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Methods 
Analysis of TCGA samples 
・Sample selection and collection of clinical information 

Clinical and somatic gene mutation profiles of all tumors except diffuse large B-cell lymphoma, acute myeloid 

leukemia, and thymoma, PanCancer Atlas datasets were downloaded from cBioPortal 1 (29 studies, 10075 cases). Information 

on smoking habit and HPV infection status was obtained from GDAC 2. Among these tumors, 9794 cases for which the 

somatic mutation profiles analyzed by Mutect2 3 in the MAF format were available from the GDC portal 4 were selected for 

analysis. 

The annotation of cancer types with FDA approval for ICI monotherapy was based on a previous report 5. The 

response rates for ICI monotherapy for each tumor type were obtained from previous reports 6, 7. The response rate data for 

endometrial cancer with mismatch repair deficiency or with mismatch repair proficiency were calculated from another 

previous report 8. 
・Identification of genomic subtypes based on mutational signatures 

Using MutationalPatterns 9, the contribution values of each sample to COSMIC v2 30 mutational signatures 10 were 

calculate from the four deferent somatic mutation profiles, which were pre-computed using Mutect2 3, Varscan2 11, MuSE 12, 

and Somatic Sniper 13 and were available in the MAF format on the GDC portal 4. Using the log10 transformed values of 

these contribution values, unsupervised hierarchical clustering with Ward's method was performed. 
・Annotation of gene alterations 

 Somatic gene mutations annotated as significant in the PanCancer Atlas studies of cBioPortal 1 were included, while 

those marked as mutations of unknown significance were excluded. For germline mutations, we obtained the annotations 

from a previous report 14, where those annotated as “likely pathogenic” or “pathogenic” in “Overall Classification” column 

were retained. For gene mutations in BRCA1 and BRCA2, we extracted those with locus-specific LOH or homozygous 

deletions as we previously reported 15. For gene promoter methylations in MLH1 and BRCA1, we obtained annotations from 

a previous report 16. 
・Insertions and deletions-based mutational signatures (ID signatures) 

The annotated somatic mutations of each sample called by Mutect2 were obtained from the GDC portal in the VCF 

format, and the insertions and deletions (indels) with "PASS" annotations were extracted. The contribution values of each 

sample to the COSMIC reference small indels signatures 17 were calculated using YAPSA 18. The ratio of contribution values 

of indel signature 3 and indel signature 6 to the number of all detected mutations were calculated as indel signature 3 ratio 

and indel signature 6 ratio, respectively. 

・MSI score and MSI-high annotation 

We calculated MSI scores of all samples using MSI sensor 19 with the default parameters from normal-tumor paired 

WES sequencing data. For UCEC, CRC, STAD, and ESCA, MSI status was obtained from the clinical information in 

cBioPortal. Within these samples, the optimal cutoff value of MSI score for the annotated MSI-high cases was calculated 

using the ROC curve and the Youden index (Figure S17A,B). Then, for the other cancer types, samples with the score above 

this cutoff were determined to be MSI-high (Figure S17C). 

・Other genomic alterations scores 

 The following scores were calculated from the somatic mutation profiles calculated by Mutect2. Tumor mutational 

burden: the number of missense mutations. Total indel count: the total number of frameshift insertions, inframe insertions, 

frameshift deletions, and inframe deletions. Indel ratio: the ratio of the total indel count to the total number of detected 

mutations, including synonymous mutations. Insertion to indel ratio: the ratio of the total number of frameshift insertions and 

inframe insertions to the total indel count.  



 For predicted neoantigens counts based on netMHCpan 20, we obtained the pre-computated data for SNVs and 

indels from a previous report 21. 

 For chromosomal changes, we obtained HRD scores and CNV burden scores from GDC portal 4. 

・Gene expression scores 

 We obtained batch-corrected gene expression values from a previous report 21. The CYT score was calculated from 

the geometric mean of the expression levels of GZMA and PRF1 according to the previous report 22. We obtained a gene set 

"HALLMARK_PI3K_AKT_PATHWAY" from MSigDB 23 and calculated its enrichment score using ssGSEA 24. In addition, 

using the literature 25 as a reference, the GEP score was calculated as the sum of each gene expression multiplied by the 

following coefficients: CL5=0.008346; CD27=0.072293; CD274=0.042853; CD276=-0.0239; CD8A=0.031021; 

CMKLR1=0.151253; CXCL9=0.074135; CXCR6=0.004313; HLA.DQA1=0.020091; HLA.DRB1=0.058806; 

HLA.E=0.07175; IDO1=0.060679; LAG3=0.123895; NKG7=0.075524; PDCD1LG2=0.003734; PSMB10=0.032999; 

STAT1=0.250229; TIGIT=0.084767. 
・Development of Tumor Genomic Subtype Analyzer (TGSA) 

 Using the 30 signature contribution values as features and the genomic subtypes as labels in the selected 7181 

samples (Figure S10C), we built four independent classifiers from four different algorithms, namely, k-nearest neighbor, 

support vector machine, logistic regression, and random forest using the Scikit-learn module in Python. For the former three 

classifiers, the main hyperparameters were optimized by double cross-validation (Figure S11A). First, the above selected 

TCGA samples were divided into two parts, X1 and X2. Second, parameters were calculated using X1 by two-fold cross-

validation, and those parameters were evaluated using X2 as test data. Third, X1 and X2 were swapped, and the same 

calculations were performed. These processes were repeated 100-1000 times to determine the optimal parameters (Figure 

S11A). For the random forest model, since parameter adjusting hardly changed the prediction accuracy, the default settings 

were used. 

 After calculating the contribution values of the 30 mutational signatures from external somatic mutation profiles in 

VCF or MAF format using MutationalPatterns 9, the four classifiers independently make predictions using these values as 

input, and then integrate the results to output the final classification (Figure 2A). In the classification into eight subtypes, if 

the results from three or more classifiers matched, the matched result was determined to be the subtype, otherwise it was 

determined to be undeterminable (UND). In parallel, if the results from three or more classifiers belong to immune-related 

genomic subtype (irGS), namely, SMK, UVL, APB, POL, or MRD, it was classified as irGS, otherwise non-irGS. This tool 

is available in the GitHub page (https://github.com/shirotak/TGSA). 

 

Analysis of non-TCGA datasets 
・Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets 

 Clinical information including smoking status and somatic mutation profiles in the MAF format were obtained from 

GDC portal 4. Somatic mutations in MMR genes (MLH1, MSH2, MSH6, and PMS2) were retained only for truncating 

mutations or for missense mutations with COSMIC annotations. For gene expression analysis, we obtained the fragments per 

kilobase of exon per million mapped reads (FPKM) value from the GDC portal 4. CYT score and GEP score were calculated 

in the same way as TCGA data analysis. For indel mutational signature, we downloaded annotated somatic mutations data in 

the VCF format. After counting the number of all somatic mutations annotated with "PASS", insertions and deletions were 

extracted and the contribution of indel signatures was calculated using YAPSA 18. ID3 ratio and ID6 ratio were calculated as 

the ratio of each contribution values to the number of all somatic mutations. 
・cBioPortal datasets 

 Somatic mutation profiles released in MAF format were obtained from the websites (Table S2). 



・National Bioscience Database Center (NBDC) datasets 

 We obtained raw whole exome datasets (Table S2) from the NBDC Human Database 26, calculated somatic mutation 

profiles in our WES analysis pipeline (see below). 
・Sample selection and definition of response in ICI-treated cohorts 

 Collected samples were derived from pairs of the primary tumor and normal blood or tissue, and those collected 

from metastatic sites different from the primary tumor (lymph nodes, bones, distant internal organs, etc.) were excluded. In 

addition, collected samples were taken before or during ICI administration, and those with a history of ICI treatment at the 

time of sample collection were excluded. Most of the cases were evaluated using the RECIST criteria for radiological response 

or equivalent, where CR/PR was defined as a responder and SD/PD/NE as a non-responder. In some datasets, we could not 

find a response assessment by such criteria from the articles, and we determined responder/non-responder using alternative 

clinical data available. For example, in the datasets from Snyder et al 27. and from Anagnostoura et al 28, where survival 

outcome was available, after excluding cases who survived less than six months of follow-up, cases with a PFS of 12 months 

or more were determined to be responders, and others non-responders. For the dataset from Cristescu et al 25, we distinguished 

between responders and non-responders based on the values listed in the figures and tables in the paper, and confirmed that 

the annotations were consistent with the results of the other figures. As a result, a total of 938 patients from 13 datasets that 

met the above criteria and had available response information were included in the analysis (Table S3). 
・WES analysis pipeline 

For the raw paired WES data obtained from NBDC, dbGaP and EGA (Table S2, Table S3), somatic mutations were 

analyzed in the following steps according to the Best Practice Workflows of somatic short variant (SNVs + Indels) discovery 

published by the Broad institute GATK team 29, where Genome Analysis Toolkit (GATK) v4.0.12 and Picard v2.20.2 were 

used. (1) BAM files were converted to FASTQ files using Picard SamToFastq. (2) Low-quality reads and presumed adapter 

sequences were removed using TrimGalore 30. (3) The trimmed reads were aligned to the human reference genome hg38 

obtained from the GATK resource bundle using BWA mem (v0.7.17-r1188) 31. (4) Data preprocessing including marking 

duplicates, making the panel of normal samples, and estimating contamination was performed using the Picard and GATK 

tools. (5) Somatic mutation calling including orientation bias filtering was performed using Mutect2. (6) The following 

parameters were used to filter out variants with low reliability: annotated as "PASS"; “TLOD” greater than 6.3 and 9 for single 

nucleotide variants and insertions and deletions, respectively; coverage of altered alleles greater than or equal to 5; altered 

allele frequency greater than or equal to 2.5%. (7) Variant annotation was performed using Funcotator with default setting 

using data source of v1.7.20200521s to generate MAF format files. 

For the dataset from Hellmann et al 32, only the VCF files after somatic mutation calling were available, so we 

filtered variants using the same criteria as described above and converted to MAF files for subsequent analysis. 

・Validation of the WES analysis pipeline 

 As reported by Litchfield et al 33, TMB does not differ significantly depending on the exome capture kits used. For 

compatibility between TCGA and other datasets, we adopted the Agilent SureSelect Human All Exon V5 capture kit as the 

common exome regions to be analyzed in our WES analysis pipeline. Comparing the number of missense mutations calculated 

from cBioPortal 1 with those from our pipeline among the same samples, the Pearson correlation tended to exceed 0.9 in most 

of the datasets (Figure S18). Similarly, when we compared the number of non-synonymous SNVs in the Cristescu et al paper 
25 with those from our pipeline, the Pearson correlation was 0.945 (Figure S18). 

 

Statistical analyses 
 Unless otherwise noted, statistical analyses were performed in Python (3.7.4). The Mann–Whitney U test, chi-

square test, and Spearman's rank correlation coefficient test were performed using SciPy (1.6.1). Survival analyses including 



the Kaplan–Meier curve, log-rank test, and Cox proportional hazard regression model were performed using Lifelines 

(0.25.10) and StatsModels (0.12.2). Machine learning analyses were performed using Scikit-learn (0.24.1). We considered a 

p-value < 0.05 as being statistically significant. Venn diagrams were depicted using “VennDiagram” (1.6.20) package in R. 

The Jonckheere-Terpstra test was performed using “clinfun” (1.0.15) package in R. The Passing-Bablok regression was 

performed using “mcr” (1.2.2) package in R. 

 

Data and code availability 
 Controlled access data used in this study were obtained from dbGaP, EGA, and NBDC with access permissions 

according to the respective required procedures (Table S2 and S3). The processed data and codes to reproduce the results of 

this work are available on the GitHub page (https://github.com/shirotak/pancancer_MutSig_ICI). Other codes for 

preprocessing or restricted-access data are available from the corresponding author upon reasonable request. 

  



Supplementary Figures 

 

Figure S1. Characteristics of the eight tumor genomic subtypes derived from TCGA solid tumors (N=9794) 

A) Clinical and genomic information for each subtype, related to Figure1A. The values are either the average of the Z-scores 

or the frequency for each subtype, and the values are displayed as a heat map. Predicted SNV and indel neoantigens 

counts by netMHCpan were significantly correlated with TMB and indel counts, respectively. CNV burdens and HRD 

scores were also correlated with each other. 

B) Relationship between the distribution of cancer types based on the hierarchical clustering and the FDA approval for ICI 

therapy. Each case is represented by a red bar (with FDA approval for ICI) or a black bar (without FDA approval for 

ICI). 

C) Differences in survival outcomes between subtypes. When all cases were compared among the eight subtypes, the 

prognosis was different. Furthermore, for the cancer types shown here, the prognosis was significantly different by 

subtype in the analysis of each cancer type. P-value is based on log-rank test. 

D) Type of cancer and number of samples per subtype. The color of each cancer type matches the color shown in B. 

 

ACC, Adrenocortical carcinoma; BLCA, Bladder urothelial carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical 

squamous cell carcinoma and endocervical adenocarcinoma; CHOL, Cholangiocarcinoma; CRC, Colorectal adenocarcinoma; 

ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and neck squamous cell carcinoma; KICH, 

Kidney chromophobe; KIRC, Kidney renal clear cell carcinoma; KIRP, Kidney renal papillary cell carcinoma; LGG, Brain 

lower grade glioma; LIHC, Liver hepatocellular carcinoma ; LUAD, Lung adenocarcinoma; LUSC, Lung squamous cell 

carcinoma; MESO, Mesothelioma; OV, Ovarian serous cystadenocarcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, 

Pheochromocytoma and paraganglioma; PRAD, Prostate adenocarcinoma; SARC, Sarcoma; SKCM, Skin cutaneous 

melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular germ cell tumors; THCA, Thyroid carcinoma; UCEC, Uterine 

corpus endometrial carcinoma; UCS, Uterine carcinosarcoma; UVM, Uveal melanoma. 
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Figure S2. Features of SMOKING (SMK) subtype (n=1072) 

The association with smoking habits was investigated in LUAD, LUSC, HNSC and BLCA where clinical information on 

smoking was available. 

A) The ratio of indel signature 3, which is related to tobacco smoking, was higher in SMK subtype than other subtypes.  

B) SMK cases had a higher frequency of smoking history (current smoking and smoking within 15 years) than the other 

groups.  

C) The ratio of signature 4 (upper) and indel signature 3 (lower), which are known to be related to smoking, were positively 

correlated with smoking habit. (Jonckheere-Terpstra test, *** P<1e-4, ** P < 0.01, *, P < 0.05 )  

 

BLCA, Bladder urothelial carcinoma; HNSC, Head and neck squamous cell carcinoma; LUAD, Lung adenocarcinoma; LUSC, 

Lung squamous cell carcinoma 
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Figure S3. Features of ULTRAVIOLET LIGHT (UVL) subtype (n=401) 

A) Cancer type of UVL subtype. 95.8% were SKCM. 

B) Excluding SKCM, UVL tumors showed higher GEP score than the other subtypes (P= 0.033, Mann-Whitney U test). 

These results suggest that, although rare in cancers other than SKCM, there are some tumors that exhibit UVL subtype and 

may have a high tumor immunogenicity. 

 

BLCA, Bladder urothelial carcinoma; BRCA, Breast invasive carcinoma; CRC, Colorectal adenocarcinoma; HNSC, Head 

and neck squamous cell carcinoma; LUSC, Lung squamous cell carcinoma; SARC, Sarcoma; THCA, Thyroid carcinoma 
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Figure S4. Features of APOBEC (APB) subtype (n=1036) 

A) The expression of APOBEC3 family genes was significantly higher in APB subtype (all P-values < 2.2e-19, Mann-

Whitney test). 

B) HPV infection was associated with higher immune response in TCGA-HNSC (n=507). Besides, even in HPV-negative 

tumors, APOBEC subtype showed a higher immune response than the other groups.  

C) (Left) The PIK3CA mutation rate was the highest (26.4%) in the APB subtype excluding hyper mutator subtype (MRD 

and POL). Chi-square test P=1.7e-29. (Right), PIK3_AKT_MTOR pathway score was the highest in the APB subtype. 

Mann-Whitney P=2.3e-18. These results are consistent with the previously reported association between PIK3CA 

mutation and APOBEC-mediated cytosine deamination 34. 
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Figure S5. Features of MISMATCH REPAIR DEFICIENCY (MRD) subtype (n=339) 

A) 86.4% had MMR gene alterations (somatic and germline mutation in MLH1, MSH2, MSH6, and PMS2, and MLH1 

methylation). 

B) Cancer types of MRD subtype. 

C) Excluding cancer types with relatively high frequently of MSI-high tumors (UCEC, CRC, STAD, ESCA), immune-

related gene expression scores were still higher in MRD subtype than the others (P=0.016, Man-Whitney U test) 

D) Excluding cancer types with relatively high frequently of MSI-high tumors (UCEC, CRC, STAD, ESCA), indel ratio was 

still higher in MRD subtype than the others (P=4.0e-8, Man-Whitney U test) 
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Figure S6. Features of POLE (POL) subtype (n=81) 

A) Somatic POLE mutation was observed in 76.5% of POL subtype, and MMR-gene mutation (somatic and germline 

mutation in MLH1, MSH2, MSH6, and PMS2) was observed in 59.3% of POL subtype. 

B) Cancer types of POL subtype 

C) POL subtype, both with and without MMR mutation, had low indel ratio (left) and high insertion to indel ratio (right) 

than other subtypes, in contrast to MRD subtype. These data indicate that most tumors with concurrent POLE and MMR-

gene mutations have acquired POLE mutation first, as previously reported 35, and thus have the POLE mutation-dominant 

underlying mutational processes. 
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Figure S7. Features of HOMOLOGOUS RCOMBINATION DEFICIENCY (HRD) subtype (n=1956) 

A) The ratio of indel signature 6, which is related to homologous recombination deficiency, was higher in HRD subtype than 

in other subtypes.   

B) Association between mean HRD scores (x-axis) and indel signature 6 ratios (y-axis) per cancer type calculated in tumors 

classified into HRD subtype. These two values were simultaneously high in cancer types such as OV, BRCA, SARC, 

UCEC, and STAD, which are known to include a certain proportion of HRD phenotypes in previous reports 36. On the 

other hand, cancer types such as KIRP, KIRC, and GBM showed low values in both, suggesting that the HRD subtype 

may include tumors which do not harbor HRD phenotype. 

 

ACC, Adrenocortical carcinoma; BLCA, Bladder urothelial carcinoma; BRCA, Breast invasive carcinoma; CESC, Cervical 
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ESCA, Esophageal carcinoma; GBM, Glioblastoma multiforme; HNSC, Head and neck squamous cell carcinoma; KICH, 
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melanoma; STAD, Stomach adenocarcinoma; TGCT, Testicular germ cell tumors; THCA, Thyroid carcinoma; UCEC, Uterine 

corpus endometrial carcinoma; UCS, Uterine carcinosarcoma; UVM, Uveal melanoma. 
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Figure S8. Features of GENOMICALLY STABLE (GNS) subtype (n=909) 

Not only the total number of SNVs (A), but also that of insertions and deletions (B) were the lowest in GNS among all 

subtypes. 
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Figure S9. Correlation of representative etiological signatures with immune-related gene expression scores 

Spearman’s correlation coefficients between the ratios of representative etiological signatures and tumor immunity-related 

gene expression scores in all samples. Coefficients with p-values < 0.05 are marked in bold. The signature1 ratio was 

significantly negatively correlated with the immune-related scores, indicating age-related gene mutations may produce no or 

little immunogenicity. 
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Figure S10. Consistency of clustering results from different variant callers 

A) The results of hierarchical clustering based on the somatic mutation profiles derived from MuSE (upper), VarScan2 

(middle), and SomaticSniper (lower).  

Using these methods of annotation, eight genomic subtypes were created, as in the case using Mutect2. 

B) Venn diagrams showing the overlapping of results from the four valiant callers per subtype. GNS, HRD, and AGE 

subtypes showed relatively low consistency. To extract tumors typical for each subtype, cases that were matched by three 

or more algorithms, including Mutect2, were used for the next analysis (numbers in bold). 

C) The UMAP clustering shows that the sample selection described in B reduces the number of cases in the border region 

of the subtype heatmap. 
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Figure S11. Developing classifiers through machine learning algorithms 

A) Double cross-validation and hyperparameter tuning. First, the selected 7181 TCGA samples were divided into two 

parts, X1 and X2. Second, parameters were calculated using X1 by two-fold cross-validation, and those parameters 

were evaluated using X2 as test data. Third, X1 and X2 were swapped, and the same calculations were performed. 

These processes were repeated 100-1000 times to determine the optimal parameters. 

B) Confusion matrices showing the classification performance on test data for the four classifiers: K-nearest neighbor 

(KNN), support vector machine (SVC), random forest (RFC), and logistic regression (LRC). Results using 75% of all 

cases for training and 25% for testing are shown. All showed more then 95% subset accuracy (exact match ratio). 

C) Consistency of subtyping results between the four classifiers per data group. When three or more of the four classifier 

results do not match, the sample is annotated as "undeterminable”. Undeterminable samples were found in 

approximately 2-4% in the studied data groups, and there was no significant difference in the proportion between FFPE 

samples and frozen tissue origins or between data groups  
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Figure S12. Relationship between tumor genomic subtype, response rate and cancer type in the whole cohort 

A) ICI response rate for each tumor genomic subtype. Subtypes included in irGS (SMK, UVL, APB, MRD, POL) showed a 

higher response rate than subtypes included in non-irGS (HRD, GNS, AGE). 

B) Distribution of the samples by tumor genomic subtype and by cancer type. 
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Figure S13. Studies examined by type of drug 

A) Study in the cases treated with anti-PD1 antibody. 

B) Study in the cases treated with anti-PDL1 antibody. 

C) Study in the cases treated with anti-CTLA antibody or anti-CTLA antibody plus other ICIs. 

In all studies, ICI response rate tended to be higher in irGS compared to non-irGS within TMB low cases. 
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Figure S14. Study in the dataset from the KEYNOTE trials, which were prospective cohort studies of patients 

treated with solely pembrolizumab (n=311) 

A) Association between TMB and ICI response per sample divided by irGS status (left) and comparison of ICI response 

rate in the four groups stratified by irGS and TMB status (right). irGS showed a significantly higher response rate than 

non-irGS within the sample classified as TMB low. 

B) Univariate and multivariate logistic regression analysis for ICI response. irGS status was significantly associated with 

the ICI response after adjusting by TMB status and cancer type. 

C) Distribution of the samples by tumor genomic subtype and by cancer type. Although the KEYNOTE trials excluded 

patients with clinically diagnosed MSI high tumors at enrollment, two tumors from the cohort (one each with gastric 

cancer and biliary tract cancer) were classified as MRD subtype, and both of them responded to ICI. 

 

irGS, immune-reactive genomic subtype; TMB, Tumor mutational burden; OR, Odds ratio; CI, confidence interval; SCC, 

squamous cell carcinoma 
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Figure S15. Study using the cohorts’ optimal cutoff of TMB high 

C) The cohort’s optimal TMB cutoff determined by the ROC curve and the Youden index for objective responses in the 

whole cohort (N=938) was 163 missense mutations, which was close to 173, the value calculated Figure3B. 

D) Association between TMB and ICI response per sample divided by irGS status (left) and comparison of ICI response rate 

in the four groups stratified by irGS and TMB status (right). irGS showed a significantly higher response rate than non-

irGS within the sample classified as TMB low. 

E) Univariate and multivariate logistic regression analysis for ICI response in the validation cohort (N=938). irGS status 

was significantly associated with the ICI response after adjusting by TMB status and cancer type. 

 

irGS, immune-reactive genomic subtype; TMB, Tumor mutational burden; OR, Odds ratio; CI, confidence interval 
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Figure S16. Association between TMB and ICI response divided by irGS status per dataset 

The right table indicates the distribution of samples for each subtype per dataset. See also Table S3. 
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Reference SMK UVL APB MRD POL HRD GNS AGE UND
Snyder, NEJM 2014 0 20 0 0 0 1 0 1 0

Van Allen, Science 2015 0 54 0 0 0 9 7 10 12

Hugo, Cell 2016 0 20 0 0 0 1 0 0 1
Riaz, Cell 2017 1 20 0 0 0 3 1 3 0

Roh, SciTraMed 2017 1 11 0 0 0 4 0 4 1

Liu, NatMed 2019 0 45 0 0 0 4 4 2 0
Rizvi, Science 2015 17 0 2 0 0 6 1 5 3

Hellmann, CanCel 2018 27 0 2 0 0 2 4 8 0
Anagnostou, NatCan 2020 13 0 2 0 0 1 0 3 0

Snyder, PlosMed 2017 0 0 12 1 0 1 0 7 1

Mariathasan, Nature 2018 6 0 144 3 0 15 0 20 10
Miao, NatGen 2018 13 5 33 0 0 7 0 11 2
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Figure S17. Determination of MSI-high cases using MSIsensor 

A,B) Optimal cutoff of MSI score to discriminate cases with MSI-high annotations was calculated using ROC curve and 

Youden index from the datasets of CRC, ESCA, STAD and UCEC. 

C) The relationship between MSI score and the cutoff value in cancer types other than the four above. Cases exceeding 

the cutoff were annotated as MSI high. 
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Figure S18. Comparison of the number of missense mutations or non-synonymous SNVs from our WES pipeline and 

previously published data 

The red line represents a straight line with slope 1 reaching the zero point. The r value and p value at the top of each panel 

were calculated using the Pearson’s correlation. Most of the datasets have Pearson correlations greater than 0.9. 
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