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Abstract 

Objective: Overlap of brain changes across mental disorders has reinforced 

transdiagnostic models. However, the developmental basis for this overlap is unclear as 

are neural differences among internalizing, externalizing and thought disorders. These 

issues are critical to inform the theoretical framework for hierarchical transdiagnostic 

psychiatric taxonomy.   

 

Methods: This study involved 11,878 preadolescents (9-10 years) with baseline and 2-

year follow-up data (n=6571) from the Adolescent Brain and Cognitive Development 

Study release 3.0. Linear mixed models were implemented in comparative and 

association analyses. Genome-wide association analysis, gene set enrichment analysis 

and cell type specificity analysis were performed on regional cortical thickness (CT) 

across 4,716 unrelated European youth.  

 

Results: Youth with externalizing or internalizing disorders, but not thought disorders, 

exhibited significantly thicker cortex than controls. Externalizing and internalizing 

disorders shared thicker CT in left pars opercularis and caudal middle frontal gyrus, 

which related to lower cognitive performance. Somatosensory and primary auditory 

cortex were uniquely affected in externalizing disorders; primary motor cortex and 

higher-order visual association areas (fusiform and inferior temporal gyrus) were 

uniquely affected in internalizing disorders. Baseline CT in one externalizing-specific 

region (left isthmus of cingulate cortex) related to externalizing behaviors at both 

baseline and 2-year follow-up. Genes associated with CT in common and disorders-

specific regions were also implicated in related diagnostic families. Microglia were the 

cell-type associated with CT for both externalizing/internalizing while dopaminergic/ 

glutamatergic/GABAergic cells related only to externalizing-specific regions. 

 

Conclusions: Distinct anatomical trajectories relevant to internalizing/externalizing 

phenotypes may result from unique genetic and cell-type changes, but these occur in 

the background of significantly shared morphological variance. 
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During the past two decades, conventional diagnostic categories of mental disorders 

have been increasingly challenged on the basis of unclear boundaries, overlapping 

symptoms (1, 2) as well as high comorbidity (3, 4). Further, there is strong evidence of 

shared genetic risk (5-7) among various disorders, implying that the pathophysiology 

underlying these disorders may not be unique to each. While a number of shared 

features of neural dysfunction across mental disorders have been reported (8-10), any 

evidence for unique developmental pathways underlying these pathological endpoints 

has not been conclusively demonstrated. 

Emerging transdiagnostic or dimensional frameworks, such as Research Domain 

Criteria (RDoC) (11) and The Hierarchical Taxonomy of Psychopathology (HiTOP) 

(12), have been proposed to transcend the limitations of conventional diagnostic 

categories of mental disorders. Based on accumulating evidence the HiTOP proposes 

that single mental disorders could be classified into three broad diagnostic families: 

externalizing disorders (inattention, aggressive and disruptive behavior), internalizing 

disorders (depression, anxiety and fear) and thought disorders (delusions, 

hallucinations and obsessions). Accordingly, a growing literature (13-16) has focused 

on mapping neural correlates for general psychopathology (‘p factor’), reflecting an 

overarching susceptibility to any mental disorder (17, 18), and several specific low-

order broad diagnostic families (e.g. externalizing, internalizing and thought disorders). 

This hierarchical framework of mental disorders removes unclear boundaries between 

single mental disorders by grouping disorders with related symptoms into broad 

diagnostic families, which may further contribute to determining the underlying 

pathological dimensions on the neural, genetic and phenotype level (19, 20). 

During childhood and adolescence, the brain undergoes major developmental 

changes in cortical morphology. One of the most fundamental neurodevelopmental 

changes involves cortical thickness (CT) which undergoes accelerated thinning during 

early adolescence compared with early childhood and adulthood (21). This process is 

presumably driven by increased intracortical myelination (22) as well as synaptic 

pruning (23). The disruption of CT has been linked to various psychopathology (24, 25) 

and impaired cognitive performance (26). Most mental disorders originate in this 

developmental period (3, 27), highlighting the importance of examining CT as a marker 

of preadolescent mental health. Prior studies with limited samples recruited on the basis 

of traditional diagnostic categories have so far provided conflicting results with respect 

to the CT changes in this age group (24, 28).   

In the current study, we combined case-control analyses with a hierarchical 

framework of mental disorders to examine CT alterations among three broad diagnostic 

families (externalizing, internalizing and thought disorders). We hypothesized that 

some of the topography of anatomical distribution of CT aberrations will be shared 

among the three diagnostic families, reflecting a shared mechanistic basis, while each 

diagnostic family will also be related to its own unique pattern of CT changes both at 

baseline and over time. To eliminate confounding effects introduced by high 

comorbidity among three diagnostic families (29) and facilitate the determination of 

disorders-specific alterations, our case-control analyses only used non-comorbid (i.e., 

“pure”) patients. Given that the neurodevelopmental patterns of CT during childhood 
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and adolescence are genetically regulated (30, 31), we also undertook Genome-wide 

association study (GWAS) to locate the genetic variants associated with regional CT 

changes in all unrelated European youth.  

METHODS  

Participants 

Participants are preadolescents aged 9-10 years (n=11,878) recruited from 22 

research sites across the USA from the Adolescent Brain Cognitive Development 

(ABCD) Study® (Release3.0, November 2020). This longitudinal multisite population-

representative cohort provides comprehensive clinical, behavioral, cognitive, and 

multimodal neuroimaging data from the baseline, 1-year and 2-year follow-up 

assessment. Inclusion/exclusion criteria for samples in all analyses were illustrated in 

Figure S1-4.  

 

Measures 

Definitions of diagnostic families 

Single mental disorder diagnoses were determined using parent or guardian ratings 

in the computerized Kiddie Schedule for Affective Disorders and Schizophrenia 

(KSADS) based on DSM-5 criteria (32). For the present analyses life-time (past or 

present) diagnoses of the 18 single mental disorders (Figure 1A and Supplemental Table 

S1) used in our analyses were determined. Based on the definitions of broad diagnostic 

families in recent studies (13, 16, 29), three broad diagnostic families in our analyses   

(Figure 1A) were determined as externalizing disorders (Attention    

Deficit/Hyperactivity Disorder, Oppositional Defiant Disorder, Conduct Disorder), 

internalizing disorders (Dysthymia, Major Depressive Disorder, Disruptive Mood 

Dysregulation Disorder, Agoraphobia, Panic Disorder, Specific Phobia, Separation 

Anxiety Disorder, Social Anxiety Disorder, Generalized Anxiety Disorder, Post-

Traumatic Stress Disorder), thought disorders (Hallucinations, Delusions, Associated 

Psychotic Symptoms, Bipolar Disorder, Obsessive-Compulsive Disorder). As expected 

there was a high comorbidity among the three broad diagnostic families (Figure 1B and 

Table 1). To eliminate confounding effects introduced by comorbidities and facilitate 

the determination of disorders-specific neurobiological dysregulations, participants 

with comorbidities outside their primary diagnostic families were excluded from the 

following analyses. Healthy controls (Table 1) were those who did not meet any mental 

disorders diagnosis criteria of KSADS (including those disorders that are not included 

in three broad diagnostic families, such as Eating Disorders, Alcohol Use Disorder, 
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Substance Related Disorder, Sleep Problems, Suicidal ideation or behavior and 

Homicidal ideation or behavior, where both unspecified or other specified disorders 

were covered). Demographics for patients of each single mental disorder are shown in 

Supplemental Table S1. 

Child Behavior Checklist (CBCL) 

The Child Behavior Checklist (CBCL), completed by the child’s parent or caregiver, 

is widely used to assess emotional and behavioral problems in the children. The 

resulting scores used in ABCD include eight syndrome scale scores 

(Anxious/Depressed, Withdrawn/Depressed, Somatic Complaints, Social Problems, 

Thought Problems, Thought Problems, Rule-Breaking Behavior, Aggressive Behavior), 

three summary scores (Internalizing Problems, Externalizing Problems and Total 

Problems), six DSM-oriented scale scores (Depressive Problems, Anxiety Problems, 

Somatic Problems, Attention Deficit/Hyperactivity Problems, Oppositional Defiant 

Problems and Conduct Problems) and three 2007 Scale Scores (Sluggish Cognitive 

Tempo, Obsessive-Compulsive Problems and Stress Problems). In the current analyses, 

we used raw scores of 20 CBCL scales from the baseline (n=11,870) and from the 2-

year follow-up (n=6,571). 

NIH Toolbox® cognition measures 

NIH Toolbox® consists of seven tasks, measuring executive function, episodic 

memory, working memory, information processing and language abilities and three 

summary scores including crystal intelligence, fluid intelligence and total intelligence. 

Baseline data included 11,878 individuals while 2-year follow-up data included 6,571 

individuals with only 6 cognition scores. Details of cognitive measures are listed in 

Supplemental Table S3. 

 

Structural image acquisition and quality control 

Participants completed a high-resolution T1-weighted structural MRI scan (1-mm 

isotropic voxels) on 3T scanners (Siemens Prisma, General Electric MR 750, Philips). 

Structural MRI data processing were completed using FreeSurfer version 5.3.0 

according to standardized processing pipelines (33). All scans underwent radiological 

review to identify incidental findings. Participants who did not pass visual inspection 

of T1 images and FreeSurfer quality control (34) (imgincl_t1w_include==1) were 

excluded from the neuroimaging analyses (n=11,231). The current study used post-

processed cortical thickness data mapped to 34 cortical parcellations per hemisphere 

(68 total regions of interest) based on the Desikan-Killiany Atlas (35). 

Genotyping and imputation 
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Saliva and whole blood samples of participants were collected at the baseline visit 

and sent from the collection site to Rutgers University Cell and DNA Repository for 

storage and DNA isolation. Genotyping was performed using the Smokescreen array 

(36) containing 733,293 genetic variants (single nucleotide polymorphism, SNP). 

Quality control for genotyped data were performed, resulting in 11,099 individuals and 

516,598 SNPs. Genotype imputation was performed on high-quality variations using 

the IMPUTE2 software and the imputation reference set was obtained from the Phase 

3 of 1000 Genomes Project. After imputation, the individuals with >10% missing rate 

and SNPs with imputation info score<0.7, >10% missing rate, Minor Allele Frequency 

(MAF) below 0.5%, or out of Hardy-Weinberg equilibrium violation (p>10-6) were 

excluded. We then derived genetic relatedness (kinship coefficient) using plink v2.0. 

Only European ancestry (genetic ancestry factor of European>0.9) and genetically 

unrelated (kinship coefficient<0.125) participants were included in the following 

genetic analyses. The final European genotyped data included 4,933 unrelated 

individuals and 8,498,283 SNPs. We performed genetic Principal Component Analysis 

(PCA) to derive first 10 genetic principal components (PC) to correct for population 

stratification.  

Statistical Analyses 

Case-control analysis and ANOVA  

We implemented linear mixed models (LMM) using the R lme4 (37) package to 

examine difference in CT among the 3 “pure” diagnostic families 

(internalizing/externalizing/thought disorders) in contrast to the healthy preadolescents. 

All LMM included random effects for family nested within acquisition site and fixed-

effects covariates for age, sex, race (White, Black, Hispanic, Asian, Others/Mixed), 

parental marital status, pubertal level, parental education, body max index (BMI) and 

total intracranial volume. False Discovery Rate (FDR) were used in all analyses for 

multiple comparisons. We also examined the CT alterations in three diagnostic families 

encompassing comorbid cases (See Supplemental materials, Figure S5A-C). Then we 

calculated the Pearson correlation among the whole brain T-maps of three diagnostic 

families to examine the similarity of CT alterations between diagnostic families. To 

examine the difference in CT among four groups (externalizing, internalizing and 

thought disorders and healthy preadolescents), we also undertook an Analysis of 

Variance (ANOVA) after regressing out the same covariates using LMM. Post hoc 

analysis using Tukey HSD Test was also performed to compare the four groups.  

A common alteration in three diagnostic families was defined as a significant 

difference (PFDR<0.05) in CT between any patient group and healthy control (HC) group 

and shared by at least 2 patient groups. A disorders-specific alteration (e.g. 

externalizing-specific) is defined by 1) a significant difference between one patient 

group and HC group, and 2) a nonsignificant difference (PFDR>0.05) between each of 

the other two patient groups and HC group. This definition was in line with our prior 
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work (38). Notably, this definition of disorder specificity does not indicate exclusivity 

(i.e., absence of a corresponding change in another patient group), but only indicates 

that a change with an effect size sufficient for detection at group level is specific to a 

group. 

 

Correlation with symptoms and longitudinal analysis 

We performed association analyses between CT in common and disorders-specific 

regions, and total CBCL scores as well as cognition scores in the whole sample 

(n=11878) using the same LMM. To examine whether baseline regional cortical 

thickness could predict the development of adolescent emotional and behavioral 

problems, and cognition during adolescence, we used the baseline CT of common and 

disorders-specific regions to predict 2-year follow-up CBCL scores and NIH cognition 

scores. All reported comparisons were FDR corrected for the number of regions of 

interest (ROIs). We also restricted the above analyses to externalizing and internalizing 

disorders (See supplemental materials) to examine whether patient groups exhibit 

distinct associations.  

Genome-wide association study (GWAS) 

We performed GWAS to examine the genetic variants underlying regional CT using 

plink v2.0. On the premise of additive genetic effects, general linear regression models 

were fitted to determine the association between common and disorders-specific CT 

alterations and allele dosages of SNPs in genetically unrelated European-ancestry 

preadolescents who passed structural image quality control (n=4,716). Sex, age, mean 

cortical thickness, 10 PCs and study sites were included as covariates. 

SNP annotation and mapping 

Genomic risk loci were defined using the FUMA (39) online platform (version 

1.3.6a), which is an integrative tool for functional mapping and annotation of genetic 

associations. Independent significant SNPs (IndSigSNPs) were defined as variants with 

a P-value< 5×10-8 and independent of other significant SNPs at r2<0.6. Lead SNPs were 

also identified as those independent from each other (r2<0.1). LD (Linkage 

Disequilibrium) blocks for IndSigSNPs were then constructed by tagging all SNPs with 

MAF (Minimum Allele Frequency)≥0.0005 and in LD (r2≥0.6) with at least one of 

the IndSigSNPs. The reference panel population was European of the 1000 Genomes 

Project Phase 3.  

To further link these associated SNPs to genes, three strategies implemented by 

FUMA were employed: positional mapping, eQTL (expression quantitative trait loci) 

mapping and 3D Chromatin Interaction mapping. In addition, to combine cumulative 

effects of SNPs assigned to a gene, gene-based association analysis was performed 
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using MAGMA (40) implemented in FUMA. SNPs were mapped to protein-coding 

genes if they are located within the genes. The gene-based P-value for each gene was 

calculated by combing SNP P-values into a gene test-statistic, indicating the association 

between the gene and the GWAS phenotype. Genes significantly associated with CT at 

each ROI were identified as exceeding the FDR corrected threshold. 

Gene set enrichment analysis (GSEA) 

Genes identified by the four strategies were merged separately across externalizing-

specific, internalizing-specific and common regions. To gain insight into biological 

functions and pathways of externalizing-specific, internalizing-specific and common 

genes, GSEA was performed to test if these genes are overrepresented in pre-defined 

gene sets obtained from the Molecular Signatures Database (41) and GWAS catalog 

(42). All genes were set as background genes. FDR correction is performed per gene 

set by FUMA. Other parameters in these analyses were set as default. 

 

Cell type specificity analysis (CTSA) 

To test whether genetic risk variants for regional CT converge on a specific cell type, 

we performed CTSA (43) using 7 single-cell RNA sequencing datasets from human 

brain tissue (Supplemental Table S4) and pre-computed MAGMA results, which builds 

the relationships between cell type-specific gene expression and trait–gene associations. 

We used FDR correction for multiple testing in per dataset to identify significantly 

associated cell types. 

RESULTS 

Common and unique cortical thickness alterations  

Of a total of 68 regions, CT was significantly higher in internalizing (13 regions) and 

externalizing (9 regions) disorders compared with healthy youth. No regions were 

significantly altered in either direction in thought disorders (after FDR correction). CT 

increases converged across externalizing and internalizing disorders in 2 left lateral 

frontal regions (Figure 2A-B): left pars opercularis and left caudal middle frontal gyrus 

(MFG). Externalizing-specific changes were also left-lateralized, being localized to the 

left transverse temporal gyrus, left superior temporal gyrus (STG), left postcentral gyrus, 

left superior frontal gyrus (SFG) and left isthmus of the cingulate cortex. Internalizing-

specific changes were localized to bilateral precentral gyrus, right inferior temporal 

gyrus (ITG) and left fusiform gyrus.  

The whole brain T-map (Figure 2C) of externalizing disorders vs. HC contrast had a 
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moderate level of spatial correlation with that of internalizing disorders vs. HC (r=0.294, 

p=0.015). Interestingly, the T map of thought disorders contrast did not correlate with 

the other two disorders.  

ANOVA contrasting the four groups (externalizing, internalizing and thought 

disorders and HC) identified five significant (PFDR<0.05) regions, including left pars 

opercularis, bilateral precentral gyrus, left caudal MFG and left transverse temporal 

gyrus (Supplemental Table S5). Post hoc analyses of a direct contrast revealed that CT 

of the left pars opercularis and caudal MFG (common regions) was thicker in both 

externalizing and internalizing disorders compared with HC, which was consistent with 

independent contrasts results. CT in left transverse temporal gyrus (externalizing-

specific region) was also thicker in externalizing disorders than in HC. Notably, CT of 

bilateral precentral gyrus (internalizing-specific regions) was thicker in internalizing 

disorders than in both healthy youth and externalizing disorders, suggesting that CT 

bilaterally in the precentral gyrus may be a distinguishing feature between externalizing 

and internalizing disorders. 

Association between altered cortical thickness and behavioral 

symptoms and cognition 

For associations between CBCL scores and CT in regions with a significant 

diagnostic effect (Figure 3), only CT in the left isthmus of cingulate cortex positively 

correlated with CBCL Externalizing Problems (p= 0.002, t=3.032). No associations 

with internalizing-specific or common regions survived FDR correction. Regarding 

cognitive performance (Figure 3), List Sorting Working Memory score had notable 

associations with transdiagnostically affected, externalizing-specific and internalizing-

specific regions. For regions affected transdiagnostically, CT in the left pars opercularis 

was higher in subjects with lower List Sorting Working Memory score (p=4.6×10-5, t=-

4.0775), lower Oral Reading Recognition score (p=2.7×10-4, t=-3.649), lower crystal 

intelligence (p=0.002, t=-3.059) and lower total intelligence (p=0.001, t=-3.269). CT in 

the left caudal middle frontal gyrus was also higher in subjects with lower List Sorting 

Working Memory score (p=8.6×10-4, t=-3.333).      

Other cognitive scores also related to CT in regions specifically affected in 

externalizing and internalizing disorders. In general all relationships were negative 

correlations, suggesting higher CT in these regions related to poor cognitive 

performance in the affected domains. Further, these associations cut across diagnostic 

families and extend to heathy controls, indicating a generalized and continuous 

relationship between CT and cognitive measures, akin to the p factor. 

Prediction of longitudinal CBCL and cognitive scores  

With respect to the 2-year follow-up CBCL scores (Figure 4), only externalizing-

specific regions showed significant associations. Thicker CT of the right lingual gyrus 

predicted higher Sluggish Cognitive Tempo symptom. Thicker CT of the left isthmus 

of the cingulate cortex predicted more CBCL Anxious/Depressed, Rule-Breaking 
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Behavior, Aggressive Behavior, Externalizing Problems, Total Problems, Anxiety 

disorders, Oppositional Problems and Conduct Problems. No associations with 

internalizing-specific regions survived FDR correction. For 2-year follow-up cognition 

scores, thicker left lingual gyrus predicted higher Oral Reading Recognition (p= 0.002, 

t=-3.121). 

 

GWAS, GSEA and CTSA  

We performed GWAS of CT of common and disorders-specific regions (all together 

20 significant ROIs) using 4,716 European-ancestry unrelated individuals whose 

structural image passed quality control. Under the classic genome-wide threshold of 

P< 5 × 10−8, there were 8 regions with significant associations (Supplemental Table S6-

13), including one common region (left pars opercularis), two externalizing-specific 

regions (left postcentral gyrus and right lingual gyrus) and five internalizing-specific 

regions (right banks of superior temporal sulcus, right inferior parietal lobule, left 

paracentral gyrus and bilateral precentral gyrus). The strongest association with 

regional CT were observed for rs76289836 at 11q13.4 in the right banks of superior 

temporal sulcus (STS, p=6.4× 10-20). Although this locus has not been previously 

reported, its nearest gene IGF2 (insulin growth factor 2), has been linked to anxiety (44) 

and PTSD (45). rs2033939 at 15q14, which was associated with CT in postcentral gyrus 

(p=2.7× 10-15), has also been associated with CT in postcentral gyrus in three previous 

GWAS (46-48). Another variant related to CT in postcentral gyrus, rs1080066 at 15q14 

(p=5.6× 10-15), has been highlighted in two recent GWAS (48, 49), where it was 

associated with cortical area (CA) in precentral gyrus.  

The combination of positional, eQTL and 3D Chromatin Interaction mappings 

assigned SNPs to 1332 genes across the above 8 regions. Additionally, gene-based 

association analysis also identified 12 significantly associated genes (PFDR<0.05) across 

right precentral, left fusiform and right banks of STS. Then we merged all these 

identified genes into three categories: those related to regions with shared CT changes, 

externalizing-specific and internalizing-specific regions. These three categories had 

112, 131 and 1172 associated genes (Supplemental Table S14-16), respectively.  

We found that genes associated with CT of common, externalizing-specific and 

internalizing-specific regions have also been linked to the pathology of the related 

diagnostic families. For example, for common regions like left pars opercularis, the 

identified genes were implicated in either externalizing or internalizing disorders: 

ADGRL3 (formerly LPHN3, latrophilin subfamily of G-Protein-Coupled Receptor), 

near rs58251292 (p= 2.61×10-9), is strongly linked with ADHD (50, 51) in a large body 

of literature while Slit3, including rs142753275 (p= 2.75×10-9), has been associated 

with MDD (52). GSEA also showed that genes related to CT of left pars opercularis 

were significantly associated with internalizing symptoms like facial emotion 

recognition of sad faces (p=5.28×10-22), response to cognitive-behavioral therapy in 

anxiety and MDD (p=1.01×10-8), and externalizing symptoms like impulsivity 

(p=2.54×10-4), see Supplemental Table S17-19.  
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Moreover, in externalizing-specific regions like left postcentral, rs551123675 and 

rs529206008, which were in LD with rs114949000 (p=7.85×10-9), were identified, 

located in VDR (Vitamin D Receptor) that have been reported to be related to ADHD 

(53). In internalizing-specific regions like the right banks of STS, rs531970391, which 

is in LD with rs9996981 (p=9.94×10-20), located in FGF2 (fibroblast growth factor-2), 

has been implicated in anxiety and depression (54, 55). Other genes linked to CT in this 

region like HTR1B and GRM8, have also been implicated in internalizing disorders 

(56, 57). GSEA showed that genes associated with internalizing-specific regions were 

involved in neurogenesis, neuron death and differentiation.  

CTSA identified shared cell types across externalizing and internalizing disorders 

and also disorders-specific cell types (Supplemental Table S20). Three internalizing-

specific regions (right precentral, left pars triangularis and right ITG) and one 

externalizing-specific region (left postcentral) showed significant associations with 

microglia. CT in left postcentral was also associated with Ex6a (excitatory neurons), 

Glut3 and Glut4 (glutamatergic neurons). For other externalizing-specific regions, 

genetic variants for CT in the left SFG aggregated on exPFC1, exPFC2 (excitatory 

glutamatergic neurons from the prefrontal cortex), exCA1 and exCA3 (excitatory 

pyramidal neurons in the hippocampal Cornu Ammonis) while those for CT in the left 

isthmus of cingulate cortex aggregated on DA1 (dopaminergic neurons) and NbGaba 

(GABAergic neuroblasts). For common regions, CT in left pars opercularis is related 

to Nprog (neuronal progenitors) and ProgM (medial progenitors). 

 

DISCUSSION 

The current study identified regions of increased CT shared by externalizing and 

internalizing disorders and regions unique to each of them in a large preadolescent 

sample consisting of 11,878 subjects. Previous findings from smaller samples, limited 

by comorbidities among single mental disorders and broad diagnostic families, have 

been inconsistent to date. Some (13, 24) have found reduced CT in  

internalizing/externalizing disorders or associated with internalizing/externalizing 

symptoms while others had opposite findings (24, 28, 58). Our current results 

demonstrated increased CT characterizes in preadolescents with externalizing disorders 

as well as internalizing disorders. Our study provides an interesting insight when seen 

in conjunction with the adult sample (median age 45) of Romer et al (13) who reported 

notable cortical thinning in relation to the general psychopathology (‘p’ factor) as well 

as highly overlapping patterns across the three diagnostic families examined here. CT 

is one of the structural indices that is highly sensitive to age-related changes (59). The 

developmental trajectory of CT in relation to ‘p’ factor is likely to be one of a leftward 

developmental shift, characterized by increased thickness due to deficient age-

appropriate reduction in preadolescence, but accelerated thinning in adulthood due to 

excessive age-related loss (60, 61). Alternatively, different mechanisms may be at play 

at different age groups; with lack of intracortical myelination (22) contributing to p 
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factor in preadolescence; with dendritic spine reduction/synaptic pruning or increased 

myelination (60, 62) contributing to dysregulations in adulthood. It is also possible that 

changes during later adulthood are largely compensatory in nature, secondary to the 

early developmental deficits, though a convincing test of this structural compensation 

hypothesis is still lacking (63). We noted no significant difference between thought 

disorders and HC, likely due to the smaller sample size, or larger shared variance 

between thought disorders and the HC, compared to the other 2 diagnostic families.  

CT aberrations in the pars opercularis (BA44) of the left IFG and left caudal MFG 

were common to both externalizing and internalizing disorders. The pars opercularis, 

often seen as the site of Broca’s area, is not only involved in inhibitory control (64), but 

also plays a critical role in empathy (65), impairments of which are relate to 

externalizing disorders like ADHD (66). Pars opercularis also located in the 

ventrolateral prefrontal cortex (VLPFC) that is involved in emotional regulation 

through direct projections to the ventral medial prefrontal cortex-amygdala pathway 

(67). Thicker pars opercularis may result in impairment in emotional regulation, which 

is related with internalizing disorders like trait anxiety (68). The caudal MFG 

corresponds to the dorsolateral prefrontal cortex (DLPFC), which plays an important 

role in a range of executive functions such as cognitive flexibility (69) and working 

memory (70). Abnormalities of DLPFC may undermine the top-down cognitive control, 

which are implicated in both externalizing (71, 72) and internalizing disorders (73).  

Externalizing and internalizing disorders also exhibited distinct patterns of CT 

increase. Interestingly, externalizing-specific regions included left postcentral gyrus 

responsible for somatosensory processing, while internalizing-specific regions 

included bilateral precentral gyrus which is primary motor cortex. ANOVA results also 

showed that CT in bilateral precentral gyrus was thicker in internalizing disorders than 

in externalizing disorders. Abnormalities of postcentral gyrus have been linked to 

externalizing disorders or symptoms (25, 74), which are likely to result in dysfunctions 

of somatosensory. Previous literatures have associated defects of somatosensory 

regions with ADHD (75). Internalizing symptoms like anxiety could affect perceptual-

motor performance (76). Children with depression or anxiety disorders often exhibit 

poor motor skills and performance (77). What’s more, psychomotor retardation is one 

of core symptoms of major depressive disorder (MDD). Therefore, alterations of 

cortical morphology in the precentral gyrus found in internalizing disorders like anxiety 

disorders (24) and MDD (78), may lead to impaired motor abilities and psychomotor 

retardation. Furthermore, a burgeoning body of literature (79-81) has focused on the 

role of somatosensory-motor network in psychopathology. 

For visual and auditory cortices, we also found distinct alterations in externalizing 

and internalizing disorders. Externalizing patients demonstrated alterations more in 

primary auditory areas such as the STG and Heschl’s gyrus, while internalizing patients 

demonstrated alterations more in higher order visual association areas like the fusiform 

gyrus and ITG, which is involved in the higher order visual processing. 

Hypersensitivity or hyposensitivity to auditory stimulus are also common symptoms in 

ADHD. Functional alterations of STG and Heschl’s gyrus have been linked with 

ADHD (82) and conduct disorder (83). The fusiform gyrus and ITG plays an important 
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role in facial recognition and perception (84), abnormalities of which have been 

associated with internalizing disorders like depression (85). Adolescents with recurrent 

depression also showed decreased surface area of the left fusiform gyrus (85). ITG is 

also a key part of the ventral visual pathway (86), linked with internalizing disorders 

(87, 88). Finally, associations of the T map (Figure 2C) among three diagnostic families 

showed that the alteration patterns in externalizing and internalizing disorders were 

only slightly correlated, indicating different neural mechanism underlying externalizing 

and internalizing diagnostic family.  

CT of the left isthmus of cingulate cortex correlated positively with CBCL scales of 

externalizing disorders at baseline and after two years, suggesting it is a stable predictor 

of externalizing behaviors or symptoms. The isthmus of cingulate cortex, connecting 

the posterior cingulate cortex to the parahippocampal gyrus, has not gained much 

attention in previous studies on externalizing disorders. 

GWAS, GSEA, and CTSA identified common and unique genetic factors (genetic 

variants, genes, biological functions and cell types) underlying externalizing and 

internalizing disorders, providing genetic support for common and disorder-specific CT 

changes. Through GWAS, we detected the genes associated with CT in common 

(ADGRL3 and Slit3), externalizing-specific (VDR) and internalizing-specific (IGF2, 

FGF2, HTR1B and GRM8) regions, which are also implicated in the related diagnostic 

families. Genes associated with CT of one common region (left pars opercularis) were 

found to be enriched in both externalizing symptoms (“impulsivity”) and internalizing 

symptoms (“facial emotion recognition of sad faces” and “response to cognitive-

behavioral therapy in anxiety and MDD”), further highlighting CT of left pars 

opercularis as a common biomarker of externalizing and internalizing disorders.  

Moreover, CTSA identified both shared (microglia) and unique (glutamatergic 

neurons, dopaminergic neurons and GABAergic neuroblasts) cell types for different 

diagnostic families. Microglia were associated with CT in both externalizing-specific 

and internalizing-specific regions, suggesting that microglia may be a promising target 

for treatment of mental disorders. Microglia are the major immune cells of brain and 

also plays a role in synaptic plasticity, neurogenesis and memory (89, 90). Previous 

studies have suggested that microglial dysfunction is associated with both externalizing 

disorders like ADHD (91) and internalizing disorders like depression (92, 93). We 

found glutamatergic neurons, dopaminergic neurons and GABAergic neuroblasts were 

exclusively related with CT in externalizing-specific regions, and changes in glutamate/ 

glutamine, dopamine neurotransmission pathway and GABA have been associated with 

ADHD (94-96). In summary, our genetic results revealed that there are both common 

and unique genetic factors underlying externalizing and internalizing disorders just as 

there are common and unique neural factors.  

The current study has several strengths. Firstly, ABCD is a multisite large-scale 

population-representative adolescent cohort with comprehensive psychopathology 

assessments. Diagnoses of over twenty adolescent disorders allowed us to explore 

neural mechanisms underlying broad diagnostic families. Secondly, our work is the first 

to combine a case-control study with HiTOP in a preadolescents cohort, thus also 

helping to more clearly demarcate boundaries between mental disorders. Furthermore, 
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we only used non-comorbid patients, thus eliminating the interference from 

comorbidity among diagnostic families. Thirdly, we used longitudinal behavioral and 

cognition data to further validate the predictive value of biomarkers found from cross-

sectional analyses. Finally, genetic data were also integrated into our study to further 

delineate the genetic factors influencing CT alterations. To our knowledge, it is the 

largest GWAS of preadolescent brain imaging phenotypes. 

We also need to consider some limitations. No significant CT alterations between 

thought disorders and HC may be due to small sample size of “pure” thought disorders. 

Since the sample size in our GWAS is relatively smaller than those in traditional large-

scale GWAS, our GWAS results should be taken with caution and need further 

validations in larger samples. Besides, the causal relationships between 

cognition/behavioral changes and regional CT alterations are still lacking in the current 

analyses. With more longitudinal data, we could further examine how these causal 

relationships affect the pathology of externalizing and internalizing disorders. 

 

CONCLUSIONS 

The current study identified common and unique regional CT alterations in 

externalizing and internalizing disorders. CT in left isthmus of cingulate cortex is a 

stable indicator for preadolescent externalizing disorders or symptoms. We also 

performed GWAS, GSEA and CTSA to investigate shared and unique genetic factors 

underlying externalizing and internalizing disorders. Microglia were the cell-type 

associated with CT for both externalizing and internalizing disorders while 

dopaminergic/glutamatergic/GABAergic cells related only to externalizing-specific 

regions. More importantly, our findings underscore the importance of searching for 

specificity of neural and genetic mechanisms underlying broad diagnostic families of 

mental disorders. 

Data availability 

GWAS summary statistics of regional CT of 20 ROIs could be downloaded on 

(https://drive.google.com/drive/folders/1a64gvTM5AQAYLdUw7GQxT-

GQN1msXw3H?usp=sharing). 
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Tables and Figures 

TABLE 1. Demographics of three subsets of broad diagnostic families without 

comorbidity.  

 

 

Externalizing 

disorders 

without 

comorbidity 

Internalizing 

disorders 

without 

comorbidity 

Thought 

disorders 

without 

comorbidity 

Healthy controls 

N 1182 1959 347 4041 

Age (months) 119.18(7.39) 119.24(7.54) 118.79(7.42) 119(7.48) 

Sex (male) 804(68.02%) 896(45.74%) 182(52.45%) 1885(46.65%) 

Race     

White 661(55.92%) 1069(54.57%） 150(43.23%) 2029(50.21%) 

Black 179(15.14%) 258(13.17%) 79(22.77%) 604(14.95%) 

Hispanic 204(17.26%) 400(20.42%) 72(20.75%) 890(22.02%) 

Asian 12(1.02%) 36(1.84%) 6(1.73%) 112(2.77%) 

Others/Mixed 126(10.66%) 196(10.01%) 40(11.53%) 406(10.05%) 

 

 

FIGURE 1. Components and comorbidity of externalizing, internalizing and thought 

disordersa 

 

 
a In panel A, 18 mental disorders (outer circle) were classified into three broad diagnostic families 

(inner circle), i.e., externalizing, internalizing and thought disorders. In panel B, Venn diagram 

depicts the large overlap among three diagnostic families. Pure subsets of three diagnostic families: 

externalizing disorders, orange; internalizing disorders, blue; thought disorders, green. 

Abbreviations: ADHD= Attention Deficit/Hyperactivity disorder, CD=Conduct Disorder, 
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ODD=Oppositional Defiant Disorder, MDD=Major Depressive Disorder, GAD=Generalized 

Anxiety disorder, SOC=Social Anxiety Disorder, SEP=Separation Anxiety Disorder, PTSD=Post-

Traumatic Stress Disorder, AGP=Agoraphobia, SPH=Specific Phobia, PAN=Panic Disorder, 

DYS=Dysthymia , DMDD=Disruptive Mood Dysregulation Disorder, BIP= Bipolar Disorder, 

OCD=Obsessive-Compulsive Disorder, DEL= Delusions, HAL=Hallucinations, APS= Associated 

Psychotic Symptoms.  

 

 

 

 

 

 

FIGURE 2. Regions showed significant (PFDR<0.05) thickness alterations in externalizing 

disorders group and internalizing disorders group and correlations among T-maps of three 

diagnostic familiesa 

 

 

a The colorbars in panel A and panel B represent the t value of the regression coefficient from LMM. 

The colorbar in panel C represents Pearson correlation coefficient between T-maps of three 

diagnostic families. Abbreviations: Externalizing=externalizing disorders, 

Internalizing=internalizing disorders, Thought=thought disorders, HC=healthy control. 
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FIGURE 3. Associations between baseline CT in the Common (CO), Externalizing-specific 

and Internalizing-specific regions, baseline CBCL subscales, and NIH cognition scoresa 

 
aThe colorbar represents the t value of the regression coefficient from LMM. Two asterisks (**) 

indicates PFDR<0.05. Abbreviations: parsopclh=left pars opercularis, cdmdfrlh=left caudal middle 

frontal, trvtmlh=left transverse temporal, lingualrh=right lingual, sutmlh=left superior temporal, 

postcnlh=left postcentral, parsobislh=left pars orbitalis, sufrlh=left superior frontal, ihcatelh=left 

isthmus of cingulate cortex, precnlh=left precentral, iftmrh=right inferior temporal, precnrh=right 

prencentral, fusiformlh=left fusiform, lobfrlh=left lateral orbitofrontal, ifplrh=right inferior parietal 

lobule, banksstsrh=right banks of superior temporal sulcus, linguallh=left lingual, paracnlh=left 

paracentral, parstgrislh=left pars triangularis, smlh=left supramarginal, 

AnxDep=Anxious/Depressed, WithDep=Withdrawn/Depressed, Somatic=Somatic Complaints, 

Social=Social Problems, Thought=Thought Problems, Attention=Attention Problems, Rulebreak= 

Rule-Breaking Behavior, Aggressive=Aggressive Behavior, Internal=Internalizing Problems, 

External=Externalizing Problems, TotProb=Total Problems, Anxdisord=Anxiety disorders, 

Somaticpr=Somatic Problems, SCT= Sluggish Cognitive Tempo, Opposite= Oppositional Defiant 

Problems, Conduct=Conduct Problems, OCD=Obsessive-Compulsive Problems, Stress=Stress 

Problems, ADHD=Attention Deficit/Hyperactivity Problems, picvocab=Picture Vocabulary, 

flanker=Flanker Inhibitory Control and Attention, list= List Sorting Working Memory, cardsort= 

Dimensional Change Card Sort, pattern=Pattern Comparison Processing Speed, Picture=Picture 

Sequence Memory, reading=Oral Reading Recognition, fluidcomp=fluid composite, cryst= 

crystallized composite, totalcomp=total composite. 
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FIGURE 4. Associations between baseline CT in the Common (CO), Externalizing-specific 

and Internalizing-specific regions, 2-year follow-up CBCL scores, and 2-year follow-up 

cognition scoresa 

 

aThe colorbar represents the t value of the regression coefficient from LMM. Two asterisks (**) 

indicates PFDR<0.05. Abbreviations: parsopclh=left pars opercularis, cdmdfrlh=left caudal middle 

frontal, trvtmlh=left transverse temporal, lingualrh=right lingual, sutmlh=left superior temporal, 

postcnlh=left postcentral, parsobislh=left pars orbitalis, sufrlh=left superior frontal, ihcatelh=left 

isthmus of cingulate cortex, precnlh=left precentral, iftmrh=right inferior temporal, precnrh=right 

prencentral, fusiformlh=left fusiform, lobfrlh=left lateral orbitofrontal, ifplrh=right inferior parietal 

lobule, banksstsrh=right banks of superior temporal sulcus, linguallh=left lingual, paracnlh=left 

paracentral, parstgrislh=left pars triangularis, smlh=left supramarginal, 

AnxDep=Anxious/Depressed, WithDep=Withdrawn/Depressed, Somatic=Somatic Complaints, 

Social=Social Problems, Thought=Thought Problems, Attention=Attention Problems, Rulebreak= 

Rule-Breaking Behavior, Aggressive=Aggressive Behavior, Internal=Internalizing Problems, 

External=Externalizing Problems, TotProb=Total Problems, Anxdisord=Anxiety disorders, 

Somaticpr=Somatic Problems, SCT= Sluggish Cognitive Tempo, Opposite= Oppositional Defiant 

Problems, Conduct=Conduct Problems, OCD=Obsessive-Compulsive Problems, Stress=Stress 

Problems, ADHD=Attention Deficit/Hyperactivity Problems, picvocab=Picture Vocabulary, 

flanker=Flanker Inhibitory Control and Attention, list= List Sorting Working Memory, cardsort= 

Dimensional Change Card Sort, pattern=Pattern Comparison Processing Speed, Picture=Picture 

Sequence Memory, reading=Oral Reading Recognition, fluidcomp=fluid composite, cryst= 

crystallized composite, totalcomp=total composite. 
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