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ABSTRACT  

Type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD) often co-occur. Defining 

causal pathways underlying this relationship may help optimize the prevention and treatment 

of both diseases. Thus, we assessed the strength and magnitude of the putative causal pathways 

linking dysglycemia and fatty liver, using a combination of causal inference methods. 

 

Measures of glycemia, insulin dynamics, magnetic resonance imaging (MRI)-derived 

abdominal and liver fat content, serological biomarkers, lifestyle, and anthropometry were 

obtained in participants from the IMI DIRECT cohorts (n=795 with new onset T2D and 2234 

individuals free from diabetes). UK Biobank (n=3641) was used for modelling and replication 

purposes. Bayesian networks were employed to infer causal pathways, with causal validation 

using two-sample Mendelian randomization. 

 

Bayesian networks fitted to IMI DIRECT data identified higher basal insulin secretion rate 

(BasalISR) and MRI-derived excess visceral fat (VAT) accumulation as the features of 

dysmetabolism most likely to cause liver fat accumulation; the unconditional probability of 

fatty liver (>5%) increased significantly when conditioning on high levels of BasalISR and 

VAT (by 23%, 32% respectively; 40% for both). Analyses in UK Biobank yielded comparable 

results. MR confirmed most causal pathways predicted by the Bayesian networks.  

Here, BasalISR had the highest causal effect on fatty liver predisposition, providing 

mechanistic evidence underpinning the established association of NAFLD and T2D. BasalISR 

may represent a pragmatic biomarker for NAFLD prediction in clinical practice. 
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INTRODUCTION  

Around 20-30% of adults in high-income countries have non-alcoholic fatty liver disease 

(NAFLD), with rates increasing worldwide1. For several decades, excessive intrahepatic fat 

accumulation has been recognized as a risk factor for type 2 diabetes (T2D)2, yet the evidence 

for this stem largely from cross-sectional studies3, which are prone to bias, confounding and 

reverse causation. Determining the causal nature of these relationships and their underlying 

metabolic mechanisms is necessary to optimize the prevention and treatment of NAFLD and 

T2D.  

 

NAFLD is highly heritable (h2~ 40%)4, suggesting that, as with T2D, inherited DNA variants 

affect predisposition. Nevertheless, both diseases are also caused by numerous obesogenic 

environmental factors5. Excessive weight gain can cause fatty liver by initially raising 

circulating free fatty acid concentrations, which are then taken up by hepatocytes and stored as 

triacylglycerol. This in turn can trigger a cycle of liver-specific insulin resistance and excessive 

de novo hepatic glucose and lipid production6-8. This cycle of dyslipidemia and dysglycemia is 

postulated to link obesity, fatty liver and diabetes9-11.  

 

Fatty liver pathology ranges from simple steatosis, through non-alcoholic steatohepatitis 

(NASH), liver fibrosis and ultimately cirrhosis. T2D and cardiovascular disease often co-occur 

with NAFLD, but the causal relationships are poorly defined12. Here, we examined a range of 

putative causal pathways linking the development of NAFLD with T2D using Bayesian 

network (BN) and bidirectional Mendelian randomization (MR) analyses.  
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RESULTS  

The primary analyses were conducted within IMI DIRECT, a multicenter prospective cohort 

study of 3029 European-ancestry adults diagnosed with T2D (n=795) or without T2D (n=2234); 

the latter group included participants with normal and prediabetic glycemia (ascertained by 

HbA1c, fasting glucose or 2-hour glucose). Of these participants, 1070 had the required 

variables for a complete case analysis with the mean (SD) age of 62 (5.0) years and 77.5% 

being male. In addition, the UK Biobank was utilized with the analysis sample restricted to 

white European ethnicity (n= 442580) and complete cases (n= 3641); in UK Biobank, the mean 

(SD) age of the cohort was 56.8 (8.0) years and 47.2% were male. 

 

The following section describes the BNs in the IMI DIRECT and UK Biobank cohorts 

(subgroup analyses were performed in participants with and without T2D and in both sexes). 

The bidirectional two-sample MR results that were statistically significant after Benjamini-

Hochberg False Discovery Rate (FDR) correction, at 5% threshold13 per trait, were investigated 

for the directed association (arcs) that were present in the BNs. Detailed results for all 

bidirectional MR analyses performed here, including information about the published genome-

wide association studies (GWAS) from which the genetic instruments are derived, are reported 

separately and per trait (S1 Table). The subset of statistically significant MR results is 

summarized in Table 1. 
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Table 1. Two-sample MR exposure-outcome significant associations that achieved corrected threshold and sensitivity analysis 
   

IVW 
 

MR-Egger 
 

Sensitivity analysis 
Exposure Outcome # SNPs β βSE P-value P-value 

FDR corrected 

 
β βSE P-value 

 
MR-Egger 
Intercept  

MR-Egger 
Intercept P-value 

MR–PRESSO 
global test P-value 

Glycemic traits 

HbA1C HDL   11 0.107 0.037 0.004 0.010 
 

0.205 0.091 0.050 
 

-0.004 0.236 0.543 

HbA1C ISI 11 -0.317 0.118 0.007 0.019 
 

-0.291 0.321 0.389 
 

-0.001 0.931 0.830 

Adiposity/obesity 

BMI Serum albumin level 62 -0.573 0.221 0.010 0.024 
 

-0.873 0.638 0.177 
 

0.017 0.232 0.046 

BMI Fasting blood insulin 67 0.172 0.019 6.25E-20 3.92E-19 
 

0.126 0.055 0.025 
 

0.001 0.464 0.073 

BMI Fasting blood glucose 66 0.058 0.024 0.016 0.039 
 

0.109 0.070 0.124 
 

-0.001 0.672 0.157 

Waist circumference Serum albumin levels 35 -0.678 0.272 0.013 0.032 
 

-0.701 0.934 0.458 
 

0.014 0.437 0.875 

Waist circumference Fasting blood insulin 41 0.232 0.025 1.11E-20 7.02E-20 
 

0.141 0.087 0.114 
 

0.002 0.19 0.064 

Whole body fat mass Modified Stumvoll Insulin 
Sensitivity Index  

(model adjusted for BMI) 

184 0.111 0.045 0.013 0.032 
 

0.133 0.137 0.333 
 

0.0002 0.877 0.078 

Blood pressure 
SBP Two-hour glucose challenge   108 0.271 0.108 0.012 0.030 

 
0.462 0.416 0.269 

 
-0.004 0.615 0.497 

We considered as significant if the directions of the estimates by IVW and MR-Egger were consistent, IVW method passed the FDR corrected threshold (p <0.05), and no significant pleiotropy tested 
by the MR-Egger intercept (p >0.05). Outlier SNPs were removed by MR-PRESSO at p <0.05 global test. IVW: inverse variance weighted; MR-PRESSO: MR pleiotropy residual sum and outlier; ISI 
corresponds to Modified Stumvoll Insulin Sensitivity Index; BMI, body mass index; HbA1c, glycated hemoglobin A1C; HDL, fasting high-density lipoprotein cholesterol; SBP, systolic blood 
pressure; SNPs, single nucleotide polymorphisms. 
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Bayesian Network and Mendelian randomization analyses in the IMI DIRECT cohorts 

Prior to building the BNs, we applied cluster analysis to the input variables (the clustered 

variables are more likely to be present in the BN) (S1 Fig). A cluster comprising abdominal fat, 

body mass index (BMI), waist circumference and insulin measurements was observed in the 

Pearson correlation plot and the heatmap cluster analyses. These variables were initially 

selected based on their association with liver fat within the IMI DIRECT cohorts14 or from 

existing literature15. We then proceeded with structural and parameter learnings using the 

variables as nodes to build the BN. To have a more stable network with information on the 

strengths of the arcs amongst the nodes, we performed network averaging of the bootstrapped 

BN samples. Table 2 reports the conditional density and parameters for each node of the 

constructed BN. Fig 1A shows the averaged BN and Fig 1B shows the cumulative distribution 

function of the arc strengths. Detailed information of those arcs with strength and directional 

probabilities equal to or greater than the significant threshold (0.505, learned from the data) is 

reported in S2 Table along with the available MR results. Basal insulin secretion rate 

(BasalISR), visceral adipose tissue (VAT) and 2-hour insulin (TwoInsulin) were identified as 

the causal upstream (parent) nodes, whereas liver iron, alanine transaminase (ALT) and 

gamma-glutamyl transpeptidase (GGTP) were defined as the downstream (child) effects of 

liver fat, given the averaged BN estimates. Markov blanket of liver fat (the set of nodes that 

includes adequate knowledge for inference) was identified as liver iron, TwoInsulin, BasalISR, 

VAT, subcutaneous adipose tissue (SAT), BMI, glycated hemoglobin A1C (HbA1c), fasting 

glucose, oral glucose insulin sensitivity (OGIS)16, total fasting plasma GLP-1 (TotGLP1min0), 

mean insulin clearance (Clins), fasting triglycerides (TG), ALT, aspartate transaminase (AST) 

and GGTP (green nodes in Fig 1A). A more robust parsimonious network was generated by 

restricting the arcs to those with both strength and direction probabilities above or equal to 0.8 

(Fig 1C); BasalISR, VAT and TwoInsulin remained as the causal nodes and liver iron as the 
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downstream effect of liver fat.  We then checked the averaged BN arcs with the two-sample 

MR results when available. 

Table 2. Conditional density and parameters for each node of the constructed average Bayesian network using IMI 
DIRECT inverse normal transformed data (n=1070).  
 

Outcome| Exposures 
LiverIron | SAT + LiverFat + HbA1c 
Coefficients: (Intercept)= -4.159e-06, SAT=-1.282e-01, LiverFat=4.755e-01, HbA1c=-1.044e-01, SE:0.897  
 
PancIron | PancFat 
Coefficients: (Intercept)=1.657e-07, PancFat=2.082e-01, SE=0.978 
 
PancFat | VAT 
Coefficients: (Intercept)= 4.421e-07, VAT=3.296e-01, SE=0.944  
 
VAT | BasalISR 
Coefficients: (Intercept)=-2.429e-07, BasalISR=5.272e-01, SE=0.849 
 
SAT | BMI 
Coefficients: (Intercept)=-2.576e-08. BMI=7.429e-01, SE= 0.669 
 
LiverFat | VAT + TwoInsulin + BasalISR 
Coefficients: (Intercept)=6.842e-07, VAT=2.264e-01, TwoInsulin=1.242e-01, BasalISR=3.402e-01, SE= 0.815 
 
Waist | VAT + TwoInsulin 
Coefficients: (Intercept)=-0.00005, VAT=0.639, TwoInsulin=0.0601, SE= 0.747 
 
BMI | Waist + Insulin 
Coefficients: (Intercept)=4.562e-05, Waist=7.735e-01, Insulin=1.310e-01, SE=0.532   
 
SBP | TwoGlucose 
Coefficients: (Intercept)=-5.999e-07, TwoGlucose=1.934e-01, SE=0.981 
 
Glucose 
Coefficients: (Intercept)=-2.147e-06, SE= 0.999 
 
TwoGlucose | HbA1c + TwoInsulin + BasalISR + OGIS + Clins + GlucoseSens 
Coefficients: (Intercept)=9.620e-06, HbA1c=1.134e-01, TwoInsulin=4.586e-01, BasalISR=-1.800e-01, OGIS=-6.220e-01,  
Clins=3.865e-01, GlucoseSens=-1.889e-01, SE=0.602 
 
Insulin 
Coefficients: (Intercept)=2.904e-06, SE= 0.999 
   
TwoInsulin | Insulin 
Coefficients: (Intercept)=-1.383e-06, Insulin=6.385e-01, SE=0.769 
 
BasalISR | Insulin + OGIS 
Coefficients: (Intercept)=-1.994e-06, Insulin=6.868e-01, OGIS=-2.444e-01, SE=0.521 
 
OGIS | Glucose + Insulin + TwoInsulin + Clins 
Coefficients: (Intercept)=-1.119e-06, Glucose=-5.301e-01, Insulin=7.494e-02, TwoInsulin-5.031e-01, Clins=2.562e-01, 
SE= 0.397 
 
Clins | Insulin + TwoInsulin 
Coefficients: (Intercept)=1.735e-06, Insulin=-5.600e-01, TwoInsulin=-2.325e-01, SE=0.683 
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TotGLP1min0 | VAT + SAT + BasalISR 
Coefficients: (Intercept)=4.303e-08, VAT=2.206e-01, SAT=-1.593e-01, BasalISR=3.439e-01, SE=0.894 
 
Glucagonmin0 | TotGLP1min0 + HDL 
Coefficients: (Intercept)=2.097e-06, TotGLP1min0=2.691e-01, HDL=-1.938e-01, SE=0.935   
 
HDL | SAT + Insulin + TG + AST 
Coefficients: (Intercept)=-6.144e-06, SAT=3.617e-02, Insulin=-2.614e-01, TG=-3.025e-01, AST=1.675e-01, SE=0.898   
 
TG | VAT + Insulin + BasalISR 
Coefficients: (Intercept)=6.214e-06, VAT=2.002e-01, Insulin=-1.722e-01, BasalISR=4.882e-01, SE=0.872 
 
ALT | LiverFat + OGIS 
Coefficients: (Intercept)=0.0001, LiverFat=0.256, OGIS=-0.303, SE=0.880 
 
AST | ALT 
Coefficients: (Intercept)=2.102e-05, ALT=5.571e-01, SE=0.830 
 
GGTP | TG + AST 
Coefficients: (Intercept)=5.174e-05, TG=1.856e-01, AST=2.623e-01, SE=0.937 
 
GlucoseSens | HbA1c + Glucose + BasalISR + OGIS 
Coefficients: (Intercept)=-8.620e-06, HbA1c=-2.056e-01, Glucose=-4.695e-01, BasalISR=2.469e-01, OGIS=-2.982e-01, 
SE=0.864 
 
ALT, alanine transaminase; AST, aspartate transaminase; BasalISR, insulin secretion at the beginning of the oral glucose 
tolerance test/ mixed-meal tolerance test; BMI, body mass index; Clins, mean insulin clearance during the oral glucose 
tolerance test/mixed meal tolerance test, calculated as (mean insulin secretion)/(mean insulin concentration); DBP, mean 
diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; Glucagonmin0, fasting glucagon concentration; Glucose, 
fasting glucose from venous plasma samples; GlucoseSens, glucose sensitivity, slope of the dose–response relating insulin 
secretion to glucose concentration; HbA1c, glycated hemoglobin A1C; HDL, fasting high-density lipoprotein cholesterol; 
Insulin, fasting insulin from venous plasma samples; OGIS, oral glucose insulin sensitivity index according to the method 
of Mari et al. 16; PancFat, pancreas fat; PancIron, pancreas iron; SAT, subcutaneous adipose tissue; SBP, mean systolic 
blood pressure; SE, standard error; TG, fasting triglycerides; TotGLP1min0, concentration of fasting total GLP-1 in plasma; 
TwoGlucose, 2-hour glucose after oral glucose tolerance test/mixed-meal tolerance test; TwoInsulin, 2-hour insulin; VAT, 
visceral adipose tissue. 
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Fig1. Panel A: Averaged Bayesian network of the bootstrapped samples among the variables of IMI DIRECT 
combined cohorts (data are inverse normal transformed, n=1070). Panel B: Cumulative distribution function of 
the arc strengths presented in the Bayesian network of Panel A. Black vertical line is the threshold (0.505) learned 
from data, equal or above which the arcs are identified as statistically significant.  Panel C: Subset of Bayesian 
networks in Panel A including only arcs with strength and directional probabilities ≥ 0.8. Nodes in green highlight 
the Markov blanket of liver fat that includes the nodes with adequate information to stand as a separate Bayesian 
network.  
 
ALT, alanine transaminase; AST, aspartate transaminase; BasalISR, insulin secretion at the beginning of the oral 
glucose tolerance test/ mixed-meal tolerance test; BMI, body mass index; Clins, mean insulin clearance during the 
oral glucose tolerance test/mixed meal tolerance test, calculated as (mean insulin secretion)/(mean insulin 
concentration); DBP, mean diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; Glucagonmin0, 
fasting glucagon concentration; Glucose, fasting glucose from venous plasma samples; GlucoseSens, glucose 
sensitivity, slope of the dose–response relating insulin secretion to glucose concentration; HbA1c, glycated 
hemoglobin A1C; HDL, fasting high-density lipoprotein cholesterol; Insulin, fasting insulin from venous plasma 
samples; OGIS, oral glucose insulin sensitivity index according to the method of Mari et al. 16; PancFat, pancreas 
fat; PancIron, pancreas iron; SAT, subcutaneous adipose tissue; SBP, mean systolic blood pressure; TG, fasting 
triglycerides; TotGLP1min0, concentration of fasting total GLP-1 in plasma; TwoGlucose, 2-hour glucose after 
oral glucose tolerance test/mixed-meal tolerance test; TwoInsulin, 2-hour insulin; VAT, visceral adipose tissue. 
 
 

In the MR analyses, several arcs revealed in the BN were consistent in directionality and 

magnitude (results shown in SD units, otherwise stated). Among these arcs, waist 

circumference had a likely causal link to BMI (β = 1.01; PFDRcorrected= 4.10E-198, PEgger Intercept 

= 2.97E-01). Additionally, as in the BN, causal effects were inferred for SBP to DBP (β = 0.64;  

PFDRcorrected = 5.95E-62, PEgger Intercept = 5.2E-01). Moreover, AST (per lu/L increase) was 

causally associated with GGTP (lu/L) (β = 0.2; PFDRcorrected = 1.14E-06, PEgger Intercept = 1.52E-
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01) and waist circumference was inversely causally related with HDL (β = -0.31; PFDRcorrected = 

1.79E-10, PEgger Intercept = 8.84E-01). A likely causal effect of TG on HDL (β = -0.12; PFDRcorrected 

= 7.04E-04, PEgger Intercept = 1.55E-01) was also observed. 

 
Subgroup analysis: diabetes vs. non-diabetes & female vs. male (in IMI DIRECT)  

In order to elucidate causal networks that might be specific to diabetes or gender, analyses were 

reproduced within each subgroup. In the constructed BNs, BasalISR and VAT appeared to be 

the causal parental nodes for liver fat in both cohorts (S2 Fig, panels A and C). Subsets of these 

BNs with arcs having strengths and directional probabilities above or equal to 0.8 left only 

BasalISR as the causal parental node in both cohorts (S2 Fig, panels B and D). We then 

continued with the sensitivity analysis by gender, as illustrated in Figure S3. In the female’s 

BN, BasalISR and BMI were the causal parental nodes for liver fat, whereas in the male’s BN, 

BasalISR, VAT, TwoInsulin and HbA1c were the causal variables (S3 Fig, panel A and C). 

These BNs with extra restrictions on the strength and directional probabilities above or equal 

to 0.8 resulted in only BasalISR as the causal parental node for liver fat (S3 Fig, panel B and 

D). The Pearson correlation and the heatmap cluster analyses, performed in the sensitivity 

analyses resulted in similar clusters to the combined cohorts’ one (see S1, S4 and S5 Figs). 

Detailed information of arcs with strength and directional probabilities above or equal to the 

BNs’ thresholds (0.51, 0.5, 0.5 and 0.48 in the non-diabetes, diabetes, female and male BNs, 

respectively) are reported in S2 Table along with the corresponding MR results. 

 

Bayesian networks and posterior probabilistic inference (IMI DIRECT)  

 
In order to calculate the posterior probabilities (updated probabilities given prior knowledge) 

of the conditional and unconditional queries, all continuous variables were first discretized into 

three levels (low, moderate and high) using Hartemink’s method17 where variables are 

transformed to discrete variables with he same number of levels (see S3 Table). Liver fat was 
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considered as the variable of interest (event) where it was conditioned on some defined parental 

evidence; high BasalISR, high VAT and having high levels of both. Fig 2 summarizes 

unconditional and posterior conditional probabilities of liver fat on the combined, diabetes, non-

diabetes, female and male groups of the IMI DIRECT BNs. A significant increase was observed 

after conditioning on high levels of BasalISR and VAT in the unconditional probability of high 

liver fat level on the random observations generated by the combined cohorts BNs: 23% 

increase after conditioning on VAT, 32% increase after conditioning on BasalISR, and 40% 

after conditioning on both. Similarly, diabetes, non-diabetes, female and male groups had 

substantial increments on the high liver fat level probability after conditioning on high levels 

of VAT, BasalISR and the combined effect. The probability of having high liver fat after 

conditioning on high levels of VAT and BasalISR was 0.84, 0.97, 0.86, 0.79 and 0.86 in the 

combined, diabetes, non-diabetes, female and male groups, respectively in the BNs constructed 

in IMI DIRECT. 

 
Fig2. Unconditional and posterior conditional probabilities of liver fat on the combined (n=1070), diabetes 
(n=283), non-diabetes (n=787), female (n=239) and male (n=831) groups of the IMI DIRECT Bayesian networks 
(data are inverse normal transformed). Y axis represents the unconditional and posterior conditional probabilities 
of low (0.1,1.95], average (1.95,4.5] or high (4.5,37.6] levels of liver fat in rows.  The posterior probabilities were 
obtained after conditioning on high levels of basal insulin secretion rate (BasalISR) (141,425] (figures in 2nd 
column), high levels of visceral adipose tissue (VAT) (8.76,14.5] (figures in 3rd column) and high levels of both 
(figures in 4th column). Continuous variables were discretized with Hartemink’s method17. 
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Bayesian network and Mendelian randomization assessment of the Twin-cycle model (IMI 

DIRECT) 

Taylor’s Twin-cycle model, a hypothesized mechanistic model linking NAFLD and T2D, 

postulates that chronic energy excess leads to accumulation of fat in the liver and subsequently 

the pancreas, which drives dysglycemia and diabetes. Here, we made a comparison of two 

models both using the same set of variables: i) an unsupervised BN and ii) the model 

hypothesized by Taylor. The bidirectional two-sample MR analyses was also used to test causal 

relationships between all possible combinations of selected variables. The unsupervised BN 

constructed using the variables of the Twin-cycle model is presented in Fig 3A, where panel B 

reports the strength and directional probabilities of the network’s arcs. The arcs, mimicking the 

original Twin-cycle model, include fasting glucose and OGIS towards BasalISR, from glucose 

sensitivity and OGIS to 2-hour glucose, and from BasalISR to liver fat. Among those arcs not 

following the Twin-cycle model, TG to liver fat, glucose sensitivity to OGIS and fasting 

glucose to glucose sensitivity had weak directional probabilities (0.57, 0.66 and 0.60, 

respectively), which may help explain why the metabolic network predicted in our model is not 

fully compatible with the network hypothesized in the Twin-cycle model. Through the 

conducted MR analyses, only the association of fasting glucose to BasalISR could be tested, 

yet it did not reach the multiple testing corrected significance threshold (PFDRcorrected =0.59).  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.21262709doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.31.21262709
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 
 
Fig3. Panel A: averaged Bayesian network of the bootstrapped samples among the variables of the Twin-cycle 
model using data from IMI DIRECT combined cohorts (data are inverse normal transformed, n=1264). Panel B: 
strength and directional probabilities of the arcs presented in the Bayesian network of the panel A. Nodes in green 
highlight the Markov blanket of liver fat that includes the nodes with adequate information to stand as a separate 
Bayesian network.  
 
BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/ mixed-meal tolerance test; Glucose, 
fasting glucose from venous plasma samples; GlucoseSens, glucose sensitivity, slope of the dose–response relating 
insulin secretion to glucose concentration; OGIS, oral glucose insulin sensitivity index according to the method of 
Mari et al. 16; PancFat, pancreas fat; TG, fasting triglycerides; TwoGlucose, 2-hour glucose after oral glucose 
tolerance test/mixed-meal tolerance test; TwoInsulin, 2-hour insulin. 
 

Bayesian network and Mendelian randomization in the UK Biobank cohort 

As with the IMI DIRECT, we replicated the BN analyses in the UK Biobank dataset where data 

permitted. We first checked the heatmap cluster among the inverse normal transformed 

variables (S6 Fig A). The graphical connection of the variables with Pearson correlation ≥0.4 

is also presented in S6 Fig B, identifying a cluster of abdominal fat, BMI, waist circumference 

and liver enzymes. As with the IMI DIRECT analyses, we performed network averaging of the 

bootstrapped BN samples in the UK Biobank dataset. Table 3 reports the conditional density 

and parameters for each node of the UK Biobank’s constructed BN. Panel A in Fig 4 shows the 

averaged BN and panel B illustrates the cumulative distribution function of the arc strengths. 

Detailed information of those arcs with strength and directional probabilities equal to or greater 

than the significant threshold (0.5) is reported in S2 Table, along with the available MR results. 
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VAT, SAT, waist circumference, ALT and Albumin were identified as the causal parental 

nodes, and the effect child nodes were HbA1c and TG. The Markov blanket of liver fat included 

VAT, SAT, waist circumference, whole-body fat mass, systolic blood pressure (SBP), ALT, 

GGTP, HDL, TG, Albumin, Bilirubin and HbA1c. Fig 4, Panel C shows the BN with only the 

strong arcs (both strength and directional probabilities ≥ 0.8), where only VAT and SAT 

remained as the causal nodes of liver fat. We then checked the averaged BN arcs with the two-

sample MR results where possible.  

 

Among these arcs, the consistent associations between the MR and BN were waist 

circumference to BMI (as described above for IMI DIRECT, results shown in SD units, 

otherwise stated). The association of HbA1c, preceded by fasting glucose (per mmol/L) was 

also noted as described above. BMI, and waist circumference were causally related to whole-

body fat mass (β = 0.76, PFDRcorrected= 5.88E-171, PEgger Intercept = 3.4E-01; β = 0.87, PFDRcorrected= 

4.65E-139, PEgger Intercept = 6.44E-01, respectively). The associations linked with HDL, were 

those related to adiposity/anthropometry, i.e., waist circumference (as described above), and 

BMI (β = -0.31, PFDRcorrected= 1.79E-10, PEgger Intercept = 2.97E-01; β = -0.25, PFDRcorrected= 3.96E-

07, PEgger Intercept = 8.84E-01, respectively); moreover, ALT was associated with HDL (β = -0.28, 

PFDRcorrected= 3.61E-03, PEgger Intercept = 4.84E-01). Waist circumference, HDL, GGTP, and 

whole-body fat mass were all associated with TG (β = 0.22, PFDRcorrected= 1.59E-08, PEgger Intercept 

=2.97E-01; β = -0.34, PFDRcorrected= 1.81E-08, PEgger Intercept =1.04E-01; β = 0.21, PFDRcorrected= 

2.83E-05, PEgger Intercept = 1.02E-01; β = 0.12, PFDRcorrected= 1.73E-03, PEgger Intercept = 1.09E-01, 

respectively).  

 
Table 3. Conditional density and parameters for each node of the constructed average Bayesian network using UK 
biobank inverse normal transformed data (n=3641). SE: standard error. 
 
SAT | BMI 
Coefficients: (Intercept)=-2.892e-09, BMI=7.603e-01, SE=0.649   
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VAT | BMI + Bilirubin 
Coefficients: (Intercept)=-1.265e-07, BMI=7.221e-01, Bilirubin=1.101e-01, SE=0.688   
 
LiverFat | SAT + VAT + Waist + ALT + Albumin 
Coefficients: (Intercept)=4.094e-05, SAT=2.049e-01, VAT=6.234e-01, Waist=-1.585e-01, ALT=1.122e-01, Albumin= 
6.906e-02, SE=0.734     
 
Bodyfat Mass | SAT + VAT + DBP + BMI + Waist + HbA1c + Bilirubin 
Coefficients: (Intercept)=-0.00002, SAT=0.671, VAT=-0.246, DBP=0.040, BMI=0.119, Waist=0.376, HbA1c= 0.043, 
Bilirubin=-0.032, SE=0.472 
 
DBP | VAT + Waist + Albumin + GGTP 
Coefficients: (Intercept)=3.306e-05, VAT=1.240e-01, Waist=1.854e-01, Albumin=1.001e-01, GGTP=8.225e-02, SE=0.934 
 
SBP | SAT + DBP + AST + GGTP + HbA1c 
Coefficients: (Intercept)=2.925e-06, SAT=-7.294e-02, DBP=6.818e-01, AST=4.260e-02, GGTP=6.249e-02, HbA1c= 
8.602e-02, SE=0.702 
 
BMI 
Coefficients: (Intercept)=1.084e-09, SE=0.999 
 
Waist | SAT + BMI 
Coefficients: (Intercept)=0.0001, SAT=-0.260, BMI=0.941, SE=0.646 
 
ALT | SAT + VAT + Waist + Albumin 
Coefficients: (Intercept)=-3.533e-05, SAT=-1.708e-01, VAT=3.211e-01, Waist=2.731e-01, Albumin=1.401e-01, SE=0.852 
 
Albumin 
Coefficients: (Intercept)=6.566e-08, SE=0.999 
 
AST | SAT + ALT + Bilirubin 
Coefficients: (Intercept)=1.945e-05, SAT=-1.266e-01, ALT=7.208e-01, Bilirubin=5.342e-02, SE=0.683 
 
GGTP | SAT + VAT + Waist + ALT + Albumin 
Coefficients: (Intercept)=-3.640e-06, SAT=-1.026e-01, VAT=1.648e-01, Waist=1.099e-01 ALT=4.966e-01, Albumin= 
8.686e-02, SE=0.751   
 
Glucose | SBP + GGTP 
Coefficients: (Intercept)=-7.250e-06, SBP=1.468e-01, GGTP=1.017e-01, SE=0.980 
 
HbA1c | LiverFat + Albumin + GGTP + Bilirubin 
Coefficients: (Intercept)=2.546e-06, LiverFat=1.243e-01, Albumin=-6.173e-02, GGTP=1.419e-01, Bilirubin=-1.643e-01, 
SE=0.962   
 
HDL | SAT + VAT + Bodyfat Mass + SBP + BMI + Waist + ALT + Albumin + GGTP 
Coefficients: (Intercept)=3.837e-05, SAT=1.724e-01, VAT=-2.712e-01, Bodyfat Mass=9.114e-02, SBP=7.267e-02, 
BMI=1.069e-01, Waist=-3.377e-01, ALT=-1.094e-01, Albumin=6.870e-02, GGTP=9.059e-02, SE=0.830   
 
Bilirubin | SAT + Waist + Albumin 
Coefficients: (Intercept)=-2.523e-05, SAT=-2.555e-01, Waist=2.027e-01, Albumin=1.800e-01, SE=0.949   
 
TG | VAT + LiverFat + Bodyfat Mass + SBP + Waist + Albumin + GGTP + HDL + Bilirubin 
Coefficients: (Intercept)=-1.456e-05, VAT=4.584e-02, LiverFat=1.662e-01, Bodyfat Mass=5.114e-02, SBP=4.485e-02, 
Waist=5.891e-02, Albumin=5.935e-02, GGTP=1.755e-01, HDL=-3.164e-01, Bilirubin=-1.116e-01, SE=0.803 
 
 
ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, mean diastolic blood pressure; 
GGTP, gamma-glutamyl transpeptidase; Glucose, fasting glucose from venous plasma samples; HbA1c, glycated 
hemoglobin A1C; HDL, fasting high-density lipoprotein cholesterol; Insulin, fasting insulin from venous plasma samples; 
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SAT, subcutaneous adipose tissue; SBP, mean systolic blood pressure; TG, fasting triglycerides; VAT, visceral adipose 
tissue. 
 
 

 

 
Fig4. Panel A: Averaged Bayesian network of the bootstrapped samples among the variables of UK Biobank (data 
are inverse normal transformed, n=3641). Panel B: Cumulative distribution function of the arc strengths presented 
in the Bayesian network of Panel A. Black vertical line is the threshold (0.505) learned from data, equal or above 
which the arcs are identified as statistically significant.  Panel C: Subset of Bayesian networks in Panel A including 
only arcs with strength and directional probabilities ≥ 0.8. Nodes in green highlight the Markov blanket of liver 
fat that includes the nodes with adequate information to stand as a separate Bayesian network.  
 
ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, mean diastolic blood 
pressure; GGTP, gamma-glutamyl transpeptidase; Glucose, fasting glucose from venous plasma samples; HbA1c, 
glycated hemoglobin A1C; HDL, fasting high-density lipoprotein cholesterol; Insulin, fasting insulin from venous 
plasma samples; SAT, subcutaneous adipose tissue; SBP, mean systolic blood pressure; TG, fasting triglycerides; 
VAT, visceral adipose tissue. 
 

Subgroup analysis: diabetes vs. non-diabetes - female vs. male (in UK Biobank) 

As with the IMI DIRECT analyses reported above, we built BNs separately in participants 

diagnosed with T2D (S7 Fig, lower panel) and without diabetes (S7 Fig, upper panel). VAT, 

SAT and albumin were identified as the parental nodes of liver fat in both groups; ALT and 

waist circumference were only present as the parents in the group without T2D (S7 Fig panels 

A and C). The subset of these BNs with arcs having strengths and directional probabilities ≥0.8 

left only VAT as the causal node for liver fat in the group with T2D and VAT and SAT in the 

group without T2D (S7 Fig panels B and D). We then continued with the sensitivity analysis 
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by gender, as illustrated in S8 Fig. In the female’s BN, VAT, TG, ALT, whole-body fat mass, 

HbA1c and BMI were the causal parental nodes for liver fat, whereas in the male’s BN, VAT, 

whole-body fat mass and Albumin were the causal variables (S8 Fig, panel A and C). These 

BNs with extra restrictions on the strength and directional probabilities above or equal to 0.8 

resulted in only VAT as the causal parental node for liver fat (S8 Fig, panel B and D). The 

Pearson correlation and the heatmap cluster analyses, performed in the sensitivity analyses of 

the UK Biobank resulted in similar clusters to the combined cohorts’ one (see S6, S9 and S10 

Figs). Detailed information of arcs with strength and directional probabilities above or equal to 

the UK Biobank BNs’ thresholds (0.49, 0.5, 0.49 and 0.48 in the non-diabetes, diabetes, female 

and male BNs, respectively) are reported in S2 Table with their corresponding MR results. 

 

Bayesian networks and the posterior probabilistic inference (UK Biobank)  

 

Owing to their role as causal parental nodes for liver fat in the UK Biobank BNs, high levels of 

VAT and SAT (see S3 Table) were investigated for their conditional effects on posterior 

probabilities of liver fat levels. Fig 5 summarizes unconditional and posterior conditional 

probabilities of liver fat derived using complete case data, diabetes, non-diabetes, female and 

male subgroups of the UK Biobank BNs. A statistically significant increase was observed after 

conditioning on high levels of VAT and SAT in the unconditional probability of high liver fat 

level on the random observations generated by the BNs from the complete case data, 37% 

increase after conditioning on VAT, 18% increase after conditioning on SAT, and 41% after 

conditioning on both. Similarly, diabetes, non-diabetes, female and male groups had substantial 

increments on the high liver fat level probability after conditioning on high levels of VAT, SAT 

and the combined effect. The probability of having high liver fat after conditioning on high 

levels of VAT and SAT was 0.70, 0.97, 0.79, 0.74 and 0.72 in the complete case data, diabetes, 

non-diabetes, female and male groups of the UK Biobank constructed BNs. 
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Fig5. Unconditional and posterior conditional probabilities of liver fat on the combined (n=3641), diabetes 
(n=104), non-diabetes (n=3531), female (n=1921) and male (n=1720) groups of the UK biobank Bayesian 
networks (data are inverse normal transformed). Y axis represents the unconditional and posterior conditional 
probabilities of low (0,1.438], average (1.438,3.619] or high (3.619,46.049] levels of liver fat in rows.  The 
posterior probabilities were obtained after conditioning on high levels of visceral adipose tissue (VAT) 
(5.958,14.408] (figures in 2nd column), high levels of subcutaneous adipose tissue (SAT) (7.808,23.476] (figures 
in 3rd column) and high levels of both (figures in 4th column). Continuous variables were discretized with 
Hartemink’s method17. 
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DISCUSSION  

We interrogated the putative causal pathways between metabolic processes and liver fat 

accumulation through Bayesian models and a series of bidirectional MR analyses. BNs fitted 

to each dataset separately suggested that VAT and BasalISR (only available in IMI DIRECT) 

causally affect liver fat accumulation. Reassuringly, VAT and BasalISR were also identified as 

the strongest causal determinants through different subgroup analyses as the closest 

determinants of liver fat accumulation. In addition, the probabilistic inference analyses showed 

a substantial increase in the posterior probability of having high levels of liver fat after 

conditioning on VAT and BasalISR (~30%-40%). Furthermore, the MR analysis suggests that 

several nominal directional associations between hepatic biomarkers, glycemic and adiposity 

measures are likely to be causal (summarized in S1 Table).  

 

The epidemiological association of NAFLD and T2D has been widely reported, yet it is unclear 

if this relationship is causal, and, if so, whether it is uni- or bi-directional, and what the 

underlying mechanisms might be. MR has been widely applied to epidemiological datasets to 

help minimize confounding and reverse-causation that are common weaknesses of such 

studies18,19. In a recent study from Liu et.al, the causal relationships between NAFLD, T2D and 

obesity were explored using a bidirectional 2-sample MR analysis in UK Biobank9. Their 

results showed that genetically-determined NAFLD causes T2D and central obesity, whereas 

genetically-determined T2D, overall and central obesity cause metabolic NAFLD. Another 

smaller-scale MR analysis20 suggested the causal role of hepatic fat accumulation in the 

development of chronic liver disease and insulin resistance. The hepatic enzymes ALT and 

AST were found to be causally associated with T2D through bidirectional MR analyses that 

assessed the causal relationship of NAFLD and T2D21, something that was not observed in our 

analyses. BN is an established causal inference method22,23, yet it has rarely been utilized to 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.21262709doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.31.21262709
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

study metabolic traits24. Within these rare exceptions, a reciprocal association between NAFLD 

and metabolic syndrome was suggested through a simplified BN applied to a Chinese cohort25. 

Aiming to predict complications of T2D, BN models were built from physiological risk factors 

of the disease26. BN have also been used to study relationships between risk factors for T2D in 

European-ancestry cohorts27.  

 

Through the main BN analyses reported here, BasalISR was the strongest causal driver of liver 

fat accumulation. This may be explained by hepatic insulin sensitivity (not measured in IMI 

DIRECT nor UK Biobank) or as a direct effect of BasalISR as shown in a recent study by van 

Vliet et al. 28 where a clinical association between obesity and basal insulin secretion rate was 

observed even in the absence of insulin resistance28. Our analyses also showed that in people 

with diabetes, although BasalISR was an important factor, VAT had a bigger causal impact on 

liver fat accumulation (Fig 2- compare 2nd and 3rd figures in the last row). In the UK Biobank 

analyses, where BasalISR was unavailable, VAT was the strongest determinant of fatty liver. 

This, combined with findings in the diabetes sub-cohort of IMI DIRECT, suggests that VAT is 

likely to be a strong causal determinant of fatty liver, especially when diabetes has progressed, 

and insulin secretion is diminished. Our findings were also consistent with other studies that 

show that excess visceral adiposity is an important predictor of NAFLD, much more so than 

subcutaneous adiposity29 (Fig 5- compare 2nd and 3rd figures in the last row).  

 

In addition to using BNs for causal inference, we used MR to validate the factors involved in 

the metabolic processes and liver fat pathways. We found that glycemic traits were at least 

nominally associated with liver enzymes (i.e., AST and GGTP), but the reciprocal effect was 

not detected; however, AST was causally related with insulin sensitivity, though this was not 

detected in pleiotropy/outlier sensitivity analyses. Although there are no robust genetic 
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instruments for VAT and SAT30, which would be necessary for an MR analysis assessing these 

traits, this could be done for whole-body fat mass. Here, the MR analysis supports a causal 

association of whole-body fat mass with insulin sensitivity, consistent with the findings from 

the BNs. Moreover, larger waist circumference and higher BMI were causally associated with 

fasting insulin levels, yet there was no evidence of an effect of these traits on insulin secretion.  

 

In a recent analysis from IMI DIRECT consortium31, we used structural equation modelling to 

test the hypothesis that physical activity affects glucose regulation in a manner consistent with 

the Twin-cycle hypothesis6,7. Here, we constructed a BN that was agnostic to the hypothesized 

Twin-cycle model and showed good, albeit not complete, agreement between the two models, 

providing further validation of the Twin-cycle hypothesis. Note that BN is acyclical, thus 

preventing complete recapitulation of the Twin cycle hypothesis using this approach. 

Moreover, instead of hepatic insulin sensitivity (as used in the Twin-cycle model), OGIS, the 

insulin sensitivity index, was used as a proxy, which might explain some of the observed 

differences. Furthermore, there are currently no genetic instruments available that adequately 

characterize pancreatic fat32, thus preventing its inclusion in our MR analyses.   

 

Although BN and MR have key limitations, they are largely orthogonal methods and their 

combination provides a fairly robust causal inference framework. To avoid any overlap in the 

two samples utilized in MR analysis (exposure and outcome), we restricted the analyses 

primarily to the non-UK Biobank repositories. However, when we had both exposure and 

outcome derived from the same repositories, we considered UK Biobank for one of them. Low 

statistical power can also be a problem in MR analyses, owing to the conditional nature of the 

calculations performed. Specifically, MR depends on the proportion of variance in a phenotypic 

trait that is explained by the instrumental variables (SNPs) used in the GWAS; thus, a limited 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 1, 2021. ; https://doi.org/10.1101/2021.08.31.21262709doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.31.21262709
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

number of instrumental variables is unlikely to capture a true effect for complex exposures. 

Moreover, established methodological caveats of MR, such as pleiotropy and heterogeneity, 

were assessed to effectively disentangle the effect of each trait; however, we cannot completely 

rule out that our instrumental variables have other phenotypic effects. We adopted significance 

criteria with a conservative p-value threshold; the concordance with two methods, and no 

statistical evidence of pleiotropy. Within the same context, utilizing BNs for causal inference 

needs careful consideration, the assumption being there are no latent variables in the model. 

Here, we focused on probabilistic inference and computed the posterior probability of liver fat 

from the observed BNs after conditioning on different pieces of evidence (high levels of 

BasalISR, VAT and/or SAT). It is noteworthy that the constructed BNs should be considered 

as probable causal models, since they are derived from available data and knowledge. 

 

Another limitation of our approach was that to learn the structure and parameters of the BNs, a 

complete case analysis was required, which diminished the sample sizes both in UK Biobank 

and IMI DIRECT considerably. Amongst those from UK Biobank, liver iron and liver 

inflammation factors were two interesting variables that we elected not to include in the BN 

analyses, due to high missing rates (~70%). However, as sensitivity analyses, we tried building 

BN in the subset including liver iron and liver inflammation factor, and it had a downstream 

association from liver fat, similar to the IMI DIRECT network. Subsetting the UK Biobank 

datasets to only those diagnosed with T2D left very few individuals for the complete case 

analyses. As such, the BN model for the diabetic subset is sparse and possibly underpowered. 

In a recent study, Scutari reviewed how BNs can model data with incomplete observations33, 

which can be a focus for future research. Multicollinearity, where input variables are highly 

correlated, can be an issue in some pathway analyses. However, the type of structural learning 

in a BN makes it robust against such limitation. This property makes BN an intuitive visual tool 
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to express associations among several variables in a complex network. We did not apply any 

force node in building the BNs and they were built unsupervised. However, semi-supervised 

networks feeding with known directional associations (e.g., from previous MR analyses) can 

be considered as future work. Expansion of the Bayesian workspace to omics34 would be a 

logical extension of the current work, especially considering the multi-omics data (genetic, 

transcriptomic, proteomic and metabolomic) available in IMI DIRECT consortium. 

  

In summary, the combination of BN and MR analyses deployed here provided a powerful causal 

inference framework through which a causal model of metabolic homeostasis in fatty liver 

disease could be developed and validated. The key findings are that insulin secretion rate and 

visceral adiposity are major causal drivers of fatty liver, until, at least, diabetes develops, at 

which point visceral adiposity becomes the dominant causal agent. These findings may aid the 

targeted prevention of fatty liver disease.  

 

MATERIALS AND METHODS  

IMI DIRECT cohorts and measures 

We utilized data from the IMI DIRECT consortium, prospective cohort studies of 795 adults 

with T2D and 2234 without the disease. Written informed consent was provided by all 

participants at enrollment and the regional research ethics committees of each clinical study 

center have approved the study protocol separately35,36. The participants were extensively 

assessed with measures focused on glycemia, insulin dynamics, organ-specific adiposity, 

serological biomarkers, lifestyle, anthropometry and other clinical features. Frequently sampled 

mixed-meal tolerance tests (MMTTs) and 75 g frequently sampled oral glucose tolerance tests 

(fsOGTTs) were carried out in the diabetes and non-diabetes cohorts, respectively. Basal insulin 

secretion rate (BasalISR) was estimated as the product of insulin clearance and fasting plasma  
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insulin as defined elsewhere37. Adiposity, including liver fat, pancreas fat, visceral fat and 

subcutaneous fat, was assessed using a T2*-based multiecho technique from MRI scans38. An 

overview of participant characteristics is shown in S3 Table in the non-diabetes, diabetes and 

combined cohorts of the IMI DIRECT. More details of the study design and the core 

characteristics are provided elsewhere35,36. 

 

UK Biobank cohort and measures 

UK Biobank is a prospective cohort study with more than 500,000 adults aged 37–73 years and 

recruited between 2006 and 201039. The current analysis was conducted using data obtained via 

the UK Biobank Access Application process (project number 18274). We used this dataset for 

both modelling and replication of the primary findings reported herein form the IMI DIRECT 

cohorts. UK Biobank and IMI DIRECT have the same protocol and procedure for quantification 

of the MRI-derived abdominal fat40. The field numbers for the UK Biobank variables and an 

overview of UK Biobank participants’ characteristics are shown in S3 Table. 

 

Bayesian Network analysis 

We utilized BNs to build the graphical models for inferring causal pathways. BNs are 

probabilistic graphical models that are built from joint probability distributions of random 

variables using Bayesian inference. The network structure is depicted graphically by directed 

acyclic graphs (DAGs), where nodes represent the random variables with directed arcs 

affirming the conditional dependencies and missing arcs defining the conditional 

independencies in the model41-43. 
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Building a BN can be summarized into a two-step learning process (equation 1); structural 

learning where the network structure is learned from data and parameter learning where local 

distributions and parameters are inferred from the learned structure in the first step: 

!(#|%) = !((, *|%) = !((|%). !(*|(, %)   (1) 

 

Where !(#|%) is the likelihood of the BN model according to the structure G and parameter 

* given data D. The structural learning in our analyses has been undertaken by the score-based 

approach, as it deals better with the small sample size and the possible noise in the data44. The 

heuristic search using the hill-climbing technique45 was applied, searching towards the structure 

with the maximum goodness of fit score.  Scoring of the BN structures was done using the 

Bayesian Information Criterion (BIC) score method as follows: 

,-. = /01 2!3%4*5, (67 − 9!2 /01(;) 

 

where, !(%|*, () is the probability of data given parameters and the graph, 9!is the number of 

parameters with ; denoting the sample size. We elected the BIC method as it penalizes 

networks with many arcs, leading to a simpler graph with fewer false positives45.  

 

Numeric variables were all inverse normalized to fit a Gaussian BN with a multivariate normal 

distribution46,47. Such networks require that the nodes are normally distributed to function 

properly. Furthermore, to attain a stable structure from data, which is resistance to the network 

perturbation, we performed model averaging. As such, data were resampled using 

bootstrapping, following which a separate structure was built for each bootstrap sample, and 

the averaged network was then constructed based on the frequency of the possible arcs amongst 

all networks.  
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The Markov condition is an assumption that must be satisfied when making the BNs, which 

states a node can be conditionally independent of the whole network given its Markov blanket 

(the set of nodes that includes all the information required for separating it from the rest of 

graph)48. In our networks, the Markov blanket of the liver fat node, which includes the upstream 

(parent) nodes, the downstream (children) nodes and other parents of those children, were 

derived. After learning the structure of the network, the parameters were fitted using their 

maximum likelihood estimate.  

To further investigate a constructed BN after its structure (() and parameter (*) learning, 

queries on the variable of interest (<), known as event, can be defined. Here, we focused on 

liver fat as our event and computed its posterior probability after conditioning on an evidence 

(=) to further understand its causal effect on liver fat, !(<|=, (, *). To compute the conditional 

posterior probabilities, variables were required to be discrete. To discretize the continues 

variables, Hartemink’s method was deployed which helps to preserve the initial dependencies 

among the variables while defining the intervals17.  

 

Mendelian randomization analysis 

The MR approach has gained popularity because it is less susceptible to confounding and 

reverse causation than most other observational studies49,50, and is often likened to a 

randomized controlled trial (RCT) owing to the random allocation of most confounding 

variables across the levels of the exposure instrument (genotype). Specifically, the random 

assortment of alleles during meiosis allows exploration of causal relationships between various 

traits and diseases under the assumption that genetic variants [known as instrumental variables 

(IV)] are suitable proxies for given risk factors, moreover, the instruments should influence the 

outcome only through the exposure and not through any other confounding18. Bidirectional MR 

involves assessment of the reciprocal exposure-outcome relationship to assess the directionality 
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in causation. Thus, a systematic bidirectional MR study leveraging the latest public GWAS data 

would help triangulate causality of directed arcs in BN analysis. 

  

Two-sample MR analysis was deployed, where each trait was investigated for potential causal 

associations. Between the selected metabolic traits, we assessed bidirectionally, i.e. used as 

exposure and as outcome50, we leveraged from the latest summary statistics from publicly 

available sources i.e. GWAS catalog51 and MR-CIEU52. Operationally, not all traits defined in 

IMI DIRECT or UK Biobank have a corresponding GWAS published. We prioritized GWAS 

restricted to European population (see S1 Table) based on i) latest release, ii) sample size, and 

iii) if no published GWAS was obtained or not enough number of independent variants were 

identified we used the UK Biobank data53 from Neale Lab 

(http://www.nealelab.is/blog/2017/9/11/details-and-considerations-of-the-uk-biobank-gwas). 

Additionally, in case of sample overlap between two datasets, we preemptively selected one 

trait from UK Biobank and overlap was calculated with the maximum sample-overlapping rate 

55, as reported by Liu and colleagues9. Instrumental variables were prioritized at GWAS-

significance threshold (p-value<5 × 10"#) and proxies were used if the genetic variants were 

in linkage disequilibrium (LD) at B$ ≥ 0.8 in any of the two-samples, yet,  to avoid LD within 

the instruments, we performed LD-clumping restricted to B$ < 0.2, a 1000 kb window for the 

final sets. 

 

We used the inverse variance weighted (IVW) method as the main analysis to estimate the 

effects of the instrumental variables, when there were sufficient number of genetic variants. 

Furthermore, we used MR-Egger method to minimize false positive associations. To quantify 

heterogeneity, horizontal pleiotropy, and detect outliers, we used the MR-Egger intercept, the 

Q statistic and the MR Pleiotropy Residual Sum and Outlier (MR-PRESSO) global test at p 
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level of >0.05 when appropriate55. MR-Egger, as part of the regression, provides a consistent 

estimate of the causal effect. Moreover, when the InSIDE (Instrument Strength Independent of 

Direct Effect) assumption holds, the intercept provides an unbiased average pleiotropic effect 

that should not significantly differ from the null, yet, when this is unmet, its value represents 

an estimate of the directional horizontal pleiotropy56. We considered MR findings to be 

statistically significant if: i) the causal association amongst IVW, and Egger were directionally 

concordant, ii) the IVW (main method) passed the FDR corrected13 threshold (p<0.05) for 

multiple-testing, and iii) no statistical evidence of heterogeneity and/or pleiotropy (PEgger 

Intercept, and PMR-PRESSOGlobal p>0.05). 

 

All the statistical analyses were undertaken using R software version 3.6.257, the BNs were built 

using the bnlearn package58,59 and the MR analysis using the TwoSampleMR52 and MR-

PRESSO packages55. Variables from IMI DIRECT were adjusted for center effect in a linear 

model including each variable per model. The residuals were then extracted from these models 

and were ranked normalized to fulfill the Gaussian BN assumption. The distribution of the IMI 

DIRECT and UK Biobank variables prior to transformation is depicted in S11 and S12 Figs, 

respectively.  
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SUPPLEMENTARY INFORMATION 

 

S1 Fig. A. Heatmap cluster among the variables of IMI DIRECT combined cohorts (data are 
inverse normal transformed, n=1070). B. The graphical connection of the variables with 
Pearson correlation equal or above 0.4. 
OGIS, oral glucose insulin sensitivity index according to the method of Mari et al. 16; Clins, 
mean insulin clearance during the oral glucose tolerance test/mixed meal tolerance test, 
calculated as (mean insulin secretion)/(mean insulin concentration); HDL, fasting high-density 
lipoprotein cholesterol; GlucoseSens, glucose sensitivity, slope of the dose–response relating 
insulin secretion to glucose concentration; PancIron, pancreas iron; PancFat, pancreas fat; SBP, 
mean systolic blood pressure; DBP, mean diastolic blood pressure; Glucagonmin0, fasting 
glucagon concentration; TotGLP1min0, concentration of fasting total GLP-1 in plasma; 
HbA1c, glycated hemoglobin A1C; Glucose, fasting glucose from venous plasma samples; 
TwoGlucose, 2-hour glucose after oral glucose tolerance test/mixed-meal tolerance test; GGTP, 
gamma-glutamyl transpeptidase; AST, aspartate transaminase; ALT, alanine transaminase; 
SAT, subcutaneous adipose tissue; BMI, body mass index; TG, fasting triglycerides; VAT, 
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visceral adipose tissue; TwoInsulin, 2-hour insulin; Insulin, fasting insulin from venous plasma 
samples; BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/ mixed-
meal tolerance test. 
 
 
S2 Fig. Averaged Bayesian network of the bootstrapped samples among the variables of IMI 
DIRECT cohorts, panel A-B for non-diabetic (n=787) and panel C-D for diabetic (n=283) 
cohorts. Data are inverse normal transformed and the Bayesian networks in panels B and D 
show only the arcs with strength and directional probabilities ≥ 0.8.  
OGIS, oral glucose insulin sensitivity index according to the method of Mari et al.16; Clins, 
mean insulin clearance during the oral glucose tolerance test/mixed meal tolerance test, 
calculated as (mean insulin secretion)/(mean insulin concentration); HDL, fasting high-density 
lipoprotein cholesterol; GlucoseSens, glucose sensitivity, slope of the dose–response relating 
insulin secretion to glucose concentration; PancIron, pancreas iron; PancFat, pancreas fat; SBP, 
mean systolic blood pressure; DBP, mean diastolic blood pressure; Glucagonmin0, fasting 
glucagon concentration; TotGLP1min0, concentration of fasting total GLP-1 in plasma; 
HbA1c, glycated hemoglobin A1C; Glucose, fasting glucose from venous plasma samples; 
TwoGlucose, 2-hour glucose after oral glucose tolerance test/mixed-meal tolerance test; GGTP, 
gamma-glutamyl transpeptidase; AST, aspartate transaminase; ALT, alanine transaminase; 
SAT, subcutaneous adipose tissue; BMI, body mass index; TG, fasting triglycerides; VAT, 
visceral adipose tissue; TwoInsulin, 2-hour insulin; Insulin, fasting insulin from venous plasma 
samples; BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/ mixed-
meal tolerance test. 
 
S3 Fig. Averaged Bayesian network of the bootstrapped samples among the variables of IMI 
DIRECT cohorts, panel A-B for female (n=293) and panel C-D for male (n=831) groups. Data 
are inverse normal transformed and the Bayesian networks in panels B and D show only the 
arcs with strength and directional probabilities ≥ 0.8. 
OGIS, oral glucose insulin sensitivity index according to the method of Mari et al.16; Clins, 
mean insulin clearance during the oral glucose tolerance test/mixed meal tolerance test, 
calculated as (mean insulin secretion)/(mean insulin concentration); HDL, fasting high-density 
lipoprotein cholesterol; GlucoseSens, glucose sensitivity, slope of the dose–response relating 
insulin secretion to glucose concentration; PancIron, pancreas iron; PancFat, pancreas fat; SBP, 
mean systolic blood pressure; DBP, mean diastolic blood pressure; Glucagonmin0, fasting 
glucagon concentration; TotGLP1min0, concentration of fasting total GLP-1 in plasma; 
HbA1c, glycated hemoglobin A1C; Glucose, fasting glucose from venous plasma samples; 
TwoGlucose, 2-hour glucose after oral glucose tolerance test/mixed-meal tolerance test; GGTP, 
gamma-glutamyl transpeptidase; AST, aspartate transaminase; ALT, alanine transaminase; 
SAT, subcutaneous adipose tissue; BMI, body mass index; TG, fasting triglycerides; VAT, 
visceral adipose tissue; TwoInsulin, 2-hour insulin; Insulin, fasting insulin from venous plasma 
samples; BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/ mixed-
meal tolerance test. 
 
S4 Fig. Heatmap cluster and the graphical connection of the IMI DIRECT variables with 
Pearson correlation equal or above 0.4, panel A-B for non-diabetic (n=787) and panel C-D for 
diabetic (n=283) cohorts. Data are inverse normal transformed.  
OGIS, oral glucose insulin sensitivity index according to the method of Mari et al16; Clins, 
mean insulin clearance during the oral glucose tolerance test/mixed meal tolerance test, 
calculated as (mean insulin secretion)/(mean insulin concentration); HDL, fasting high-density 
lipoprotein cholesterol; GlucoseSens, glucose sensitivity, slope of the dose–response relating 
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insulin secretion to glucose concentration; PancIron, pancreas iron; PancFat, pancreas fat; SBP, 
mean systolic blood pressure; DBP, mean diastolic blood pressure; Glucagonmin0, fasting 
glucagon concentration; TotGLP1min0, concentration of fasting total GLP-1 in plasma; 
HbA1c, glycated hemoglobin A1C; Glucose, fasting glucose from venous plasma samples; 
TwoGlucose, 2-hour glucose after oral glucose tolerance test/mixed-meal tolerance test; GGTP, 
gamma-glutamyl transpeptidase; AST, aspartate transaminase; ALT, alanine transaminase; 
SAT, subcutaneous adipose tissue; BMI, body mass index; TG, fasting triglycerides; VAT, 
visceral adipose tissue; TwoInsulin, 2-hour insulin; Insulin, fasting insulin from venous plasma 
samples; BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/ mixed-
meal tolerance test. 
 
S5 Fig. Heatmap cluster and the graphical connection of the IMI DIRECT variables with 
Pearson correlation equal or above 0.4, panel A-B for female (n=293) and panel C-D for male 
(n=831) groups. Data are inverse normal transformed.  
OGIS, oral glucose insulin sensitivity index according to the method of Mari et al.16; Clins, 
mean insulin clearance during the oral glucose tolerance test/mixed meal tolerance test, 
calculated as (mean insulin secretion)/(mean insulin concentration); HDL, fasting high-density 
lipoprotein cholesterol; GlucoseSens, glucose sensitivity, slope of the dose–response relating 
insulin secretion to glucose concentration; PancIron, pancreas iron; PancFat, pancreas fat; SBP, 
mean systolic blood pressure; DBP, mean diastolic blood pressure; Glucagonmin0, fasting 
glucagon concentration; TotGLP1min0, concentration of fasting total GLP-1 in plasma; 
HbA1c, glycated hemoglobin A1C; Glucose, fasting glucose from venous plasma samples; 
TwoGlucose, 2-hour glucose after oral glucose tolerance test/mixed-meal tolerance test; GGTP, 
gamma-glutamyl transpeptidase; AST, aspartate transaminase; ALT, alanine transaminase; 
SAT, subcutaneous adipose tissue; BMI, body mass index; TG, fasting triglycerides; VAT, 
visceral adipose tissue; TwoInsulin, 2-hour insulin; Insulin, fasting insulin from venous plasma 
samples; BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/ mixed-
meal tolerance test. 
 
S6 Fig. A. Heatmap cluster among the variables of the UK Biobank (data are inverse normal 
transformed, n=3641). B. The graphical connection of the variables with Pearson correlation 
equal or above 0.4. 
ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, mean 
diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; Glucose, fasting glucose 
from venous plasma samples; HbA1c, glycated hemoglobin A1C; HDL, fasting high-density 
lipoprotein cholesterol; Insulin, fasting insulin from venous plasma samples; SAT, 
subcutaneous adipose tissue; SBP, mean systolic blood pressure; TG, fasting triglycerides; 
VAT, visceral adipose tissue. 
 
 
S7 Fig. Averaged Bayesian network of the bootstrapped samples among the variables of the 
UK Biobank, panel A-B for non-diabetic (n=3531) and panel C-D for diabetic (n=104) cohorts. 
Data are inverse normal transformed and the Bayesian networks in panels B and D show only 
the arcs with strength and directional probabilities ≥ 0.8. 
ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, mean 
diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; Glucose, fasting glucose 
from venous plasma samples; HbA1c, glycated hemoglobin A1C; HDL, fasting high-density 
lipoprotein cholesterol; Insulin, fasting insulin from venous plasma samples; SAT, 
subcutaneous adipose tissue; SBP, mean systolic blood pressure; TG, fasting triglycerides; 
VAT, visceral adipose tissue. 
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S8 Fig. Averaged Bayesian network of the bootstrapped samples among the variables of the 
UK Biobank, panel A-B for female (n=1921) and panel C-D for male (n=1720) groups. Data 
are inverse normal transformed and the Bayesian networks in panels B and D show only the 
arcs with strength and directional probabilities ≥ 0.8. 
ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, mean 
diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; Glucose, fasting glucose 
from venous plasma samples; HbA1c, glycated hemoglobin A1C; HDL, fasting high-density 
lipoprotein cholesterol; Insulin, fasting insulin from venous plasma samples; SAT, 
subcutaneous adipose tissue; SBP, mean systolic blood pressure; TG, fasting triglycerides; 
VAT, visceral adipose tissue. 
 
S9 Fig. Heatmap cluster and the graphical connection of the UK Biobank variables with 
Pearson correlation equal or above 0.4, panel A-B for non-diabetic (n=3531) and panel C-D for 
diabetic (n=104) groups. Data are inverse normal transformed.  
ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, mean 
diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; Glucose, fasting glucose 
from venous plasma samples; HbA1c, glycated hemoglobin A1C; HDL, fasting high-density 
lipoprotein cholesterol; Insulin, fasting insulin from venous plasma samples; SAT, 
subcutaneous adipose tissue; SBP, mean systolic blood pressure; TG, fasting triglycerides; 
VAT, visceral adipose tissue. 
 
S10 Fig. Heatmap cluster and the graphical connection of the UK Biobank variables with 
Pearson correlation equal or above 0.4, panel A-B for female (n=1921) and panel C-D for male 
(n=1720) groups. Data are inverse normal transformed.  
ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, mean 
diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; Glucose, fasting glucose 
from venous plasma samples; HbA1c, glycated hemoglobin A1C; HDL, fasting high-density 
lipoprotein cholesterol; Insulin, fasting insulin from venous plasma samples; SAT, 
subcutaneous adipose tissue; SBP, mean systolic blood pressure; TG, fasting triglycerides; 
VAT, visceral adipose tissue. 
 
S11 Fig. Distribution of the variables prior to transformation in the IMI DIRECT combined 
cohorts (n=1070). The blue curve shows the normally transformed distribution of the variables. 
OGIS, oral glucose insulin sensitivity index according to the method of Mari et al.16; Clins, 
mean insulin clearance during the oral glucose tolerance test/mixed meal tolerance test, 
calculated as (mean insulin secretion)/(mean insulin concentration); HDL, fasting high-density 
lipoprotein cholesterol; GlucoseSens, glucose sensitivity, slope of the dose–response relating 
insulin secretion to glucose concentration; PancIron, pancreas iron; PancFat, pancreas fat; SBP, 
mean systolic blood pressure; DBP, mean diastolic blood pressure; Glucagonmin0, fasting 
glucagon concentration; TotGLP1min0, concentration of fasting total GLP-1 in plasma; 
HbA1c, glycated hemoglobin A1C; Glucose, fasting glucose from venous plasma samples; 
TwoGlucose, 2-hour glucose after oral glucose tolerance test/mixed-meal tolerance test; GGTP, 
gamma-glutamyl transpeptidase; AST, aspartate transaminase; ALT, alanine transaminase; 
SAT, subcutaneous adipose tissue; BMI, body mass index; TG, fasting triglycerides; VAT, 
visceral adipose tissue; TwoInsulin, 2-hour insulin; Insulin, fasting insulin from venous plasma 
samples; BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/ mixed-
meal tolerance test. 
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S12 Fig. Distribution of the variables prior to transformation in the UK Biobank cohort 
(n=3641). The blue curve shows the normally transformed distribution of the variables. 
ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, mean 
diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; Glucose, fasting glucose 
from venous plasma samples; HbA1c, glycated hemoglobin A1C; HDL, fasting high-density 
lipoprotein cholesterol; Insulin, fasting insulin from venous plasma samples; SAT, 
subcutaneous adipose tissue; SBP, mean systolic blood pressure; TG, fasting triglycerides; 
VAT, visceral adipose tissue. 
 
 
S1 Table. The 2-sample Mendelian randomization exposure-outcome associations reported per 
outcome trait.   
ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, mean 
diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; HbA1c, glycated 
hemoglobin A1C; HDL, fasting high-density lipoprotein cholesterol; IDI, insulin disposition 
index; ISI, insulin sensitivity index; SAT, subcutaneous adipose tissue; SBP, mean systolic 
blood pressure; TG, fasting triglycerides; VAT, visceral adipose tissue. 
 
S2 Table. Information on the strength and directional probabilities of the arcs for the combined, 
diabetes, non-diabetes, female and male groups of the IMI DIRECT and UK Biobank Bayesian 
networks. The arcs are limited for those with strength and directional probabilities equal to or 
greater than the model’s significant threshold. The corresponding Mendelian randomization is 
reported when available.   
 
S3 Table. Characteristics of the IMI DIRECT and UK Biobank in the non-diabetes, diabetes 
and combined cohorts and the list of the variables used in the analyses with their meanings. All 
the continuous variables were discretized into three levels (Low, Average and High) with 
Hartemink’s method for the probabilistic inference analyses and are presented in this table. 
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TwinCycle Avgerage bootstrap with MB
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GlucoseSens

TG

PancFat

Matched with Twin-cycle model

Not matched with Twin-cycle model

from               to strength direction
Glucose OGIS    1.000 0.870
Glucose BasalISR 0.800 0.966
Glucose GlucoseSens 1.000 0.605
TwoGlucose BasalISR 1.000 0.700
TwoGlucose TG    0.925 0.957
OGIS  TwoGlucose 1.000 0.877
OGIS    BasalISR 1.000 0.950
BasalISR LiverFat 1.000 0.895
BasalISR TG    1.000 0.955
GlucoseSens TwoGlucose 1.000 0.857
GlucoseSens OGIS    1.000 0.662
GlucoseSens BasalISR 0.935 0.896
TG    LiverFat 0.740 0.571
PancFat OGIS    0.870 0.873

A. B.
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