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Abstract:  

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully 

understood. To approach this problem, we measured 4,701 circulating human protein 

abundances in two independent cohorts totaling 986 individuals. We then trained prediction 

models including protein abundances and clinical risk factors to predict adverse COVID-19 

outcomes in 417 subjects and tested these models in a separate cohort of 569 individuals. For 

severe COVID-19, a baseline model including age and sex provided an area under the receiver 

operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4,701 unique 

protein abundances improved the AUC to 88% in the training cohort, which remained relatively 

stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from 

different adverse COVID-19 outcomes were enriched for cytokine and cytokine receptors, but 

more than half of the enriched pathways were not immune-related. Taken together, these 

findings suggest that circulating proteins measured at early stages of disease progression are 

reasonably accurate predictors of adverse COVID-19 outcomes. Further research is needed to 

understand how to incorporate protein measurement into clinical care.  
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Introduction: 

A remarkable feature of COVID-19 disease is its highly variable clinical course, where some 

individuals manifest severe disease or death, and others remain asymptomatic. Several clinical 

and genetic risk factors explain a proportion of these outcomes1–5, yet most of the host 

biological causes of these adverse COVID-19 outcomes remain unknown. 

Recent reports have identified some of the biologic pathways influencing risk of adverse 

COVID-19, such as immune responses6–9, interferon pathways10–12, and T-cell dysfunction13,14. 

However, many such studies have focused on narrow sets of pre-selected cytokines. One way 

to rapidly assess thousands of potential biomarkers associated with the severity of COVID-19 is 

through the measurement of blood circulating proteins. Such circulating proteins may be useful 

because they can help to identify pathways influencing severity of disease. They may also 

identify individuals at high risk of a severe COVID-19 clinical course. Similarly, circulating 

proteomic biomarkers have recently been shown to serve as predictors of other common 

diseases15–21 including cardiovascular disease. They are also relevant in drug discovery 

because they are generally more accessible to pharmacological manipulation than intracellular 

proteins22–26. Thus, understanding the circulating proteins associated with adverse COVID-19 

outcomes may be helpful to address major challenges raised by the current pandemic13,27–38. 

We undertook a large-scale study to assess the relationship of thousands of circulating proteins 

with COVID-19 outcomes. To do so, we used machine learning methods to develop a predictive 

model of COVID-19 severity using the circulating blood protein abundances as predictors. 

Proteins were measured using 4,984 nucleic acid aptamers (SOMAmer reagents)39 targeting 

4,701 unique circulating human proteins in two cohorts collected from two countries, which in 

total included 986 individuals. The training cohort was comprised of 417 individuals from two 

sites of the Biobanque Québécoise de la COVID-19 (BQC19 cohort). This cohort was used to 

train a model to predict adverse COVID-19 outcomes. This model was then tested in a separate 

test cohort from the Mount Sinai Hospital in New York City, which was similarly characterized for 

the same protein measurements and COVID-19 outcomes.   

This large-scale study across two countries and two geographically separated cohorts identified 

circulating proteins associated with COVID-19 outcomes measured at a large-scale in well-

characterized cohorts. These findings provide insights into the biological pathways influencing 

these outcomes and the ability of proteomics to predict these outcomes. 
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Results: 

Cohorts 

To establish a proteomic-based prediction model for adverse COVID-19, we used the BQC19 

cohort, which consisted of samples from two hospitals in Montreal, with proteomic 

measurements for training and cross-validation. The final model was tested in an independent 

cohort from Mount Sinai hospital in New York City. Using the same SomaLogic® assay, 4,984 

SOMAmer reagents measured the levels of 4,701 different circulating proteins in both the 

BQC19 and Mount Sinai cohorts. To train our models, we selected 417 individuals which 

included 313 nasal swab SARS-CoV-2 PCR positive patients with baseline samples collected 

within 14 days of symptom onset (mean and median time since symptom onset in COVID-19 

patients = 7.0 days (SD = 3.96 days)). The BQC19 cohort also included an additional 104 

individuals who presented to the same hospital sites with symptoms consistent with COVID-19 

but had a negative SARS-CoV-2 PCR nasal swab. The Mount Sinai cohort consisted of 569 

individuals with their earliest samples also collected within 14 days of symptom onset. Among 

them were 472 SARS-CoV-2 positive patients again confirmed by PCR, one patient confirmed 

by chest CT, and 96 SARS-CoV-2 negative individuals (89 with PCR confirmation). If multiple 

blood samples were collected from the same person, we used the samples collected at the time 

point closest to symptom onset. We chose to use samples close to symptom onset to reflect the 

proteome of acute COVID-19, rather than its recovery phase. 

The demographic and clinical characteristics of the participants in the training and testing 

datasets are shown in Table 1. In the BQC19 cohort, the mean age across all samples was 

65.3 years (SD = 18.4 years), and 52% of the cohort were men. In the Mount Sinai cohort, the 

mean age was 59.6 years (SD: 19.4 years), and 58.2% of the cohort were men.  

For the definition of adverse COVID-19 outcomes, we focused on two levels of severity: 1) 

severe COVID-19 was defined as individuals who died or required any form of oxygen 

supplementation; and 2) critical COVID-19, defined as individuals who died or experienced 

severe respiratory failure (requiring non-invasive ventilation, high flow oxygen therapy, 

intubation, or extracorporeal membrane oxygenation). Detailed definitions of these adverse 

outcomes are described in Methods. The overall study design is shown in Figure 1, which 

outlines the training and testing stages of the study. Consistent with recent successful large-

scale genetic studies, we defined controls as all participants not meeting case criteria1. 
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In the BQC19 training cohort 175 individuals were classified as severe cases and 242 

individuals were controls. The controls for severe COVID-19 were comprised of 138 SARS-

CoV-2 positive individuals not meeting case definition and 104 SARS-CoV-2 negative 

individuals. In the case of critical disease, 93 individuals out of 313 COVID-19 positive patients 

were classified as critical cases and 324 individuals were controls. The controls for critical 

COVID-19 cases were 220 SARS-CoV-2 positive individuals not meeting case definition and 

104 participants who were SARS-CoV-2 negative. In the Mount Sinai testing cohort, 392 

individuals were classified as severe cases and 177 individuals were controls while for critical 

disease 233 individuals were cases and 336 were controls. Generally, severe, or critical COVID-

19 cases were older than controls in both the training dataset and the testing dataset. Males 

were also more likely to have severe or critical COVID-19 as compared to females (Table 1). 

The age and sex distribution of the participants stratified by case/control status for the two 

COVID-19 severity outcomes are shown in Supplementary Figure 1. The distributions suggest 

that males who develop severe or critical COVID-19 are generally younger than females. 

Association of Protein Abundance with COVID-19 Outcomes 

In order to directly assess if any of the measured proteins were associated with COVID-19 

severity, we used multivariable logistic regression to test the association of each of the 4,984 

SOMAmer reagents with the two COVID-19 outcomes while adjusting for age, sex, sample 

processing time, and hospital site in the BQC19 cohort. These variables were chosen because 

they are readily available in the course of clinical care, representing the minimum set of 

variables to predict outcomes. Logistic regression identified 1,531 SOMAmer reagents to be 

associated with severe COVID-19 (Supplementary Table 1) and 1,592 SOMAmer reagents 

(Supplementary Table 2) to be associated with critical COVID-19 when using a Benjamini-

Hochberg corrected p-value of 0.01 (Supplementary Figure 2). 

Model Selection and Performance Using LASSO 

One reason why many circulating proteins were associated with COVID-19 severity is that most 

of the protein levels were highly correlated with each other. Therefore, we used L1 regularized 

multivariable logistic regression models (LASSO)40 to select uncorrelated proteins that best 

predicted COVID-19 outcomes in the BQC19 training cohort. We did so for three reasons: 1) 

LASSO performs well when the number of features is greater than the number of samples (as 

was the case in our experiment); 2) LASSO forces many correlated features to have a zero 
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coefficient by randomly selecting one of the features (sometimes more than one) from a group 

of correlated features thereby preventing collinearity; 3) LASSO mitigates the possibility of 

overfitting40. 

We first defined a baseline model which included only the four covariates in the logistic 

regression model: age, sex, sample processing time, and hospital site to predict COVID-19 

outcomes. We then evaluated whether the addition of proteins would aid in identifying which 

patients developed severe COVID-19 by adding 4984 SOMAmer reagents to the baseline 

model. This model, which included baseline covariates and protein levels, is termed the “protein 

model”. To train both the baseline and the protein models, we performed 10 repeats of stratified 

5-fold cross-validation using LASSO logistic regression in the BQC19 cohort on both the severe 

and critical outcomes. We tuned the penalty parameter “lambda” across each of the 50 cross-

validations and selected the lambda value corresponding to the model with the highest area 

under the receiver operator characteristic curve (AUC), which was averaged over the 50 cross-

validation results. Results from the lambda parameter search are shown in Supplementary 

Figure 3A-B.  

For the best performing model predicting the severe COVID-19 outcome, we selected a log10 

lambda value of -1.5 which generated an average training AUC of 59% for the baseline model. 

We next selected a log10 lambda value of 1.0, which generated an average AUC of 88% for the 

protein model. For the best performing model predicting the critical COVID-19 outcome, we 

selected log10 lambda values of -2.0 and 1.0 corresponding to average cross-validation training 

AUC scores of 59% and 89% for the baseline and protein model, respectively (Figure 2A-B). 

We then used these chosen lambda hyperparameters to build baseline and protein models for 

severe and critical COVID-19 using the entire BQC19 cohort and evaluated their performance in 

the independent external test cohort from Mount Sinai. 

When testing the prediction of severe COVID-19 in the independent Mount Sinai cohort, AUC 

performance of the baseline model improved from 59% in the BQC19 training cohort to 65% in 

the Mount Sinai testing cohort. The AUC of the protein model decreased slightly between 

training and testing (88% vs. 86%). 

The AUC of the protein model for predicting critical COVID-19 also decreased from a training 

score of 89% to 80% in the test set. In contrast, prediction of the critical COVID-19 outcome 

using the baseline model was consistent between training and test performance (AUC: 59%). 
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The stability of these AUC estimates in the test cohort suggested that both protein models were 

robust. 

The classification performance of the baseline and protein models in the Mount Sinai cohort is 

shown as two-by-two contingency tables in Figure 2C. The baseline and protein models used 

thresholds of 0.417 and 0.486 to predict severe COVID-19, respectively. These thresholds were 

selected by computing Youden’s J statistic during training and determine the threshold that 

maximized the sum of the sensitivity and specificity scores during training. The thresholds 

selected were roughly consistent with the case to control ratio in the BQC19 cohort used for 

training (175 cases, 242 controls). The protein model achieved a sensitivity of 73.2% compared 

to 61.0% for the baseline model, and a specificity of 79.7% compared to 60.5% for the baseline 

model, when predicting the severe COVID-19 outcome (Figure 2C).  

When predicting critical COVID-19 using the baseline and protein models, thresholds of 0.202 

and 0.255 were used to predict cases, respectively, using the same method. The low threshold 

for predicting critical COVID-19 cases is consistent with the case to control ratio in training 

which was 93 to 324 samples. The baseline model achieved a sensitivity / specificity score of 

50.2% / 57.4% while the protein model achieved 74.3% / 69.6%, suggesting that the protein 

model trained to predict critical COVID-19 had decent power to classify true positives and true 

negatives (Figure 2C).  

Furthermore, both the baseline and protein models demonstrated higher positive predictive 

values than negative predictive values when predicting the severe COVID-19 outcome, 

compared to the critical outcome. In contrast, these models produced higher negative predictive 

values than positive predictive values when predicting critical COVID-19. 

Overall, these results suggest that the protein models predicting severe and critical COVID-19 

both perform reasonably well in terms of the trade-off between sensitivity and specificity. The 

protein model is sensitive (73.2%) at identifying severe COVID-19 cases and similarly sensitive 

(74.3%) at identifying critical COVID-19 cases. Further, the positive predictive value for severe 

COVID-19 was high at 88.9%, while the negative predictive value was 57.3% (Figure 2C). 

These results suggest that a protein model could predict severe COVID-19 with relatively high 

confidence. 

Proteins Prioritized by LASSO to Predict COVID-19 Severity Outcomes 
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To predict the severe COVID-19 outcome, the best performing protein model selected 92 

proteins along with age and sample processing time (Figure 3, Supplementary Table 3). 

Assessing the correlation of all 92 proteins, we found that, as expected, most of the proteins did 

not correlate with each other (mean absolute Spearman’s ρ = 0.17) (Supplementary Figure 

5A). Of 8464 total correlations (92 x 92), 8372 correlations (98.9%) had Spearman's absolute ρ 

< 0.8. 

Next, when predicting the critical COVID-19 outcome, the best performing protein model 

retained age, sample processing time, and 67 proteins (Figure 3, Supplementary Table 4). 

The absolute effect estimates of these proteins were generally larger than the severe COVID-19 

model proteins (mean: 0.081 vs. 0.077). As expected, the 67 selected proteins also showed low 

levels of correlation (mean absolute Spearman’s ρ = 0.15) (Supplementary Figure 5B). Of 

4489 total correlations (67 x 67), 4422 correlations (98.5%) had Spearman's absolute ρ < 0.8. 

The correlation between the 92 and 67 proteins selected to best predict severe and critical 

COVID-19 outcomes is shown in Figure 3. Out of 6164 total correlations (92 x 67), 6150 

correlations (99.8%) had Spearman's absolute ρ < 0.8. In general, proteins selected for 

predicting severe versus critical COVID-19 were not highly correlated (mean absolute 

Spearman’s ρ = 0.15). A hierarchically clustered heatmap after removal of the 14 common 

proteins in severe and critical COVID-19 showed that the proteins selected in predicting both 

outcomes were also generally uncorrelated with one another where 99.2% of the correlations 

had Spearman's absolute ρ < 0.8 (Supplementary Figure 5C). 

The percent of selected proteins for the prediction of severe and critical COVID-19 that were 

cytokines or chemokines was only 5.4% and 4.5%, respectively. Cytokine IFNA7, as well as 

chemokines CXCL13, CXCL10, CCL7, and CCL8 were present in the proteins selected for 

predicting severe COVID-19. Three chemokines, CXCL13, CXCL10, and CCL7 were selected 

for predicting critical COVID-19. Importantly, among the 14 overlapping proteins, those three 

chemokines, CXCL13, CXCL10, and CCL7 were selected for predicting both severe and critical 

COVID-19.  

In addition, we clustered the 4,984 SOMAmer reagents using uniform manifold approximation 

and projection (UMAP) to reduce the feature space to a 2-dimensional space and highlighted 

the position of the model-selected proteins predictive of either severe or critical COVID-19. Our 

results suggested that LASSO selected proteins were sparsely distributed across the clusters 

(Supplementary Figure 6). This provides further evidence that: 1) few of the selected proteins 
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are closely clustered with one another in UMAP space and 2) the proteins selected from the 

severe protein model and critical protein model were also quite distant from each other in UMAP 

space. Finally, we performed pathway analysis on common proteins with non-zero effect 

estimates that were included in the best predictive models of severe and critical COVID-19. 

Since LASSO is designed to pick one protein from a group of correlated proteins regardless of 

their biological relevance, we also included proteins highly correlated (Spearman's absolute ρ > 

0.75) with the proteins selected by LASSO for the enrichment analysis. As a result, 171 proteins 

were included in the severe group (92 LASSO selected proteins and 79 correlated proteins, 

Supplementary Table 5); and 96 proteins were included in the critical group (67 LASSO 

selected proteins and 29 correlated proteins, Supplementary Table 6). Among which, 32 

proteins were common between the severe and critical groups. 

We found that these 32 proteins were enriched in 35 pathways (g:SCS adjusted p value < 0.05), 

among which 15 were directly related to immune responses (Supplementary Figure 7, 

Supplementary Table 7). Prominent pathways included viral protein interaction with cytokines, 

cytokine and cytokine receptors (IL22RA1, TNFRSF10B, CCL7, CXCL10, CXCL13, adjusted 

P=0.0008) and cytokine-cytokine receptor interactions (CD4, IL22RA1, TNFRSF10B, CCL7, 

CXCL10, CXCL13, IFNA7, adjusted P= 0.002). 

Interestingly, more than half of enriched pathways were not related to immune response (e.g., 

signaling receptor binding, cell activation). This suggests that other non-immune response 

pathways influence COVID-19 severity. In addition, some of these pathways included protein 

phosphorylation (CTSG, PRKCZ, PECAM1, CD4, CLEC7A, NPPA, TNFRSF10B, PRDX4, 

EPHA4, TNXB, CXCL10, IFNA7, CDH5) and glycosaminoglycan binding (CTSG, CCL7, TNXB, 

CXCL10, CXCL13), suggesting potential avenues to explore for drug development. 

Using Clinical Risk Factors to Predict COVID-19 Outcomes  

In order to contrast the prediction capabilities of protein levels with established clinical risk 

factors, we performed two sensitivity analyses with results shown in Table 2. In the first analysis, 

we added six clinical risk factors to the baseline and protein models described in the main 

analyses. These clinical risk factors were diabetes, chronic obstructive pulmonary disease 

(COPD), chronic kidney disease, congestive heart failure, hypertension, and liver disease. The 

prevalence of these risk factors is shown in Table 1.  
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Addition of these six clinical features to the baseline model improved the training AUC to 64% 

(from 59%) when predicting severe COVID-19 and to 61% (from 59%) when predicting critical 

COVID-19. However, adding these clinical risk factors to the protein model resulted in no 

change in the training AUC performance when predicting severe COVID-19 (AUC = 88% vs. 

88%) and critical COVID-19 (AUC = 89% vs. 89%) (Table 2, Supplementary Figure 8). 95 and 

69 features with non-zero beta coefficient effect estimates were selected for the protein models 

predicting severe and critical COVID-19, respectively, in this sensitivity analysis 

(Supplementary Figure 8). Comparing proteins selected by the protein model in this sensitivity 

analysis, only one protein, KIT, was added to the 94 features selected in the main analysis. For 

critical COVID-19, the 69 features selected remained the same.  

For the second sensitivity analysis, we augmented the first sensitivity analysis with an extra 

covariate for smoking status. Due to missing smoking information from the CHUM hospital site 

in the BQC19 cohort, only 312 samples were used in model training for the second sensitivity 

analysis. The results suggested that the addition of smoking and 6 clinical risk factors into the 

original baseline model composed of age, sex, sample processing time, and hospital site also 

slightly improved the training performance when predicting the severe COVID-19 outcome (AUC 

= 66% vs. 59%) and the critical COVID-19 outcome (AUC = 61% vs. 59%) (Table 2, 

Supplementary Figure 9). When adding smoking and these 6 clinical risk factors to the protein 

model, we found that training performance actually decreased for the severe COVID-19 

outcome (AUC = 85% vs. 88%) and critical COVID-19 outcome (AUC = 85% vs. 89%). The non-

zero beta coefficients of the proteins for severe and critical COVID-19 outcomes are shown in 

Supplementary Figure 9 with a total of 79 and 51 features being selected, respectively. 

Comparing the 79 features selected by the protein model in this sensitivity analysis to the 

original 94 features selected previously when predicting severe COVID-19, we observed that 

only 48 features overlapped. Similarly, the 51 features selected by the protein model in this 

sensitivity analysis only had 28 features overlapping with the 69 features selected previously. 

The observed decrease in AUC and fewer number of overlapping proteins when comparing 

main analyses and sensitivity analyses may be due to the reduction in sample size used for 

training. 

The results from these sensitivity analyses suggest that the protein measurements are likely 

able to act as partial proxies of the tested clinical risk factors. The addition of the clinical risk 

factors that we assessed may improve the predictive performance for both COVID-19 severity 

outcomes when only demographic and sample processing parameters are available. However, 
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when protein measurements are available, adding these extra clinical risk factors may add little 

for improving predictions.   
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Discussion:  

In this large-scale study testing the association of 4,701 circulating proteins with severe and 

critical COVID-19 outcomes, we found that a subset of these proteins were strong predictors of 

COVID-19 severity. Specifically, developing a model in 417 individuals and testing its 

performance in 569 separate samples from an independent external cohort, we demonstrated 

that a proteomic model was able to predict severe COVID-19, defined as requiring the use of 

oxygen, with an AUC of 86% and a positive predictive value of 89%. The addition of several 

commonly used clinical risk factors for COVID-19 severity did not improve the performance of 

this model. The identified proteins were strongly enriched for cytokine signaling and immune 

pathways, but also highlighted non-immune pathways. Taken together, these findings 

demonstrate that circulating protein abundances are able to predict COVID-19 outcomes with 

reasonable accuracy.  

By including an independent cohort in this study, we implemented best practices for model 

development and validation41. An important aspect of any prediction model is the testing of the 

model in a cohort separate from the training cohort. Therefore, a strength of this study was that 

our samples were recruited from three separate hospitals, across two separate health care 

systems in two different countries. In this study, we used the same clinical risk factors and the 

exact same proteomic measurement procedure to both train and test the models. This increases 

the probability that the results presented are generalizable and not overfitted to the training 

data42. Indeed, for the severe COVID-19 outcome, there was little change in the AUC when 

comparing the training and test cohorts (88% vs. 86%). 

Further, most studies that have tested the association between protein levels and COVID-19 

outcomes have focused on circulating cytokines and chemokines13,43–49. While this is a 

reasonable approach given the nature of the disease, we are unaware of any other studies that 

have tested the association of 4,701 circulating proteins with COVID-19 outcomes. A recent 

study assessing thousands of proteins and their associations with COVID-19 outcomes 

achieved an AUC of 85%, but this was not tested in an independent cohort30.  

Interestingly only 5 of the 14 proteins selected in the final model of both severe and critical 

COVID-19 outcome were cytokines or chemokines. There were also proteins selected that were 

not specific to immune pathway proteins, such as glycosaminoglycan binding—a favourable set 

of targets for drug development. This suggests that many of the biological pathways that 
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influence severity of COVID-19 outcomes may act distinctly from known cytokine and 

chemokine proteins. 

A major clinical challenge within the pandemic has been the triaging of patients to identify those 

most likely to require admission for hospitalization50. A common reason for hospitalization is the 

need for oxygen support. Currently, treating physicians are required to assess the need for 

admission using models with poor predictive performance. A model generated in China early in 

the pandemic to predict COVID-19 severity requires a medical history, chest X-ray, and 

extensive blood testing51. Further, the 4C Mortality Score was able to predict in-hospital 

mortality, but achieved an AUC of only 77%52. Approximately half of the patients enrolled in our 

study have developed severe or critical COVID-19 after their baseline proteomic measurement 

which were used as predictors in this study. This suggests circulating protein measurements 

could be considered for predicting COVID-19 severity, but this requires further study, including 

more sampling at the onset of symptoms.  

This study has important limitations. While the model was tested in a separate cohort, and 

generalized well, it should be tested in additional cohorts, especially in cohorts of diverse 

ancestry. The control population included individuals who were SARS-CoV-2 positive and had 

mild disease, in addition to individuals who were suspected to have COVID-19 but were SARS-

CoV-2 negative. This means that the developed models provide insight into prediction of 

individuals who develop severe COVID-19 compared to mild COVID-19 and other acute 

diseases having symptoms consistent with COVID-19. Such control definitions reduce the 

potential for collider bias, but do not allow direct prediction of COVID-19 outcomes amongst only 

COVID-19 patients53. Last, the clinical translation of this study is hindered by the cost involved 

in measuring 4,701 circulating proteins but could be improved by developing a specific assay to 

the selected proteins. 

In summary, circulating protein levels are strongly associated with COVID-19 outcomes and 

able to predict the need for oxygen supplementation or death with reasonable accuracy. 

Measured protein levels were superior to predicting COVID-19 severity outcomes when 

compared to nearly all clinical risk factors tested. Further research is needed to assess whether 

this proteomic approach can be applied in a clinical setting to assist in triaging patients for 

admission to hospital. 
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Methods: 

Cohorts 

The Biobanque Québécoise de la COVID-19 (BQC19) is a Québec-wide biobank which was 

launched to enable research into the causes and consequences of COVID-19 disease (see 

bqc19.ca)54. For this study, we used results from 417 patients (313 SARS-CoV-2 nasal swab 

PCR positive patients and 104 individuals who presented with symptoms consistent with 

COVID-19 but had negative SARS-CoV-2 PCR nasal swabs) with available proteomic data from 

the SomaScan SomaLogic® assay. The subjects were recruited at the Jewish General Hospital 

(JGH) and Centre Hospitalier de l'Université de Montréal (CHUM) in Montréal, Québec, Canada, 

both of which are university affiliated hospitals. For each individual, blood samples drawn at the 

earliest time point were used for training when an individual had multiple blood draws. Selecting 

the blood sample at the earliest time point reflects the protein measurements during the acute 

phase of COVID-19 disease. The demographic characteristics of the participants in the BQC19 

cohort who underwent SomaScan® assays is detailed in Table 1. The demographic 

characteristics were obtained by medical chart review or patient interview performed by trained 

clinicians or trained research coordinators. 

The Mount Sinai cohort used in this study was composed of results from 569 patients made up 

of 472 SARS-CoV-2 positive patients and 89 SARS-CoV-2 negative patients confirmed through 

PCR tests, one COVID-19 positive patient diagnosed by a chest CT while the remaining 7 

individuals were COVID-19 negative and did not have COVID-19 symptoms during specimen 

collection but may have had a history of exposure. The samples donated by the patients in the 

Mount Sinai cohort underwent the same proteomic data collection and profiling performed as in 

the BQC19 cohort. The subjects were recruited at the Mount Sinai Hospital in New York City 

which is affiliated with the Icahn School of Medicine. Table 1 lists the demographic and sample 

processing parameters of participants in the Mount Sinai cohort that underwent SomaScan® 

assays. Demographic characteristics were obtained similarly to that of the BQC19 cohort. 

Demographic, Sample Processing, and Clinical Variable Definitions 

Age and sex from the BQC19 and Mount Sinai cohorts were collected. Sample processing time 

and hospital site were collected for BQC19 samples with the former being a continuous variable 

that quantifies the time in hours between sample collection and sample freezing.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.21264015doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21264015
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 

The clinical variables were collected for the BQC19 cohort only. Clinical variables included 

smoking status and six different comorbidities: diabetes, COPD, chronic kidney disease, 

congestive heart failure, hypertension, and liver disease. All seven variables were collected as 

categorical values with the six comorbidities having three options (0 No, 1 Yes, and -1 Don’t 

know) while smoking status contained 4 categories (0 Current Smoker, 1 Ex-smoker, 2 Never 

smoked, and -1 Don’t know).  

Proteomic Measurement using the Somascan Platform 

Blood samples from both the BQC19 and Mount Sinai cohorts were collected using acid citrate 

dextrose (ACD) tubes. Proteomic measurement was performed at Somalogic using the 

Somascan v4.0 platform. In the BQC19 cohort, a total 1,038 samples collected at different time 

points from 503 individuals were sent to SomaLogic for proteomic profiling as previously 

described2, while the Mount Sinai cohort contained 1200 samples collected at different time 

points from 592 individuals that were sent to SomaLogic for proteomic profiling. 

SomaLogic uses the Somascan proteomic platform which provides measurements on 4,701 

unique human circulating proteins using 4,987 Slow Off-Rate Modified Aptamers (SOMAmer 

reagents) and quantifies protein levels in the form of relative fluorescence units (RFUs). 

Normalization and calibration steps were performed by SomaLogic to remove any systematic 

biases stemming from raw assays or samples. The normalization procedure involved three 

steps performed in a non-consecutive fashion: hybridization control normalization, intraplate 

median signal normalization, as well as plate scaling and calibration. More details on 

SomaLogic normalization can be found in their Technical Note55.  

Data Preprocessing 

A per-sample normalization process involved using a scale factor for a set of SOMAmer 

reagents to compute against a reference value generated from the median of all calibrated, 

unnormalized samples, and then aggregating the results within a dilution. This was done 

because using a normal population reference generated from EDTA plasma tubes would have 

been inappropriate for normalization, since samples in this study were from ACD plasma tubes. 

Due to the nature of the samples that were collected from patients during acute infection, we did 

not apply the recommended scale [0.4-2.5] to remove samples. The raw dataset composed of 

5284 SOMAmer reagents was first processed with SomaLogic package SomaDataIO v3.1.0. 

We removed any SOMAmer reagents that represented non-human proteins or controls (NoneX, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 5, 2021. ; https://doi.org/10.1101/2021.10.04.21264015doi: medRxiv preprint 

https://doi.org/10.1101/2021.10.04.21264015
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

NonHuman, Spuriomer, HybControlElution, NonBiotin, NonCleavable) and retained 4984 unique 

SOMAmer reagents for analysis.  

Curation of Samples from the Longitudinal Dataset 

To investigate our primary study question, we focused on samples collected during the acute 

infection stage. Samples from the acute infection stage were defined as samples collected from 

SARS-CoV-2 PCR positive patients within 14 days of symptom onset. When an individual 

provided multiple samples collected within 14 days of symptom onset, the sample collected at 

the earliest timepoint was retained for analyses. Both the BQC19 and Mount Sinai samples 

adhered to this rule. 

COVID-19 Outcome Definitions 

We defined two sets of severity outcomes for COVID-19: severe COVID-19 and critical COVID-

19. Positive SARS-CoV-2 results were confirmed by SARS-CoV-2 viral nucleic acid 

amplification tests (NAAT) from relevant biologic fluids. Cases for severe COVID-19 were 

defined as individuals who tested positive for COVID-19 and died or required any type of 

respiratory support (including oxygen delivered by nasal prongs) at any timepoint. Controls for 

severe COVID-19 were defined as individuals who did not meet these severe case criteria; thus, 

controls were individuals with COVID-19 but did not meet severe case criteria or were 

individuals who presented with symptoms of COVID-19 but were SARS-CoV-2 PCR negative. 

Cases for critical COVID-19 were defined as individuals who tested positive for COVID-19 and 

died or required invasive respiratory support (intubation, continuous positive airway pressure, 

bilevel positive airway pressure, continuous external negative pressure, or high flow positive 

end expiratory pressure oxygen) at any timepoint. Controls for critical COVID-19 were 

individuals with COVID-19 but did not meet critical case criteria or were individuals who 

presented with symptoms of COVID-19 but were SARS-CoV-2 PCR negative. 

Multivariable Logistic Regression 

Multivariable logistic regression models were used to test the associations of either severe or 

critical COVID-19 on four covariates along with each SOMAmer reagent: age, sex, sample 

processing time, and hospital site. We used R package “glm” to perform 4984 logistic regression 

models in the BQC19 cohort. We first applied a false discovery rate of P < 0.01 (corrected P 

values were determined using the Benjamini-Hochberg procedure56, p.adjust with method set to 
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“BH” in R) to select a subset of proteins associated with severe or critical COVID-19 outcomes. 

Volcano plots measuring the uncorrected -log10 P values as a function of the effect size 

estimates of each SOMAmer reagent were generated using the bioinfokit version 2.0.4 package 

in Python 3.7.  

Regularized Logistic Regression Models 

We defined two model types differing in the covariates used to train the model. The first model 

type is a “baseline model” which was trained using age, sex, sample processing time, and 

hospital site. The second model type is a “protein model” which is trained using age, sex, 

sample processing time, hospital site, and 4984 SOMAmer reagents. We used the baseline 

model in our analyses as a performance benchmark to compare the results of the protein model 

which we expected to perform better. 

To predict the two COVID-19 severity outcomes defined above, we used LASSO regression and 

elastic nets. Specifically, for LASSO regression we used L1 Regularized Logistic Regression 

(Sparse Logistic Regression) as implemented in the “LogisticRegression” module from Sci-kit 

learn version 0.24.1, a machine learning library, with the penalty set to “L1”. The L1 norm 

penalty adds a constraint to the effect estimates of the regression model by setting many 

variables to have a null effect or a coefficient of 0. This in turn allows a form of feature selection 

to occur and also prevents overfitting to the training dataset by forcing the model to be less 

complex. In addition, when multiple variables are correlated with one another such as in the 

case of highly correlated proteins, the penalty term from LASSO may select a single variable 

from the group, thus allowing a subset of uncorrelated proteins to be selected. It is important to 

note that although LASSO tends to select a single variable from a group of highly correlated 

variables, this property is not a certainty. LASSO may occasionally select more than one 

variable depending on the size of the dataset and the value of the penalty term. To train this 

model, the hyperparameter “lambda”, which controls the amount of L1 regularization to add to 

the model, was first tuned through cross-validation (details are described in the next section). A 

larger value of lambda increases the amount of L1 regularization and forces more of the 

variables to have a null effect. On the other hand, training the model on a smaller lambda value 

will result in a model with more nonzero coefficients. 

Cross-Validation and Hyperparameter Tuning 
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Due to the relatively small size of our training dataset from BQC19, we used 10 repeats of five-

fold cross-validation to tune the hyperparameter, lambda, over 17 different lambdas (log10 

values of lambda from -2 to 2, incremented by 0.25). Each repeat of the five-fold cross-

validation process involved splitting the dataset into five folds: training on four folds and 

validating the trained model on the final fold and performing the process five times to cover each 

validation fold. We used a stratified cross-validation approach, meaning that the train and 

validation folds maintained the same percentage of samples of each class (case/control) as the 

original data. This is important because of the unbalanced case/control samples for the critical 

COVID-19 outcome (93 cases / 324 controls). A standard five-fold cross-validation split may 

result in train and validation folds with varying proportions of cases and controls. Since 

classification algorithms tend to weight each sample equally, the class that is overrepresented, 

such as the controls in the critical COVID-19 outcome, will receive more weight and thus bias 

the results. The stratified cross-validation step was performed using the 

RepeatedStratifiedKFold function in Sci-kit learn. Due to the relatively small sample size of our 

training set (n=417), we performed 10 repeats of this cross-validation process to stabilize the 

results from training. Each repeat first shuffled the entire training set then split the data into five 

folds which created more variability in the data used for training.  

During training on the four folds, we standardized only the protein levels using the population 

standard deviation (i.e., dividing by the number of samples n) and use this mean and standard 

deviation to standardize the protein levels in the validation fold prior to validating. This prevents 

information leakage which can occur if standardization of protein levels was performed on the 

entire dataset rather than just the training folds. Age and sample processing time were treated 

as continuous variables, whereas sex and hospital site were treated using dummy variables 

(sex [0: Female, 1: Male], and hospital site [0: CHUM, 1: JGH]).  

We used the AUC to determine the model performance during cross-validation. To select the 

best value for the hyperparameter lambda, we compared the average AUC score (computed 

from 50 validation fold results) for all lambda values and selected the lambda value 

corresponding to the highest average AUC. Youden’s J statistic was calculated for each 

receiver operator characteristic (ROC) curve during training. This performance metric can be 

calculated by subtracting the false positive rate from the true positive rate for each data point on 

a ROC curve and taking the maximum value. The threshold which corresponds to this maximum 

Youden’s J statistic is the threshold that maximizes the sum of the sensitivity and specificity for 

that particular ROC curve. We computed the threshold corresponding to the maximum Youden’s 
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J statistic for each of the 50 ROC curves and averaged the 50 thresholds to get a single 

threshold value. This averaged threshold value was computed for each of the baseline and 

protein models predicting severe and critical COVID-19 and used to produce two-by-two 

contingency tables and therefore sensitivity and specificity values in the Mount Sinai cohort 

during model testing.  

Model Testing 

We checked the generalizability of the baseline and protein models by testing them in an 

external, independent dataset from Mount Sinai. Protein measurements in the test dataset were 

first natural log transformed then standardized using the mean and standard deviation of the 

corresponding protein in the training set. Similarly, age was not standardized and kept in years. 

Since samples were only from a single hospital, the hospital site parameter was left as is and 

did not need to be dummy encoded. The variable sample processing time, however, was absent 

from the testing set. For this reason, we imputed the sample processing time variable in the test 

cohort using the mean value of the sample processing time variable in the BQC19 training 

cohort. 

Protein Correlations 

Spearman’s Rank Order Correlation was used to determine the correlations between individual 

proteins in the BQC19 cohort. Heatmaps show magnitudes of correlation coefficients between 

values of -1 and 1. Correlation heatmaps showing collected clusters such as in Supplementary 

Figure 5 were generated using the ggcorrplot function in R with the parameter hc.order set to 

TRUE to perform hierarchical clustering. Moreover, we reduced the dimension of the correlation 

matrix of 4984 SOMAmer reagents to a 2-dimensional space using uniform manifold 

approximation and projection (UMAP) from the umap-learn 0.5.1 package using default 

parameters. We annotated the SOMAmer reagents selected from the protein model that were 

associated with severe COVID-19 and critical COVID-19 as well as the proteins that overlapped 

between the two outcomes. 

Pathway Enrichment Analyses 

We used the web-based tool g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) to investigate the 

possible pathways of the selected proteins as good predictors for both critical and severe 

COVID-19 identified by LASSO. The g:SCS algorithm was used to estimate the threshold for 
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enrichment against all annotated genes. We selected pathways and interaction databases 

including Gene Ontology, KEGG, Reactome; TRANSFAC, miRTarBase, Human Protein Atlas, 

and CORUM. 

Sensitivity Analyses 

We tested the effect of six established clinical risk factors which included: diabetes, COPD, 

chronic kidney disease, congestive heart failure, hypertension, and liver disease in the BQC19 

cohort to determine whether addition of comorbidities could improve prediction of COVID-19 

severity outcomes. We added these six additional covariates, with characteristics shown in 

Table 1, to the baseline and protein models to perform LASSO regression analysis. A total of 

417 samples from the BQC19 cohort were used for training.  

We performed a second sensitivity analysis by adding smoking status along with these six 

established clinical variables to the baseline and protein models for LASSO regression analyses. 

Therefore, the baseline model contained covariates age, sex, sample processing time, hospital 

site, and seven clinical variables while the protein model contained all the baseline variables 

along with 4984 SOMAmer reagents. Since smoking status was not available from the CHUM 

hospital site, this sensitivity analysis only involved 312 samples from the BQC19 cohort that 

were collected at the JGH site. 

Due to missing data, we imputed the values of samples: we first converted all six comorbidity 

features to binary values. Any value other than a “Yes” was converted to a “No” which may 

include missing values being converted to a “No”. For smoking status, we grouped all values 

into three categories: 0 - Current Smoker, 1 - Ex-smoker, and anything else (including missing 

values and -1) was set as 2 - Never smoked. Smoking status was dummy encoded and had one 

of the encoded variables dropped to prevent collinearity. For both sensitivity analyses, training 

of the L1 regularized logistic regression models used 10 repeats of stratified five-fold cross-

validation as in the primary analysis. 
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Figures 

Table 1. Demographic characteristics of the participating cohorts 

Dataset Training Cohort (BQC19) 
COVID-19 Severity  Severe Critical 
 All Samples  

(n=417) 
Cases 

(n=175) 
Controls 
(n=242) 

Cases 
(n=93) 

Controls 
(n=324) 

Age in years * 65.3 (18.4) 67.6 (17.6) 63.7 (18.8) 66.7 (16.5) 64.9 (18.9) 
Female sex ** 200 (48.0) 82 (46.9) 118 (48.8) 36 (38.7) 164 (50.6) 
Sample Processing Time (hours) * 9.7 (13.4) 7.5 (6.5) 11.3 (16.5) 7.0 (6.3) 10.4 (14.8) 
Hospital Site **      
CHUM 105 (25.2) 42 (24.0) 63 (26.0) 32 (34.4) 73 (22.5) 
JGH 312 (74.8) 133 (76.0) 179 (74.0) 61 (65.6) 251 (77.5) 
Diabetes **      
No 288 (69.1) 100 (57.1) 188 (77.7) 54 (58.1) 234 (72.2) 
Yes 127 (30.5) 75 (42.9) 52 (21.5) 39 (41.9) 88 (27.2) 
Chronic Obstructive Pulmonary 
Disease ** 

     

No 358 (85.9) 145 (82.9) 213 (88.0) 77 (82.8) 281 (86.7) 
Yes 57 (13.7) 30 (17.1) 27 (11.2) 16 (17.2) 41 (12.7) 
Chronic Kidney Disease **      
No 363 (87.1) 151 (86.3) 212 (87.6) 77 (82.8) 286 (88.3) 
Yes 52 (12.5) 24 (13.7) 28 (11.6) 16 (17.2) 36 (11.1) 
Congestive Heart Failure **      
No 355 (85.1) 152 (86.9) 203 (83.9) 80 (86.0) 275 (84.9) 
Yes 60 (14.4) 23 (13.1) 37 (15.3) 13 (14.0) 47 (14.5) 
Hypertension **      
No 179 (42.9) 67 (38.3) 112 (46.3) 31 (33.3) 148 (45.7) 
Yes 235 (56.4) 107 (61.1) 128 (52.9) 61 (65.6) 174 (53.7) 
Liver disease **      
No 403 (96.6) 172 (98.3) 231 (95.5) 91 (97.8) 312 (96.3) 
Yes 12 (2.9) 3 (1.7) 9 (3.7) 2 (2.2) 10 (3.1) 
Smoking Status **      
Current Smoker 13 (3.1) 6 (3.4) 7 (2.9) 5 (5.4) 8 (2.5) 
Ex-smoker 47 (11.3) 21 (12.0) 26 (10.7) 11 (11.8) 36 (11.1) 
Never smoker 233 (55.9) 98 (56.0) 135 (55.8) 40 (43.0) 193 (59.6) 
Dataset Testing Cohort (Mount Sinai) 
COVID-19 Severity  Severe Critical 
 All Samples  

(n=569) 
Cases 

(n=392) 
Controls 
(n=177) 

Cases 
(n=233) 

Controls 
(n=336) 

Age in years * 59.6 (19.4) 63.0 (17.1) 52.1 (22.1) 63.7 (16.7) 56.8 (20.6) 
Female sex ** 238 (41.8) 154 (39.3) 84 (47.5) 87 (37.3) 151 (44.9) 
 

* Mean (SD)  

** N (%). When the counts of each cell do not sum to the total sample size, this is due to 
missing data or the patient answering, “I do not know”. 

Severe - Cases: individuals who tested positive for COVID-19 and died or required any type of 
respiratory support (including oxygen delivered by nasal prongs). Controls: individuals with 
COVID-19 but did not meet severe case criteria or individuals who presented with symptoms of 
COVID-19 but were SARS-CoV-2 PCR negative. 

Critical - Cases: individuals who tested positive for COVID-19 and died or required respiratory 
support (intubation, continuous positive airway pressure, bilevel positive airway pressure, 
continuous external negative pressure, or high flow positive end expiratory pressure oxygen). 
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Controls: individuals with COVID-19 but did not meet critical case criteria or individuals who 
presented with symptoms of COVID-19 but were SARS-CoV-2 PCR negative. 

Sample Processing Time: time in hours between sample collection and sample freezing. 

CHUM: Samples recruited from the Centre Hospitalier de l’Université de Montréal  

JGH: Samples recruited from the Jewish General Hospital 
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Table 2. Training AUC comparison 

 Main Analysis  
(n=417) 

Main Analysis plus 6 
clinical risk factors 

(n=417) 

Main Analysis plus 7 
clinical risk factors 

(n=312) 
Baseline 

model 
Protein 
model 

Baseline 
model + 6 

CRFs 

Protein 
model + 6 

CRFs 

Baseline 
model + 7 

CRFs 

Protein 
model + 7 

CRFs 
Severe COVID-

19 
0.590 0.880 0.636 0.880 0.657 0.848 

 Critical 
COVID-19 

0.591 0.890 0.607 0.890 0.606 0.848 

 

Main Analysis 

Baseline model: age, sex, sample processing time, and hospital site  

Protein model: baseline model and 4984 SOMAmer reagents 

 

Main Analysis plus 6 clinical risk factors (CRFs):  

Baseline model + 6 CRFs: age, sex, sample processing time, hospital site, and 6 comorbidities  

Protein model + 6 CRFs: baseline model + 6 CRFs and 4984 SOMAmer reagents 

 

Main Analysis plus 7 clinical risk factors:  

Baseline model + 7 CRFs: age, sex, sample processing time, hospital site, 6 comorbidities and 
smoking status  

Protein model + 7 CRFs: baseline model + 7 CRFs and 4984 SOMAmer reagents 
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Figure 1 | Overall Study design. Schematic of training and testing stages of this study. Severe 
COVID-19 is defined as death or use of any form of oxygen supplementation. Critical COVID-19 
is defined as death or severe respiratory failure (non-invasive ventilation, high flow oxygen 
therapy, intubation, or extracorporeal membrane oxygenation). 
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Figure 2 | AUC score results. a, L1 regularized logistic regression training and testing results 
for severe COVID-19 and b, critical COVID-19. Blue and red are used to represent the protein 
model and baseline model, respectively, while solid and dotted lines represent the testing and 
training performance, respectively. Shaded areas denote the 95% confidence intervals for the 
training cohort. c, Two-by-two contingency table results from the test set are shown for 
predicting severe (top left, bottom left) and critical COVID-19 (top right, bottom right) using the 
protein model (blue) and baseline model (red). The threshold for predicting cases was 
determined during training using Youden’s J statistic which selects a threshold that maximizes 
the sum of the sensitivity and specificity score. PPV = positive predictive value, NPV = negative 
predictive value. 
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Figure 3 | Feature importance and correlation of SOMAmers selected in the protein model 
to predict severe and critical COVID-19.  

(Left) Coefficient values of the 92 nonzero SOMAmer reagents in the final trained L1 regularized 
logistic regression protein model fitted on the severe COVID-19 outcome. The original data 
contained 4984 SOMAmer reagents and 4 other variables: age, sex, sample processing time, 
and hospital site. 92 SOMAmer reagents remained within the model along with age and sample 
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processing time which are not shown. The model was trained on the entire BQC19 cohort using 
lambda = 10.0 (log10 lambda = 1.0) which was the best lambda value found from the 
hyperparameter search. 

(Bottom) Coefficient values of the 67 nonzero SOMAmer reagents of the final trained L1 
regularized logistic regression protein model fitted on the critical COVID-19 outcome. The 
original data contained 4984 SOMAmer reagents and 4 variables age, sex, sample processing 
time, and hospital site. 67 SOMAmer reagents remained within the model along with age and 
sample processing time which are not shown. The model was trained on the entire BQC19 
cohort using lambda = 10.0 (log10 lambda = 1.0) which was the best lambda value found from 
the hyperparameter search. 

(Right) Spearman’s rank correlations between the 92 proteins associated with the severe 
COVID-19 outcome and the 67 proteins associated with the critical COVID-19 outcome. These 
results suggest that while there were 14 overlapping proteins (SFTPD, CXCL10, RAB3A, 
NAGPA, CDH5, IFNA7, ZNRF3, CBS, CCL7, SETMAR, TNXB, CDHR1, CXCL13, and CBLN1), 
in general, the protein levels were uncorrelated with one another. Out of 6164 total correlations 
(92 x 67), 6150 correlations (99.8%) had a Spearman's absolute ρ < 0.8. 
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