metropolitan France that declared a medicine, surgery or obstetric (MCO) activity in the SAE survey, in 2018. We also included the liberal radiotherapy care centers, with no MCO activity. The resulting dataset contains 1,662 care centers.

Geographic and travel data were retrieved from open data platforms. Municipalities and their census statistics were extracted from the INSEE\(^1\) (national statistics bureau of France) website. We used the OpenRouteService (ORS) API\(^2\) to compute the driving routes between hospitals and municipalities, which is necessary for the accessibility score.

Care centers characterization

We selected a list of 24 variables with the help of medical experts to characterize the care centers. The list of variables and their definitions is available on Sup. Table 1. The variables are either binary when they encode the presence or absence of a service; or discrete when they encode the number of stays. We only focus on treatments received in hospitals.

Given the large number of care centers, we use a clustering algorithm to automatically group together similar care centers. More specifically, we first run a Principal Component Analysis (PCA) algorithm on the SAE dataset that describes the care centers. The input data has 24 variables, and we perform the dimensionality reduction with \(n=2\) components. We tried different number of components, from 2 to 5, but we found 2 gave good and easy to interpret results. The PCA interpretation results are visible on Sup. Figure 1. We then run a clustering algorithm on the PCA-reduced dataset to automatically isolate care centers with similar statistics. We tried several algorithms like K-Means, DBSCAN and Spectral Clustering, and, in our case, Spectral Clustering\(^15\) with 8 clusters gave the most interpretable and better isolated groups. For the number \(k\) of clusters, we tested all values from 2 to 10 and manually interpreted the results with medical experts.

Accessibility score

There are several ways to compute accessibility to healthcare, as reviewed by Guagliardo\(^4\). The easiest and most straightforward methods are computed within bordered areas, like provider-to-population ratios in each municipality. While they are very intuitive, these methods do not account for border crossing, or travel impedance, which makes them less accurate. Recently, a new type of method has been developed and is now used in most

\(^1\)https://www.insee.fr/fr/statistiques/2521169

\(^2\)https://openrouteservice.org/
spatial accessibility papers. This algorithm is called “Two Step Floating Catchment Area” (2SFCA) [16]. It is a two-step method that first computes a provider-to-population ratio for each provider location. In the second step, for each population location, an accessibility score is obtained by summing the provider-to-population ratios. For the algorithm to work, a catchment threshold (distance or travel time) must be set. Above this threshold, a provider location is considered unreachable from the population location, and vice versa. The 2SFCA method does not account for distance decay: a care center is either reachable or not. The “Enhanced Two Step Floating Catchment Area” (E2SFCA) [17] addresses this limitation by applying weights to differentiate travel zones in both steps.

We now explain more formally how to compute E2SFCA scores. Consider P_i the population at location i, with $1 \leq i \leq n$ where n is the number of population locations. Similarly, consider S_u the capacity of care center u, with $1 \leq u \leq m$ where m is the number of care centers. Finally, let d_{iu} be the matrix of size $n \times m$ containing the distances between location i and care center u. We consider r sub-catchment zones each associated with a weight W_s, and a distance D_s, with $1 \leq s \leq r$, such that $D_1 < D_2 < \cdots < D_r$ and $W_1 > W_2 > \cdots > W_r$. The resulting r travel intervals are $I_1 = [0, D_1]$, $I_2 = [D_1, D_2], \ldots, I_r = [D_{r-1}, D_r]$. The accessibility A_i of a population location i is computed in two steps. Step 1: for every care center u, compute its weighted capacity-to-population ratio R_u (1). Step 2: for every population location, compute A_i as the sum all the weighted R_u of the reachable care centers (2).

$$R_u = \frac{s_u}{\sum_{s=1}^{r} W_s \sum_{d_{iu}} \in I_s p_i}$$

$$A_i = \sum_{s=1}^{r} W_s \sum_{d_{iu}} \in I_s R_u$$

The capacity of a care center is balanced by the total population with access to it. A population location that solely has access to low capacities or overcrowded care centers will have a low accessibility score. Similarly, a population location will have low accessibility scores if the distance to get to the nearby care centers is large.

As we want to compute the accessibility to oncology care centers, we chose S_u to be the oncology activity of a hospital u. We define oncology activity as the sum of the number of medical and surgery stays related to cancer, and the number of patients with chemotherapy or radiotherapy. A care center with no oncology activity will have $R_u = 0$ and a municipality that solely has access to this care center u will have $A_i = 0$. We use driving duration as travel impedance metric, and we set the maximum catchment area to a 90-minute drive. In 2018, only 24,152 patients out of 761,057 (3.2%) had travel duration greater than 90 minutes for cancer related pathways. This is low enough to consider that care centers are non-reachable beyond this distance. We divide the catchment area into 3 intervals: $I_1 = (0, 30], I_2 = (30, 60]$ and $I_3 = (60, 90]$. The associated weights are respectively $W_1 = 1$, $W_2 = 0.042$ and $W_3 = 0.09$. These sub catchment areas are set based on the cancer pathways travel duration distributions and validated with medical experts. The weights are the same than the e2SFCA paper [17].

For privacy reasons, municipalities with small populations are grouped in entities called “geographic codes” in the PMSI data. We decided to compute the accessibility score for each geographic code and municipalities that are grouped in the same code will have the same accessibility score.
Accessibility optimization

We are now interested in improving the current accessibility distribution, by modifying the care centers capacities S_u. We model the problem as an optimization task. In our case, we want our optimization algorithm to find new care centers capacities given some constraints, so that the total accessibility is maximum. We apply optimization on a given region only, rather than on the whole metropolitan France. We chose this approach because healthcare planning is handled regionally rather than nationally. We show below that our optimization problem is a Linear Programming problem.

In its standard form, Linear Programming finds a vector x that maximizes $c^T x$ under constraints $Ax \leq b$, where A is a matrix and b a vector. Boundaries can be set to x such as $x \geq 0$. Consider x_u the new capacity of a care center u, to be computed by the algorithm. Let Q_u and W_u be two vectors of size m, defined as follows:

$$Q_u = \sum_{s=1}^{r} W_s \sum_{d_iu \in I_s} S_{u}$$

$$W_u = \sum_{s=1}^{r} \sum_{d_iu \in I_s} W_s$$

We can compute the total accessibility as a sum on the m care centers:

$$\sum_i A_i = \sum_{s=1}^{r} \sum_{d_iu \in I_s} W_s \sum_{d_iu \in I_s} S_{u}$$

$$\sum_i A_i = \sum_{s} \sum_{d_iu \in I_s} W_s S_{u}$$

$$\sum_i A_i = \sum_{u} \frac{s_u}{Q_u} \sum_{s} \sum_{d_iu \in I_s} W_s$$

$$\sum_i A_i = \sum_{u} \frac{s_u}{Q_u} W_u$$

The equation (3) can be rewritten in the Linear Programming standard form with:

$$c = \frac{W_u}{Q_u}$$

$$x_u = S_u$$

$$b \geq \sum_u x_u$$

$$x_{u_{min}} \leq x_u \leq x_{u_{max}}$$

The user-defined parameters are b, $x_{u_{min}}$ and $x_{u_{max}}$. b is the total capacity to be shared across all the care centers. $x_{u_{min}}$ and $x_{u_{max}}$ are the capacity boundaries for care center u. If b is set to the current total capacity, a care center can’t be grown unless another one is decreased. If $b > \sum_u x_u$, the capacity of care centers can be increased without decreasing other centers. We know how to solve Linear Programming and we used the SciPy [18] implementation of the revised simplex method as explained in [19].

We now detail how we set the user-defined parameters to apply the Linear Programming algorithm to our specific case. The additional capacity was set as +3% of the overall activity of the region’s care centers: $b = 1.03 \times \sum_u x_u$. The choice of the boundaries $x_{u_{min}}$ and $x_{u_{max}}$ is crucial and must be realistic. We studied the hospitals activity on the past four years (2016 to 2019) to retrieve the average growth percentage of a care center. The growth percentage is computed as follows: $(S_{2019} - S_{2016})/S_{2016}$. Among the care centers that grew and who had an existing oncology activity, the mean growth percentage was 23%, as illustrated on Sup. Figure 9-E. Hence, we set $x_{u_{max}}$ as +20% of the care center capacity. Regarding $x_{u_{min}}$, we set the boundary based on the cluster of the care center. For the three most specialized clusters, we set their $x_{u_{min}}$ equal to their current activity. We did this to prevent the algorithm from decreasing the most specialized and well-equipped care centers. Regarding the care centers from the other clusters, $x_{u_{min}} = 0$, so that they could be
empty if need be. Finally, we set $x_{u,\text{max}} = 0$ if the care center belongs to the least specialized cluster. The new capacities are indicative and should be further investigated to make sure they are relevant. Especially when setting an existing oncology activity to 0.

Web application

We developed a web application that allows the users to run the optimization algorithm in any region with the parameters they want. The application displays accessibility results and optimization outcomes on an interactive map with additional plots. The user can browse the list of care centers by cluster and the list of municipalities with their accessibility scores. The web application is available at https://oncology-accessibility.com.

Results

In 2018, the population in France was 66,993 million. Mainland France hosts 64,812 million inhabitants (96.8%), while the remaining 2,181 million (3.2%) live in overseas departments and regions\(^3\). Metropolitan France is divided into 13 administrative regions and 96 departments. The population density in France is unevenly distributed\(^4\). In 2020, the overall population density in metropolitan France was 119 inhabitants per square kilometer. Ile-de-France region has the highest population density with 1,022 inhabitants per square kilometer. Density in other regions in metropolitan France range between 40 and 187 inhabitants/km\(^2\). Denser areas are located near the coastline and around the largest cities like Paris, Marseille, Lyon, Strasbourg, Toulouse, or Bordeaux. The middle of the country is rural, and the population densities are low. While there are a great variety of regions and landscapes, the country is becoming more urbanized. This “rural exodus” is largely responsible of what is known as the “empty diagonal”, a band of very low-density population that stretches from the southwest to the northeast.

We now describe the spatial distribution and specificities of the 1,662 hospitals included in this study. There are different types of hospitals in France: CH\(^5\) (n=667) and CHR/U\(^6\) (n=142) are state-run hospitals; CLCC\(^7\) (n=26) and PSPH/EBNL\(^8\) (n=142) are both private hospitals of collective interest, though CLCC are oncology dedicated; private hospitals (n=606) are privately run and for-profit. The non-MCO care centers with radiotherapy activity (n=79) are mostly private practice structures and are referred as “Other”. Table 1 shows the number of care centers and their oncology activity per hospital type and region. Most of the care centers are public, but a non-neglectable part are private. CLCC represent only 1.6% of the care centers, yet they are responsible for 14.2% of the overall oncology activity. The care centers are unevenly distributed across the country. For instance, Corse and Centre-Val-de-Loire are the only two regions with no CLCC care centers. Moreover, the proportion of oncology activity per hospital type varies from a region to another. For instance, in Nouvelle-Aquitaine, 47.1% of the

\(^3\)https://www.insee.fr/fr/statistiques/3692693
\(^5\)Centre Hospitalier
\(^6\)Centre Hospitalier Régional / Universitaire
\(^7\)Centre de Lutte Contre le Cancer
\(^8\)Participant au Service Public Hospitalier / Établissement à But Non Lucratif
oncology activity is handled by private care centers, whereas in Provence-Alpes-Cote-d’Azur it is 21.4%.

Care centers characterization

While it is obvious that CLCC care centers are suited for oncology care, it is difficult to assess the degree of oncology specialization for other care centers. Our clustering algorithm assigns the n=1,662 care centers into 8 clusters, sorted by oncology specialization. **Figure 1** shows the distribution of some of the key health services per cluster. These services are biology, radiotherapy, chemotherapy, cancer surgery, intensive unit, palliative care, oncology unit, medication circuit, surgery, and outpatient surgery. The three oncology services are cancer surgery, radiotherapy, and chemotherapy. We see that care centers from clusters 1 (n=79) and 2 (n=39) all have these 3 services, hence they are the most suited hospitals for oncology care. Centers from cluster 3 (n=451) have cancer surgery and chemotherapy but lack radiotherapy. The most part of the n=381 centers from cluster 4 have cancer surgery, but no radiotherapy nor chemotherapy. Care centers from cluster 5 (n=2) and cluster 6 (n=7) have radiotherapy and chemotherapy services, but no cancer surgery. Care centers in cluster 7 (n=77) are dedicated to radiotherapy and mostly private practice structures. Finally, care centers 8 (n=626) have none of the 3 oncology services. To sum up, hospitals from clusters 1 and 2 (n=118) are “all-in-one” care centers that provide the most “ideal” oncology care. Centers from clusters 3 and 4 (n=382) provide oncology care but will have to be coordinated with additional structures during the pathways. Hospitals within clusters 5, 6 and 7 (n=86) are not allowed to perform cancer surgery but provide chemotherapy or radiotherapy. The remaining n=626 care centers in cluster 8 are not equipped for oncology care. Hospital types are unevenly distributed among the clusters as illustrated on **Sup. Figure 2**. For instance, 76.9% of the CLCC care centers are placed in cluster 1, as they are the most specialized centers. In cluster 7, we find external radiotherapy units of some CLCC centers, and private practice structures. The proportion of private care centers varies as well: cluster 1 has almost no private care center while cluster 2 has 61.5% of private hospitals. Moreover, most of the oncology activity is handled by care centers from clusters 1 and 3, as seen on **Sup. Figure 3**. Also, the overall oncology activity from the n=79 centers in cluster 1 is almost as large as the activity of the n=451 hospitals from cluster 4.

Accessibility score

We computed the spatial accessibility score to these care centers for every municipality in metropolitan France, using the e2SFCA algorithm and oncology activity as supply variable. We compared the accessibility distributions with e2SFCA vs. regular 2SFCA. The accessibility was lower with e2SFCA because of the weight decay. We also studied the influence of the supply variable in the accessibility score. Accessibility is much higher if we use the number of medical, surgery and obstetric (MCO) stays as supply, instead of the oncology activity (**Sup. Figure 5**). This makes sense since oncology care centers are less common and the overall MCO activity is higher than the oncology activity. The oncology accessibility is unevenly distributed across the country, as displayed on **Figure 2**. For better readability, we cut the accessibility scores into 5 quantiles. Q5 colored in dark green contains the top 20% accessibility municipalities, and Q1 in light yellow contains the
bottom 20% ones. The lowest accessibility zones are mostly located in the center of the country and in mountainous regions like the Alps or the Pyrenees. Plot (B) shows that most of the population (51.6%) lives in top 20% accessibility municipalities, while 6.3% lives in the bottom 20% quantile. On map (A), care centers are displayed as squares, colored by cluster index, and sized by oncology activity. We see that accessibility is highest near the most specialized care centers. Indeed, the proportion of care centers from specialized clusters decreases in lower accessibility quantiles (C). We then ranked the departments by median accessibility and showed the top-10 and bottom-10 on plot (D). Among the top-5 departments, 4 are in Ile-de-France. Departments from the bottom-10 are rural or mountainous areas like Lozère and Alpes-de-Haute-Provence. We notice disparities within departments as well, as outlined by the large interquartile range in Hérault or Alpes-Maritimes. On the contrary, this spread is very narrow in Ile-de-France departments.

Accessibility score should be put into perspective with population density. Overall, the denser municipalities have a median accessibility around 0.02 (Sup. Figure 8). Municipalities with low population densities have more extreme values. Figure 3 compares accessibility and population density for three different regions: Provence-Alpes-Cote-d’Azur (A), Ile-de-France (B), and Bourgogne-Franche-Comté (C). Municipalities are displayed as squares, colored by accessibility quantile, and sized by population density. These regions show very different profiles. In Provence-Alpes-Cote-d’Azur (A), accessibility is essentially low in non-dense municipalities near the Alps. However, in Bourgogne-Franche-Comté (C), we see dense municipalities with poor accessibility scores, representing a large proportion of the region. We also drew similar maps (D, E and F) where municipalities are colored based on the average travel duration for patients with cancer in 2018. We see that the average travel time is higher in municipalities with poor accessibility scores. The surface percentage with low accessibility varies from a region to another. For instance, in Bourgogne-Franche-Comté, 34.5% of the region has a Q1 accessibility, that is 15.6% of the region’s population. Sometimes, the Q1 surface can be large but might contain very few inhabitants. This happens in Ile-de-France, where 15% of the surface is Q1 accessibility, representing less than 1% of the region’s population. Finally, we compared our accessibility score with the department exit ratio, by municipality (Sup. Figure 6). Department exit ratio is defined as the proportion of cancer patients who visited a care center outside from their department of residence and was computed using the PMSI database. In Provence-Alpes-Cote-d’Azur, the exit ratio is higher in departments with low accessibility scores and few oncology specialized care centers, as in Alpes-de-Haute-Provence and Hautes-Alpes. While the Var department has some oncology centers, exit ratio remains high since larger care centers are in Marseille and Nice.

We now focus on the region Provence-Alpes-Cote-d’Azur. This region is the far southeastern on the mainland. The region’s population was 5,048 million in 2018. Its prefecture and largest city is Marseille. The region contains six departments. Bouches-du-Rhone, Var and Alpes-Maritimes are located on the coastline and gather the largest cities like Marseille, Nice, or Toulon. Alpes-de-Haute-Provence, Vaucluse, and Hautes-Alpes are inland departments, with a majority of rural and mountainous areas. Results are shown on Figure 4. By
comparing maps (A) and (B), we confirm that the accessibility is maximum in denser areas of the region. Average patients travel time are displayed on map (C) and we drew the major roads (primary, motorway and truck) in red. The road system is well developed on the coast, rallying the larger cities of the region. However, driving from the rural areas in the Alps to the major cities is hard, resulting in higher travel times. The accessibility is unevenly spread within the departments, especially in Alpes-Maritimes where the distribution is multi-modal (D). There, cities like Nice and Cannes have large hospitals thus good accessibility, while the northern areas of the department are mostly mountains. Accessibility is higher in municipalities with dense populations, for all the departments (E). Finally, the average travel time decreases when the accessibility score increases. This makes sense since the accessibility score was computed based on the driving distance between population locations and care centers. However, it confirms that patients living in poor accessibility zones effectively travel further to seek oncology care. In Bouches-du-Rhone, nearly all the municipalities have an average travel time lower than 30 minutes, while in Alpes-de-Haute-Provence, average travel times are rarely lower than 60 minutes (F).

Accessibility optimization

Since we focused on describing the accessibility situation in Provence-Alpes-Cote-d’Azur, we now present the outcomes of our optimization algorithm in this same region. The algorithm was run with the user-specified parameters stated in the Methods Section: we chose to increase the overall oncology activity in the region by 3% (+3,221 activity) and capped care centers to a 20% maximum growth. The median accessibility in the region went from 0.0093 to 0.0103, a 11.1% increase. The results are shown on Figure 5. Map (A) displays the accessibility delta ($A_{after} - A_{before}$) as well as the care centers eligible to grow. Centers from cluster 8 were hidden since we considered that they couldn’t provide any oncology activity. The algorithm identified a list of 26 care centers where the oncology activity could grow to maximize the total accessibility in the region. These centers are either public or private hospitals, primarily located in the Avignon and Gap areas. The care centers located in high accessibility areas near Marseille and Nice were ignored by the algorithm because improving these zones is not a priority. The care center that grew the most is Clinique Sainte Catherine, in Avignon. Interestingly, this care center was recently bought by the Unicancer group, which coordinates all the cancer centers in France. This hospital’s type will change to become a new CLCC. Thus, it is expected to grow in the next years and to be equipped with more oncology services and staff.

While we described the results in Provence-Alpes-Cote-d’Azur region, we ran the algorithm with similar parameters on every region in metropolitan France. The results are available in the Supplementary Materials and on the web application. We observe two types of optimization strategies. For most regions, the algorithm manages to find a couple of areas where the accessibility can be locally improved, like it did in Provence-Alpes-Cote-d’Azur near

9 https://oncology-accessibility.com
Gap and Avignon. However, for regions like Ile-de-France and Haut-de-France, the hospital capacity increase is more uniformly distributed across the region. Most of the time, the algorithm left untouched the large care centers located in dense cities with good accessibilities. This can be explained by the relatively low value of the additional activity parameter: with a very large value of additional activity, every care center will grow. If we keep it low, the algorithm identifies in which areas hospital capacity should be increased in priority.

Discussion

We observe disparities in both care centers and their accessibility. The clustering algorithm successfully groups similar hospitals and lets us identify the care centers best suited for oncology care. Some variables in the SAE survey are declarative and potentially differ from the reality. We are aware of this bias, but we do not expect major differences that could distort our clustering results.

Receiving treatment in a care center with surgery, chemotherapy and radiotherapy activities is easier for the patient and leads to better care pathways. Care centers from cluster 1 will be the better choice for cancer treatment and correspond to modern oncology care specifications. However, these centers are a minority and sparsely located, essentially in dense areas and in large cities. While the inhabitants of large cities and metropolitan areas will have no problem reaching them, rural areas residents live far away from these centers. This population often has better access to care centers from intermediate clusters. Such centers do not have all the key services and the patients are more likely to visit multiple hospitals during their care pathways.

Longer drives to reach a more specialized care center could be considered more acceptable for surgery, where the hospital volumetry and surgeon expertise matter. However, for more frequent interventions like chemotherapy and radiotherapy especially, patients should prioritize short travels. There is a tradeoff to be found by patients, between care center proximity and care center expertise. This dilemma will be more frequent for patients living in rural areas than patients living in dense cities with large care centers nearby.

Specific attention should be given to municipalities with very poor access to oncology care centers. While we saw that most of the population lives in high accessibility areas, around 6% of the population lives in the bottom 20% accessibility quantile. Among these municipalities, some are very rural and mountainous like those in the Alpes-de-Haute-Provence in Provence-Alpes-Cote-d’Azur region. Such areas cannot be expected to have a very good healthcare coverage. By contrast, the case of suburban areas with relatively dense population and poor accessibility should be addressed more easily. Our optimization algorithm can help driving public health policies, as it effectively identifies areas where accessibility could grow, by allocating additional oncology activity to a restricted number of care centers. The proposed growth factors are indicative and do not have to be effective within a year, as it represents a considerable effort for care centers to increase their activity.

Our oncology accessibility score is deliberately non-specific to cancer type. This score is meant to outline how easy it would be for a population location to reach a first entry point for oncology care. Here, we are only focusing on surgery, chemotherapy, and radiotherapy treatments. The same
technique could be used on a specific cancer type, the method will remain the same, only the supply variable used in the accessibility score will change. We should mention that spatial accessibility is better suited for pathologies that are relatively well handled across the whole country. Accessibility for rare diseases like pediatric cancer or complex cancers that require a specific expertise is less informative because only a handful of care centers are indicated.

Similarly, we could compute an accessibility score that is focused on specific kinds of stays: our web application lets the user pick between surgery, chemotherapy, or radiotherapy as supply variable.

The quality of oncology care is linked with the care centers’ volumetry. A care center with a very low activity is less likely to provide decent care. As a result, the French National Institute of Cancer (INCa) defined several thresholds [20] that forbid care centers with very low activity to keep operating. Similarly, the care quality in a saturated care center won’t be good either, since patients are more likely to wait longer before diagnosis or between interventions. While it is easy to spot care centers with low activity, it is harder to judge if a care center is over-crowded, and we should be careful when attributing new activity to the hospitals. We based the 20% max growth out of the previous centers’ activity increase. This percentage could be tailored to the center cluster or current activity. Volumetry is not the only factor determining care quality. More sophisticated indicators like average delay between diagnosis and first treatment can tell whether a care center is in line with the care pathways recommendations. Care centers with activities lower than the thresholds, or with a large proportion of degraded pathways should be handled with care by our algorithm.

Accessibility optimization depends on many factors and healthcare professionals will not have the same uses for our algorithm. Some may consider that for a care center to grow another should decline, where others would rather not decrease any centers’ activities. Moreover, the healthcare planning is very different from a region to another, and even within the regions departments are showing disparities. Hence, we cannot expect the algorithm to be used with the same parameters on every region. For all these reasons, we believe that providing a web application[10] to run the algorithm and choose the parameters is the most useful way to help healthcare professionals improve the current situation.

Our work is in line with the French “cancer plan” [21] that emphasizes the importance of increasing accessibility to oncology care as well as minimizing disparities across the country. The government mandated INCa to work on the accessibility development. This study and the web application we developed could help when attributing the care centers authorizations. Working closely with researchers from INCa and public health professionals could have a major impact on the oncology care spatial organization in metropolitan France, benefiting millions of patients.

We ran this method in metropolitan France, but it could work on any country if data on hospitals and municipalities are available.

[10]https://oncology-accessibility.com
Acknowledgements

The authors thank Thomas Ansart and the Sciences Po cartography workshop for helping us to improve our figures. We also thank Julien Guerin and Johan Archinard, from the Data Factory at Institut Curie, who helped us to deploy our web application. Finally, we thank Hakim Idjis, Marc-Felix Degni and Olivier Auliard and their team at Capgemini Invent, who helped us to extract the driving routes with OpenRouteService.

Funding

This work was supported by Institut Curie Paris.

Disclosure

The authors have declared no conflicts of interest.

References

Table 1: Number of care centers (N) and overall oncology activity (A) per hospital type and region. Oncology activity is the sum of the number of patients with radiotherapy or chemotherapy, and the number of medical or surgery stays related to cancer. CH and CHR/U are public hospitals; CLCC and PSPH/EBNL are private hospitals of collective interest, though CLCC are oncology dedicated; private hospitals are for-profit. “Other” hospitals are mostly private practice radiotherapy structures. The percentages sum to 100% row-wise. In Nouvelle-Aquitaine, 47.1% of the oncology activity is handled by private care centers, whereas in Provence-Alpes-Côte d’Azur it is 21.4%.
Figure 1: Distribution of the care centers services and equipment per cluster. Each radar plot axis shows the percentage of the care centers within the cluster that have the corresponding attribute. In Cluster 1, the care centers have all the listed services. In cluster 8, the centers have almost none of the services. Care centers from cluster 1 (n=79) and cluster 2 (n=39) are the most suited for oncology care.
Figure 2: Distribution of the accessibility score computed with enhanced two step floating catchment area (e2SFCA), in metropolitan France. Plot (A) shows municipalities colored by accessibility quantile. The care centers are drawn as squares, colored by cluster, and sized by oncology activity. Plot (B) shows the total population by accessibility quantile. Plot (C) displays the percentage of care centers by cluster by accessibility quantile. Plot (D) shows the top 10 and bottom 10 list of the departments, ranked by median accessibility.
Figure 3: Comparison of population density with accessibility scores and patient average travel time for cancer pathways. Showing results in three regions: Provence-Alpes-Côte d’Azur (A, D), Ile-de-France (B, E) and Bourgogne-Franche-Comté (C, F). Municipalities are drawn as squares, sized by population density and colored by either accessibility quantile (A, B, C) or patient average travel time (D, E, F).
Figure 4: Accessibility distribution in Provence-Alpes-Cote-d'Azur region. Map (A) shows the region accessibility distribution per municipality. Map (B) displays the population density discretized in 5 bins. The map on plot (C) displays the average travel time for cancer pathways. Large roads (primary, motorway and trucks) are drawn in red. Plot (D) shows the accessibility distribution per department of the region. Plot (E) shows the accessibility distribution by municipality population density and department. Plot (F) compares the accessibility score from municipalities with the average travel time for cancer pathways.
Figure 5: Accessibility delta in PACA region after running the optimization algorithm. Map (A) displays the accessibility delta ($A_{after} - A_{before}$) by municipality. Plot (B) shows the capacity delta ($C_{after} - C_{before}$) distribution. Capacity was defined as the oncology activity: the number of patients with chemotherapy or radiotherapy and the number of medical or surgery stays related to oncology. We show the list of the care centers that grew the most (C) and by how much. For instance, the hospital “Institut Sainte Catherine” in Avignon, was assigned a +1,030 capacity, for a total of n=6,179. Additional activity was 3,221, 26 centers grew and 1 decreased. Median accessibility before optimization was 0.0093 and 0.0103 after, corresponding to a 11.1% increase. Accessibility increased around cities like Avignon and Gap. Care centers near Nice were left unchanged by the algorithm.