Antibodies anti-SARS-CoV2 time-course in patients and
vaccinated subjects: an evaluation of the harmonization of two
different methods
Ruggero Dittadi 1*, Mara Seguso 1, Isabella Bertoli 1, Haleh Afshar 1 and Paolo Carraro 1.*
1 Laboratory Medicine Unit, Ospedale dell'Angelo, ULSS 3 Serenissima, Mestre, Italy; ruggero.dittadi@aulss3.veneto.it (R.D.); haleh.afshar@aulss3.veneto.it (H.A.); paolo.carraro@aulss3.veneto.it (P.C.)
* Correspondence: ruggero.dittadi@aulss3.veneto.it
Abstract: The time-course of antibodies anti SARS-CoV2 is not yet well elucidated, especially in people who
underwent a vaccination campaign. In this study we measured antibodies anti-S1 and anti-RBD with two
different methods both in patients and in vaccinated subjects.
108 specimens from 48 patients diagnosed as COVID-19 affected (time from the onset of symptoms from 3 to
368 days) and 60 specimens from 20 vaccinated subjects (collected after 14 days from the first dose, 14 days
and 3 months after a second dose of Comirnaty) were evaluated.
We used an ELISA method that measure IgG against anti-Spike 1 and a chemiluminescence immunoassays
that measure IgG anti-RBD.
In the patients, antibodies concentrations tend to decline after a few months with both methods, but persist
relatively high up to nearly a year after symptoms.
In vaccinated subjects, antibodies were already detectable after the first dose, but after the booster they show
a significant increase. However, the decrease is rapid, given that after 3 months after the second vaccination
they are reduced to less than a quarter.
The conversion of the results into BAU units improves the relationship between the two methods. However,
in vaccinated subjects there was no evidence of proportional error after the conversion, while in the patients
the difference between the two methods remained significant.
Keywords: Immune response; SARS-CoV-2 antibodies response; Vaccination; method comparison; harmonization

The determination of the antibodies against SARS-CoV-2 could be useful in epidemiological studies for estimating the spread of the infection and the lethality rate, in the serological diagnosis for individuals with mild or moderate symptoms and asymptomatic, in the first screening of

convalescent patients for plasma collection and in monitoring of the antibody response of
 vaccinated subjects.

Long term time-course of antibodies response in Covid-19 disease is not yet fully determined. Some studies show a significant decrease of antibodies concentrations within 3-4 months from the onset of symptoms [1-4]. Others reports find constant or only slightly decreased levels starting from 4 months and up to 10 months from the symptoms' onset [5-8], even when specific neutralizing antibodies [9] were measured. In particular, the time-course of the antibody response seems variable also according to the method used [8,10]. On the other hand, antibodies seem to persist through 4-6 months in vaccinated subjects [11,12].

The aim of this work is to evaluate the performance of 2 methods for the determination of antibodies to SARS-CoV-2 in patients with a long-term time-course. We also evaluated the presence of antibodies in a little cohort of subjects vaccinated with Comirnaty vaccine.

46 **2. Materials and Methods**

We recruited symptomatic subjects who presented at the dell'Angelo Hospital (Mestre, Italy) in 47 March 2020, resulted affected by COVID-19 according to both clinical and laboratory criteria. 48 Forty-eight patients with known date of symptoms' onset were included in the study (41 males, 7 49 females, median age 62.3 years, minimum 28, maximum 87). The median time from the onset of 50 symptoms was 26 days (minimum 3, maximum 368). A total of 108 withdrawals were collected. 51 Number of withdrawals per patient and other patients' characteristics were reported in table 1. 52 53 Moreover, serum samples were collected from 20 healthcare workers after 14 days from the first dose, 14 days and 3 months after a second dose of Comirnaty vaccine (BNT162b2, BioNTech/Pfizer, 54 Mainz, Germany/New York, United States). All subjects underwent periodical nasopharyngeal 55 swab testing (every 2 or 3 weeks) and resulted negative to the antibodies determination prior to 56

vaccine administration.

57

⁵⁸ The specimens were stored at -80°C until the assay.

⁵⁹ IgG were measured with an ELISA method, the anti-SARS-CoV-2 QuantiVac ELISA IgG

60 (Euroimmun, Lubeck, Germany) and a two-step chemiluminescence microparticle immunoassays

61 SARS-CoV-2 IgG anti-RBD (SNIBE, Shenzen, China).

⁶²Both the assays were performed according to the manufacturer's instructions.

- ⁶³ The good analytical characteristics of the two methods and the satisfactory correlation with the
- neutralization tests were previously evaluated and confirmed [13-15]. The concentrations were
- ⁶⁵ measured taking into consideration the previously determined linearity of the respective methods
- 66 [16].
- 67
- 68 **Table 1** Characteristics of the studied patients.
- 69 The disease severity was classified according the WHO guidance "Laboratory testing for coronavirus disease (COVID-19) in
- *suspected human cases")*
- 71

Symptoms at the onset of	Frequency (%)
disease	
Fever	75.0
Cough	60.4
Dyspnoea	29.2
Nausea	8.3
Asthenia	6.3
Others	10.5
Disease severity	n of patients
Mild	9
Moderate	16
Severe	11
Critical	12
n of withdrawals	n patients
1	19
2	12
3	7
4	7
5	2
6	1

- 72
- 73

In the ELISA Euroimmun method, the concentrations of the antibodies against the S1 protein were determined through the interpolation with a six-point calibration curve (from 1 to 120 Relative Units/mL). Results <8 RU/mL were considered as negative, results >8 RU/mL and \leq 11 RU/mL were considered as indeterminate and >11 RU/mL as positive.

4 of 14

- 78 The IgG anti-RBD method measure antibodies against receptor binding domain of the S1 protein,
- 79 were carried out on the analyser Maglumi 800 (SNIBE, Shenzen, China), and use a nine-point
- master curve (from 1 to 100 Arbitrary Units/mL) periodically adjusted by a 2-point calibration.
- Results >= 1 AU/mL were considered as positive.
- 82 The statistical analyses were performed with MedCalc © Software, Version 7.4.2.0 (MedCalc
- 83 Software, Mariakerke, Belgium).
- 84

85 3. Results

⁸⁶ The overall concordance rate between methods was 89.8% (kappa statistics, 0.54; 95% CI, 0.30–0.78).

87 The results of patients' specimens were subdivided into 7 groups, for which the qualitative

⁸⁸ performance was evaluated (Table 2).

89

90 Table 2 - Sensitivity and antibodies levels of ELISA and Maglumi methods in the different patient's specimens subdivided in

- 91 time frames according to the day from the onset of symptoms
- 92 Asterisks represent the classes of cases significantly different from that with higher concentrations.

0	2
-9	5

		Positivity rate		ELISA levels (RU/mL)			Maglumi levels (AU/mL)		
Days from symptoms' onset	n of specimens	ELISA	Maglumi	25 perc	Median	75 perc	25 perc	Median	75 perc
≤ 11 *	17	41.2%	76.5%	2,4	10,3	37,1	1,0	3,1	14,1
12-16 *	15	73.3%	80.0%	6,7	68,1	404,0	2,3	24,9	50,6
17-22	14	100.0%	100.0%	76,80	191,5	438,0	25,6	48,8	58,1
23-43	16	100.0%	100.0%	137,5	250,5	448,5	43,2	50,5	61,5
46-72	15	100.0%	100.0%	183,2	259,2	330,2	49,8	82,7	126,0
81-162 *	16	93.7%	100.0%	57,8	102,6	149,0	23,1	34,6	53,1
168-371 *	15	86.7%	100.0%	29,4	39,6	110,3	13,9	22,2	48,1

94

The quantitative relationship showed a satisfactory correlation, although with relative disperse distribution of cases. Passing-Bablock regression resulted "*Maglumi*= 0.284 (0.24/0.33) +0.581 (-0.21/2.64) *ELISA*" (Fig. 1 A).

5 of 14

- 98 The differences in concentration between age groups were statistically significant for both methods
- 99 (Kruskall-Wallis test p=0.00002 for both Maglumi and ELISA).
- 100 The antibodies' levels showed a similar time-course with the two methods. After a rapid increase, the
- 101 concentrations begin to decrease slightly after about 80-100 days (figure 2 and 3).
- 102 The ELISA method showed a sensitivity of about 87% after 180 days, while the sensitivity of Maglumi
- 103 remains 100%.
- 104 The results of the determination with the two methods in the 13 patients with more than one blood
- collection at least up to 180 days after the onset of symptoms were shown in figure 4.

106

- 107
- 108 Figure 1. Correlations between ELISA and Maglumi SARS-CoV-2 IgG levels in patients' specimens. The trend lines
- 109 represent the Passing-Bablock correlation
- 110 A Concentrations expressed in Arbitrary Units [Maglumi=0.581 (-0.21/2.64) ELISA + 0.284 (0.24/0.33)]
- 111 **B** Concentrations expressed as BAU [*Maglumi* = 2.45 (-1.6 / + 10.6) +0.39 (0.33 / 0.46) ELISA]
- 116 **A**

112 **B**

1	2	2
1	4	J

- Figure 2. Distribution of IgG levels of the single specimens measured by ELISA in relation to the days since the
- onset of symptoms.
- In abscissa are reported the days from the onset of symptoms, in ordinate the concentrations of IgG. The solid line connects
- the median concentrations of IgG for each class of cases, the dotted line connects the respective 25°-75° percentile.

- **Figure 3**. Distribution of IgG levels of the single specimens measured by Maglumi in relation to the days since
- 142 the onset of symptoms.
- 143 In abscissa are reported the days from the onset of symptoms, in ordinate the concentrations of IgG. The solid line connects
- 144 the median concentrations of IgG for each class of cases, the dotted line connects the respective 25°-75° percentile.

4 of 14

154 Figure 4. Spaghetti plot of the 13 patients with more than one withdrawal in more than 180 days from the onset

¹⁵⁶

All the vaccinated subjects were positive 15 days after the first inoculum with Maglumi method,

while with the ELISA method 4/22 cases resulted negative.

¹⁶⁵ Fifteen days after the booster all the samples were positive with both methods, and the concentrations

resulted more than 20 times the first withdrawal (table 3).

The correlations between the two methods resulted satisfactory, especially after the second dose (figure 5 and 6). The Passing-Bablock regression were: Maglumi = -0.89(-6.1/+1.2) + 0.59 (0.47/0.78) ELISA for the specimens after the first dose and Maglumi = -52.4(-107/+19.2) + 0.85 (0.74/0.92) ELISA for the specimens after the second administration.

Three months after the second dose the levels of antibodies drastically decrease (table 3). The median of the percentage of the concentrations compared to those found 15 days after the second dose was 21% (10°-90° perc 11-33%) with Maglumi and 24.4% (10°-90° perc 13-33%) with ELISA.

- 174
- 175
- 176
- 177

¹⁵⁵ of symptoms, measured by Maglumi (A) and ELISA (B).

- 178
- Tab. 3 Concentrations of antibodies anti SARS-CoV2 in the vaccinated subjects, expressed both in Arbitrary Units and in
 BAU
- 181

		EL	JSA levels	Maglumi levels		
		Median	Interquartile range	Median	75 perc	
	15 days after the first dose	27.2	16.4 – 42	18.1	6.6 - 27.7	
Arbitrary Units/mL	15 days after the second dose	704.5	388.5 – 940	499	335.9 – 756.8	
	3 months after the second dose	129.6	95.2 – 244	84.6	47.7 – 195	
Binding	15 days after the first dose	87	58.1 – 113.8	78.4	30.8 – 113	
Antibody Units/mL	15 days after the second dose	2254	1243 – 3008	2160	1454 – 3277	
(WHO)	3 months after the second dose	366.1	206.7 - 844	414.7	305 - 781	

182

The Passing-Bablock regression between the two methods was: Maglumi = -16.2(-37.5/+5.7) + 0.78(0.65/0.98) ELISA (Fig. 7).

Correction factors versus the international standard WHO 20/136 were determined for both assays (4.33 for Maglumi and 3.2 for ELISA). The correlations between the two methods after transformation into Binding Arbitrary Units (BAU) resulted in *Maglumi* = 2.45 (-1.6 / + 10.6) +0.39 (0.33 / 0.46) ELISA in patients, *Maglumi* = -5.1 (-26.8 / + 5.0) +0.82 (0.64 / 1.07) ELISA in subjects vaccinated after the first dose and *Maglumi* = -227.9 (-464 / + 69.9) + 1.14 (0.99 / 1.25) ELISA in subjects vaccinated after the second dose. Three months after the second dose the correlation is *Maglumi* = -72.8 (-166.8 / + 24) + 1.07 (0.88 / 1.35) ELISA.

192

193

- 194
- 195

3 of 14

4 of 14

- Figure 6. Correlation between ELISA and Maglumi methods in vaccinated subjects 15 days after the second dose. The
- 225 trend lines represent the Passing-Bablock correlation
- A Concentrations expressed in Arbitrary Units [Maglumi= 52.4(-107/+19.2) +0.85 (0.74/0.92)]
- 227 **B** Concentrations expressed as BAU [*Maglumi* = -227.9 (-464 / + 69.9) + 1.14 (0.99 / 1.25) ELISA]
- 228 229

230

В

- 234 The trend lines represent the Passing-Bablock correlation
- A Concentrations expressed in Arbitrary Units [*Maglumi*=-16.2(-37.5/+5.7) +0.78 (0.65/0.98) ELISA]
- 236 **B** Concentrations expressed as BAU [*Maglumi* = -72.8 (-166.8 / + 24) + 1.07 (0.88 / 1.35) ELISA]
- 237

Α

240 4. Discussion

In this study, the performance of two assays for the determination of antibodies anti SARS-CoV2 in patients with samples up to 10-12 months from the onset of symptoms were compared. With both methods, antibodies concentrations tend to decline after a few months, but the levels persist relatively high up to nearly a year after symptoms (Tab.2). Our data, especially those obtained with Maglumi, were approximately in accord with a model of the IgG anti-S decay in patients, that established a half-life of 229 days [17]. Positivity rates remains 100% with the Maglumi method, while they drop to 87% with the ELISA method.

248 In vaccinated subjects, the presence of high concentrations of antibodies is already detectable after the first dose, but after the booster they show a significant increase, about 20 times compared to the first 249 administration and on average 3 times the maximum concentrations reached by the patients after 250about two months from the onset of symptoms. This result is in agreement with previous findings for 251 the method used [13,18,19]. However, in vaccinated subjects the decrease in antibody concentrations 252 is more rapid, given that after 3 months after the second vaccination they are reduced to less than a 253 quarter. The correlations between the two methods are always acceptable, but while in the patients 254 the results are scattered and the ELISA method has 3-4 times higher levels of Maglumi, in vaccinated 255 subjects the concentrations between the two methods are closer and much better correlated. Moreover, 256 257 the conversion of the results into BAU units improves the relationship between the two methods. However, only in vaccinated subjects there was no evidence of proportional error after the conversion, 258 while in the patients the difference between the two methods remained significant. The methods 259 measure antibodies directed against the Spike 1 protein, but Maglumi more specifically determines 260antibodies against the receptor domain. This difference may partly justify the results in the patients. 261 Considering that only Ab anti Spike should be expressed in vaccinated patients, it could be 262 speculated that the greater heterogeneity of antibodies pattern in patients could cause the less close 263 correlation between the two methods found in these subjects. However, the decrease in 264 concentrations a few months after vaccination does not necessarily mean a reduction in protection. It 265 is in fact possible that the protection is not directly proportional to the mere presence of antibodies, 266 given the persistence of T-cell memory after infection [6]. In conclusion, both methods have 267

comparable behaviors, both in patients and in vaccinated subjects. In both cases the antibody concentrations peaked and then decrease. However, in vaccinated subjects the peak reached a much higher levels than in the patients, and the decrease was more rapid. Three months after the second injection they showed concentrations comparable to those of patients after more than 6 months from the onset of the disease. A peculiar finding of the study was the failure of the BAU conversion in the harmonization of different methods only in patients' specimens. Further studies will be required to clarify the different behavior between patients and vaccinated subjects.

- 275
- 276 Author Contributions: Conceptualization, R.D. and P.C.; sample collection, R.D., I.B. and H.A.; methodology, M.S. I.B. and H.A.; formal
- analysis, R.D.; writing-original draft preparation, R.D.; writing-review and editing, R.D., M.S., H.A. and P.C.; supervision, P.C. All authors
- 278 have read and agreed to the published version of the manuscript.
- 279 Funding: This research received no external funding.
- 280 Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki.
- 281 The Ethical committee for clinical trials, ULSS3 Serenissima, Venice, approved the study (Approval n.149/A CESC).
- 282 Acknowledgments: We acknowledge Medical Systems and Euroimmun for kindly supplying reagents without any influence in
- 283 study design and data analysis.
- 284 Conflicts of Interest: The authors declare no conflict of interest.

285 References

- Ibarrondo, F.J.; Fulcher, J.A.; Goodman-Meza, D.; Elliott, J.; Hofmann, C.; Hausner, M.A. Ferbas, K.G.; Tobin,
 N.H.; Aldrovandi, G.M.; Yang, O.O. Rapid Decay of Anti-SARS-CoV-2 Antibodies in Persons with Mild
 Covid-19. N Engl J Med 2020, 383, 1085-1087. doi: 10.1056/NEJMc2025179.
- Terpos, E.; Mentis, A.; Dimopoulos, M.A. Loss of Anti-SARS-CoV-2 Antibodies in Mild Covid-19. N Engl J Med 2020, 383, 1695. doi: 10.1056/NEJMc2027051.
- Kutsuna, S.; Asai, Y.; Matsunaga, A. Loss of Anti-SARS-CoV-2 Antibodies in Mild Covid-19. N Engl J Med
 2020, 383, 1695-1696. doi:10.1056/NEJMc2027051.
- 4. Long, Q.; Tang, X.; Shi, Q.; Li, Q.; Deng, H.; Yuan, J. et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020, 26, 1200-1204. doi: 10.1038/s41591-020-0965-6.
- Gudbjartsson, D.F.; Norddahl, G.L.; Melsted, P.; Gunnarsdottir, K.; Holm, H.; Eythorsson, E.; Arnthorsson,
 A.O.; Helgason, D.; Bjarnadottir, K.; Ingvarssonet, R.F. al. Humoral Immune Response to SARS-CoV-2 in
 Iceland. N Engl J Med 2020; 383:1724-1734. doi: 10.1056/NEJMoa2026116G
- Dan, J.M.; Mateus, J.; Kato, Y.; Hastie, K.M.; Yu, E.D.; Faliti, C.E.; Grifoni, A.; Ramirez, S.I.; Haupt, S.; Frazier,
 A. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science.
 2021;371(6529): eabf4063. doi: 10.1126/science.abf4063. Epub 2021 Jan 6.
- Dispinseri, S.; Secchi, M.; Pirillo, M.F.; Tolazzi, M.; Borghi, M.; Brigatti, C.; De Angelis, M.L.; Baratella, M.;
 Bazzigaluppi, E.; Venturi, G. et al. Neutralizing antibody responses to SARS-CoV-2 in symptomatic

303		COVID-19 is persistent and critical for survival. Nat Commun. 2021;12(1):2670. doi:
304		10.1038/s41467-021-22958-8
305	8.	Favresse, J.; Eucher, C.; Elsen, M.; Gillot, C.; Van Eeckhoudt, S.; Dogné, J.M.; Douxfils, J. Persistence of An-
306		ti-SARS-CoV-2 Antibodies Depends on the Analytical Kit: A Report for Up to 10 Months after Infection. Mi-
307		croorganisms. 2021;9(3):556. doi:10.3390/microorganisms9030556. PMID: 33800489
308	9.	Lau, E.H.Y.; Tsang, O.T.Y.; Hui, D.S.C.; Kwan, M.Y.W.; Chan, W.H.; Chiu, S.S.; Ko, R.L.W.; Chan, K.H.;
309		Cheng, S.M.S.; Perera, R.A.P.M. et al. Neutralizing antibody titres in SARS-CoV-2 infections. Nat Commun.
310		2021;12(1):63. doi: 10.1038/s41467-020-20247-4. PMID: 33397909
311	10.	Dittadi, R.; Afshar, H.; Carraro, P. Two SARS-CoV-2 IgG immunoassays comparison and time-course profile
312		of antibodies response. Diagn Microbiol Infect Dis. 2021;99(4):115297. doi:
313		10.1016/j.diagmicrobio.2020.115297. Epub 2020 Dec 24.
314	11.	Doria-Rose, N.; Suthar, M.S.; Makowski, M.; O'Connell, S.; McDermott, A.B.; Flach, B.; Ledgerwood, J.E.;
315		Mascola, J.R.; Graham, B.S.; Lin, B.C.; et al. mRNA-1273 Study Group. Antibody Persistence through 6
316		Months after the Second Dose of mRNA-1273 Vaccine for Covid-19.
317		N Engl J Med. 2021 Jun 10;384(23):2259-2261. doi: 10.1056/NEJMc2103916. Epub 2021 Apr 6
318	12.	Widge, A.T.; Rouphael, N.G.; Jackson, L.A.; Anderson, E.J.; Roberts, P.C.; Makhene, M.; Chappell, J.D.; Den-
319		ison, M.R.; Stevens, L.J.; Pruijssers, A.J. et al. mRNA-1273 Study Group. Durability of Responses after
320		SARS-CoV-2 mRNA-1273 Vaccination N Engl J Med. 2021 Jan 7;384(1):80-82. doi: 10.1056/NEJMc2032195.
321		Epub 2020 Dec 3
322	13.	Müller, L.; Andrée, M.; Moskorz, W. Age-dependent immune response to the BioNtech/Pfizer BNT162b2
323		COVID-19 vaccination. Clin Infect Dis. 2021 doi: 10.1093/cid/ciab381. published online April 27
324	14.	Rubio-Acero, R.; Castelletti, N.; Fingerle, V.; Olbrich, L.; Bakuli, A.; Wölfel, R.; Girl, P.; Müller, K.; Jochum, S.;
325		Strobl, M. et al. KoCo19 study team. In Search of the SARS-CoV-2 Protection Correlate: Head-to-Head
326		Comparison of Two Quantitative S1 Assays in Pre-characterized Oligo-/Asymptomatic Patients. Infect Dis
327		Ther. 2021 Jun 16:1-14. doi: 10.1007/s40121-021-00475-x. Online ahead of print
328	15.	Padoan, A.; Bonfante, F.; Cosma, C.; Di Chiara, C.; Sciacovelli, L.; Pagliari, M.; Bortolami, A.; Costenaro, P.;
329		Musso, G.; Basso, D. et al. Analytical and clinical performances of a SARS-CoV-2 S-RBD IgG assay: compar-
330		ison with neutralization titers. Clin Chem Lab Med. 2021 Apr 14;59(8):1444-1452. doi: 10.1515/cclm-2021-0313.
331		Print 2021 Jul 27.
332	16.	Dittadi, R.; Bertoli, I.; Carraro, P. Reportable range of quantitative assays for SARS-CoV-2 antibodies deter-
333		mination: An overlooked issue? Ann Clin Biochem. 2021 May 29:45632211020047. doi:
334		10.1177/00045632211020047. Online ahead of print.
335	17.	Wheatley, A.K.; Juno, J.A.; Wang, J.J.; Selva, K.J.; Reynaldi, A.; Tan, H.X.; Lee, W.S.; Wragg, K.M.; Kelly, H.G.;
336		Esterbauer, R. et al. Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19. Nat
337		Commun. 2021 Feb 19;12(1):1162. doi: 10.1038/s41467-021-21444-5.
338	18.	Padoan, A.; Dall'Olmo, L.; Rocca, F.D.; Barbaro, F.; Cosma, C.; Basso, D.; Cattelan, A.; Cianci, V.; Plebani, M.
339		Antibody response to first and second dose of BNT162b2 in a cohort of characterized healthcare workers. Clin
340		Chim Acta. 2021; 519:60-63. doi: 10.1016/j.cca.2021.04.006. Epub 2021 Apr 20
341	19.	Lo Sasso, B.; Giglio, R.V.; Vidali, M.; Scazzone, C.; Bivona, G.; Gambino, C.M.; Ciaccio, A.M. Agnello, L.;
342		Ciaccio, M. Evaluation of Anti-SARS-Cov-2 S-RBD IgG Antibodies after COVID-19 mRNA BNT162b2 Vac-
343		cine. Diagnostics (Basel). 2021;11(7):1135. doi: 10.3390/ diagnostics11071135
344		