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 2

Abstract:  1 

The great majority of SARS-CoV-2 infections are mild and uncomplicated, but some 2 

individuals with initially mild COVID-19 progressively develop more severe symptoms. 3 

Furthermore, mild to moderate infections are an important contributor to ongoing 4 

transmission. There remains a critical need to identify host immune biomarkers predictive of 5 

clinical and virologic outcomes in SARS-CoV-2-infected patients.   Leveraging longitudinal 6 

samples and data from a clinical trial of Peginterferon Lambda for treatment of SARS-CoV-2 7 

infected outpatients, we used host proteomics and transcriptomics to characterize the 8 

trajectory of the immune response in COVID-19 patients within the first 2 weeks of symptom 9 

onset. We define early immune signatures, including plasma levels of RIG-I and the CCR2 10 

ligands (MCP1, MCP2 and MCP3), associated with control of oropharyngeal viral load, the 11 

degree of symptom severity, and immune memory (including SARS-CoV-2-specific T cell 12 

responses and spike (S) protein-binding IgG levels). We found that individuals receiving 13 

BNT162b2 (Pfizer–BioNTech) vaccine had similar early immune trajectories to those 14 

observed in this natural infection cohort, including the induction of both inflammatory 15 

cytokines (e.g. MCP1) and negative immune regulators (e.g. TWEAK). Finally, we 16 

demonstrate that machine learning models using 8-10 plasma protein markers measured 17 

early within the course of infection are able to accurately predict symptom severity, T cell 18 

memory, and the antibody response post-infection.     19 

 20 

 21 
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Although the clinical course of COVID-19 exhibits considerable heterogeneity, the great 1 

majority of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infections 2 

are uncomplicated with mild symptoms throughout the course of the illness. However, some 3 

initially mild infections progress to more severe and/or prolonged symptoms as well as 4 

sustained disability1. Moreover, mild infections are an important contributor to ongoing 5 

transmission. An improved understanding of host determinants of clinical, virologic, and 6 

immunologic outcomes of SARS-CoV-2 infection is essential to addressing the unmet clinical 7 

need for novel therapies for COVID-19.   8 

The early host response to acute SARS-CoV-2 infection likely plays a critical role in 9 

determining disease outcome and generation of virus-specific memory immune responses. 10 

Nucleic acid pattern recognition receptors (PRRs) mediate the early detection and host 11 

response to viral infections, with RNA virus recognition thought to occur mainly in the 12 

endosomal and/or cytosolic compartment by two different PRRs: Toll-like receptors (TLRs) and 13 

RIG-I-Like Receptors (RLRs). Viral recognition by TLRs and RLRs typically triggers a signaling 14 

cascade leading to induction of pro-inflammatory cytokines and type I and type III interferons 15 

(IFN). Type I and Type III IFNs lead to induction of antiviral effectors (interferon-stimulated 16 

genes, ISGs) which provide both a cell-intrinsic state of viral resistance and help coordinate the 17 

generation of adaptive immune responses2. Importantly, SARS-CoV-2 proteins interfere with 18 

induction of these IFNs2–4, and deficient IFN production has been associated with increased 19 

disease severity and poor outcomes5,6.  Most studies evaluating the early host immune 20 

response have been performed in patients with severe disease5,7–13; signatures associated with 21 

patient outcomes among those with more mild to moderate disease remain less well defined14. 22 

Naturally acquired immunity to SARS-CoV-2 results in protection from reinfection, 23 

mediated in part by SARS-CoV-2-specific memory T cell and antibody responses. However, 24 

there is considerable heterogeneity in the T cell and antibody response following natural SARS-25 

CoV-2 infection, providing valuable opportunities to identify key immune components that are 26 
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associated with protective immunity. The BNT162b2 (Pfizer–BioNTech) vaccine has been 1 

widely used throughout the world and is highly effective in preventing SARS-CoV-2 infection, as 2 

well as protecting patients from severe symptoms after infections15. Comparing responses 3 

induced by vaccination with those induced by natural SARS-CoV-2 infection could potentially 4 

guide researchers to better understand determinants of protective immunity and improve 5 

vaccine design. 6 

Recent advances have highlighted the power of the tools of systems biology to 7 

comprehensively define the innate and adaptive immune response to infections, including 8 

SARS-CoV-25,5,7,9–13. Such analyses have used host transcriptomics and proteomics, and 9 

assessments of the adaptive immune response, coupled with computational approaches, to 10 

define molecular signatures that predict clinical and immunologic outcomes of infection.  11 

         In this paper, we utilized a multi-omics approach to define early infection signatures 12 

following SARS-CoV-2 infection that predict subsequent symptom severity, oropharyngeal viral 13 

load, and memory immune responses. We leveraged longitudinal samples collected from 14 

outpatients enrolled in a randomized controlled trial of a type III interferon, Peginterferon 15 

Lambda-1a (Lambda, NCT04331899)16. In this trial, outpatients with initially mild to moderate 16 

COVID-19 were recruited within 72 hours of diagnosis, and followed through 7 months post-17 

infection. We observed sequential activation of immune pathways in initially mild to moderate 18 

COVID-19 patients within the first 2 weeks of symptom onset, including interferon responses, 19 

NK cell activation, T cell activation and B cell responses. We identified variations in plasma 20 

proteins, early interferon signaling,  and downstream cytokines (MCP1, MCP-2 and MCP-3) that 21 

were associated with multiple patient outcomes, including symptom severity, viral load, memory 22 

T cell activity and S protein-binding IgG levels measured up to 7 months after enrollment. By 23 

comparing the immune response in COVID-19 patients to the response to COVID-19 mRNA 24 

vaccine, we show that the immune response after the first dose of vaccination largely mirrors 25 

the trajectory of immune response after SARS-CoV-2 infection, including induction of the 26 
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negative immune regulatory TWEAK, while the response to the second dose of vaccine is 1 

characterized by rapid activation of adaptive immunity and an absence of neutrophil response. 2 

Finally, we demonstrate that a machine learning model is able to predict symptom severity, T 3 

cell memory response and antibody response accurately using 8-10 plasma protein markers 4 

measured early during infection.   5 

 6 

Results  7 

Transcriptomic and proteomic profiles correlate with the time to symptom onset in 8 

COVID-19 patients. 9 

We recruited 108 participants with initially mild to moderate COVID-19 at diagnosis into this 10 

study. The median age of participants was 37 years (range 18-71) with 57% male, and 62% of 11 

Latinx ethnicity (Supplementary Table 1). Eight (6.7%) participants were asymptomatic at 12 

baseline. Of those with symptoms, the median duration of symptoms prior to randomization was 13 

5 days.  14 

 15 
Subjects were randomized to receive a single dose of Peginterferon Lambda or placebo at their 16 

first visit and followed up to 7 months post-enrollment (Figure 1). The median duration of viral 17 

shedding post-enrollment was 7 days, and symptoms was 8 days, and this did not differ 18 

between participants randomized to Lambda compared with placebo16. To profile the immune 19 

response in the COVID-19 patients, we conducted whole blood RNA-sequencing and plasma 20 

protein profiling with multiplex Olink panels (inflammation and immune response panels, n=184 21 

proteins) using blood samples collected at day 0 and day 5 after enrollment. We assessed 22 

SARS-CoV-2-specific CD4+ T cell responses by intracellular cytokine staining using PBMC 23 

collected at day 28 after enrollment. We also measured IgG binding titers against the SARS-24 

CoV-2 full length spike protein (S) using plasma collected at day 0, day 5, day 28, and month 7 25 

(Figure 1). 26 
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1 

Figure 1: Study schema.  Outpatients (n=108) with PCR-confirmed SARS-CoV-2 infection and swab obtained within 72 hours of2 
randomization were enrolled in a Phase 2 clinical trial of subcutaneous Peginterferon lambda vs. placebo.  In-person follow-up visits3 
were conducted at day 1, 3, 5, 7, 10, 14, 21, 28,and month 7 post-enrollment, with assessment of symptoms and vitals, and4 
collection of oropharyngeal swabs for SARS-CoV-2 testing. Blood obtained at Day 0 and 5 were evaluated by whole blood5 
transcriptomics (RNA Sequencing), plasma proteomics (Olink), and SARS-CoV-2 specific antibodies. Clinical outcomes assessed6 
included duration of symptoms and duration of virologic shedding. Immunologic outcomes assessed including SARS-CoV-2-specific7 
T cell responses at day 28, and antibody responses at day 28 and month 7. Created with biorender.com. 8 
 9 

We first examined antibody levels and transcriptomic profiles at day 0 and day 5 after10 

enrollment in both patients randomized to Peginterferon Lambda and placebo. Based on the11 

subject-reported symptom starting date, these samples were collected -1 to 20 days after12 

symptom onset, with most of the samples collected within the first 2 weeks of the symptom13 

onset (Figure 2A). As expected, we observed a positive correlation between the S protein14 

binding IgG levels at enrollment and the time since symptom onset17 (Figure 2B). We15 

performed principal component analysis of transcriptomic data and calculated the correlation16 

between the first two principal components (PC) and other clinical variables. We found that PC117 

had the strongest association with the time since symptom onset and the IgG titer, suggesting18 

that these transcriptomic profiles capture the progression of the immune response in COVID-1919 

patients (Figure 2C-E). We also performed PCA analysis on the Olink data. Similar to results20 

from the analysis of transcriptomics data, Olink data were associated with disease progression,21 

as indicated by the high correlation between PC2 and the time since symptom onset (Figure 2F-22 
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H). We also observed an association between PC1 and age, which captures the impact of age1 

on the plasma protein landscape in COVID-19 patients. 2 

 3 

We previously reported that Peginterferon Lambda treatment neither shortened the duration of4 

SARS-CoV-2 viral shedding nor improved symptoms in outpatients with COVID-1916. PCA5 

analysis revealed that transcriptional and proteomics profiles at day 5 post-treatment were not6 

affected by Peginterferon Lambda treatment (Figure 2D, 2G, and Supplemental Figure 1). In7 

addition, we found no significant differences in the T cell responses (at day 28 after enrollment)8 

and antibody responses (at day 28 and month 7 after enrollment) between the two treatment9 

arms (Supplemental Figure 1), as reported previously17. Taken together, Peginterferon Lambda10 

treatment did not show noticeable effects on the immune response in COVID-19 outpatients.11 

Therefore, we combined the data from the control and treatment arms together for all12 

downstream analysis.  13 

14 

Figure 2: Transcriptomics and proteomics profiles correlate with the time to symptom onset in COVID-19 patients. (A) The15 
distribution of RNA-seq sample collection time in respect to symptom onset. The colors of the dots represent the sample collection16 
time from the enrollment. Asymptomatic cases are not shown. (B) Scatter plot showing the positive correlation between SARS-CoV-17 
2 spike (S) protein binding IgG antibody level and the time since symptom onset. (C) PCA plot of the RNAseq samples. The colors18 
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 8

of the dots represent the sample collection time from the enrollment. (D) the percent of the variances of PC1 and PC2 explained by 1 
different clinical variables. (E) scatter plot showing the positive correlation between PC1 of the RNA-seq data and the time since 2 
symptom onset. (F) PCA plot of the Olink proteomics data. The colors of the dots represent the sample collection time from the 3 
enrollment. (G) the percent of the variances of PC1 and PC2 explained by different clinical variables. (H) scatter plot showing the 4 
positive correlation between PC2 of the Olink data and the time since symptom onset.  5 
 6 
 7 
Trajectory analysis reveal sequential activation of immune pathways in COVID-19 8 

patients 9 

 We next characterized the trajectory of early transcriptomic and proteomic responses 10 

using the RNAseq and Olink data as a function of time since symptom onset. To reduce the 11 

dimensionality and improve interpretability, we calculated the enrichment score of different 12 

immune pathways (based on Gene Ontology18) from the RNAseq data. We then combined 13 

pathway enrichment scores and Olink measurements into a single dataset for downstream 14 

statistical analysis. We fitted the data with quadratic regression to capture the non-linear 15 

dynamics of the pathways and proteins. We identified 38 immune pathways and 10 plasma 16 

proteins that varied as a function of time since symptom onset (False Discovery Rate (FDR) < 17 

0.05， Figure 3A and Supplemental Table 2). Among them, 16 immune pathways or proteins 18 

showed nonlinear dynamics, as indicated by significant coefficients of the quadratic term 19 

(Supplemental Table 2).  20 

 21 

We performed clustering analysis and identified four clusters based on the trajectory of the 22 

significant pathways and proteins (Figure 3A-B). Cluster 1 contains interferon-related pathways, 23 

natural killer cell activation pathways and proteins known to be activated by interferon signaling, 24 

including MCP-1, MCP-2, CXCL10 and CXCL1119–22. The trajectories in cluster 1 already 25 

reached the peak at the time of symptom onset and monotonically decreased over time. The 26 

trajectories in cluster 2 peaked at 1-5 days after symptom onset and contain Interferon-γ and 27 

pathways related to T cell activation. Interestingly, it also contains several myeloid cell attracting 28 

chemokines (CXCL1 and CXCL6) and the innate cell response pathway. Cluster 3 peaked 29 
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 9

between 10 to 14 days after the symptom onset and is characterized by pathways related to B1 

cell activation. Cluster 4 trajectories monotonically increase after symptom onset and are2 

characterized by the increasing S protein binding IgG level and related B cell differentiation3 

pathways. The trajectory analysis revealed the sequential activation of interferon signaling, NK4 

cells, myeloid cells, Interferon-γ, T cells, B cell and antibody production within the first 15 days5 

of symptom onset.  6 

 7 

To characterize how the composition of blood immune cells change over time, we used a8 

previously established tool named xCell to estimate the enrichment score of the major immune9 

cells23. As a positive control, we compared the neutrophil score with the neutrophil count data10 

obtained from clinical lab tests and found high correlation between them (Figure 3C). Quadratic11 

regression did not find significant associations between the major cell types and the time since12 

symptom onset (Figure 3D). The results suggest that the trajectory of different immune13 

pathways (Figure 3A) are mainly driven by the activation of corresponding immune cells rather14 

than the composition change of major immune cell types.  15 

 16 
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 10

Figure 3: Trajectory analysis reveals sequential activation of immune pathways in COVID-19 patients. (A) The fitted expression level 1 
of immune pathways and plasma proteins at 0-15 days after symptom onset. The values are calculated by fitting quadratic 2 
regressions and are scaled to a mean of 0 and a standard deviation of 1. The color bar on the left side shows the clustering 3 
membership of the pathways and plasma proteins. (B) the average trajectory of the clusters. We scaled the expression level of each 4 
pathway and plasma proteins to a mean of 0 and a standard deviation of 1. We then calculated the average scaled expression of all 5 
members in the clusters. Each dot represents the mean expression in each blood sample. The lines represent the fitted quadratic 6 
regression. The grey areas represent the 95% confidence intervals. (C) We estimated the spearman correlation between the 7 
neutrophil enrichment score using the xCell. The plot shows the correlation between the xCell score and the counted neutrophil 8 
percentage in whole blood. (D) The relationship between xCell enrichment score and days after symptom onset. 9 
 10 
Variations in early immune responses are associated with disease severity in COVID-19 11 

patients.  12 

 13 

We next sought to identify immune pathways and plasma proteins associated with symptom 14 

severity in COVID-19 outpatients. At the time of sample collection (day 0 and day 5 after 15 

enrollment), the majority of subjects showed either mild to moderate symptoms that 16 

subsequently resolved (n=100) or were asymptomatic (n=8). However, 8 patients later 17 

developed progressive and more severe symptoms and were hospitalized or presented to the 18 

emergency department (median 2 days to progression, range 1-13 days). We defined these 19 

individuals as severe COVID-19, and used regression models to identify immune pathways and 20 

plasma proteins to compare these participants with those who didn’t seek care at the hospital 21 

(mild/moderate COVID19), while controlling for days after symptom onset.  22 

 23 

As two positive controls, we confirmed well documented findings that lymphocyte percentages 24 

were negatively correlated with symptom severity and neutrophil percentages were positively 25 

correlated with symptom severity (Figure 4A)24. In addition, our regression analysis identified 17 26 

immune pathways and 24 plasma proteins that are significantly associated with symptom 27 

severity (FDR<0.05, Figure 4B-C, and Supplemental table 3). The proteins and pathways from 28 

cluster 1 (as identified above in Figure 3A) were significantly enriched (Fisher’s exact test,  p  < 29 

0.001), including pathways related to interferon response, Rig-I signaling, NK cell activation and 30 

multiple protein markers known to be induced by interferon signaling (MCP-1, MCP-2 and 31 

CXCL11). The result highlights the association between early immune responses and symptom 32 
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severity. Our regression analysis excluded the asymptomatic individuals, as their symptom1 

onset date was unknown. To include the asymptomatic individuals, we performed one-way2 

ANOVA analysis without adjusting for symptom onset time. The results from the ANOVA3 

analysis were consistent with the regression analysis (Figure 4D).  4 

 5 

6 
Figure 4: Variations in early immune responses are associated with disease severity in COVID-19 patients. (A) Scatter plot comparing the7 
percentage of lymphocytes and neutrophils in whole blood between moderate and severe cases. The lines represent the fitted linear8 
relationship between the percentages and the time after symptom onset. We fitted regression models to test the relationship between the9 
immune measurements and the disease severity while controlling for the time after symptom onset. The p values for the disease severity are10 
reported. (B) We fitted regression models to test the relationship between the immune measurements and symptom severity while controlling11 
for the time after symptom onset. The bar plot shows the t score of the regression coefficient for symptom severity. The colored squares12 
represent the clusters each immune measurement belongs to. The clusters are defined in Fig. 3A. (C) Scatter plot comparing the plasma13 
protein levels between moderate and severe cases. The lines represent the fitted linear relationship between the percentages and the time14 
after symptom onset. The top 5 significant proteins are shown. Data from asymptomatic cases are omitted, as their symptom onset time was15 
unknown. (D) Box plots comparing the plasma protein levels between asymptomatic moderate and severe cases.  16 
 17 

Early proteomic and transcriptomic signatures show long-term association with virologic18 

and immunologic outcomes.  19 
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We examined associations between plasma proteins measured early in the course of infection 1 

and oropharyngeal viral load (measured by the area under the Ct curve from day 0 to 14 post 2 

enrollment). We identified 36 plasma proteins significantly associated with oropharyngeal viral 3 

load (top 10 significant proteins shown in Figure 5A, Supplemental table 3). Higher levels of 4 

several of these proteins were inversely correlated with viral load, including the cytosolic RNA 5 

sensor RIG-I (gene symbol DDX58), chemokines (CCL20 and CCL25), and other proteins 6 

(Keratin 19 {KRT19}, amphiregulin{AREG}) previously shown to be upregulated in COVID-19 7 

patients14,25.  Several immune transcriptomic pathways were also associated with viral control, 8 

including complement and B cell activation and the humoral immune response pathway (top 10 9 

significant pathways shown in Figure 5B, Supplemental Table 3).  10 

 11 

We next measured associations between early plasma proteins, gene expression and 12 

subsequent immune memory, including cytokine-producing SARS-CoV-2-specific T cells 13 

measured 28 days post-enrollment (Supplemental Figure 2; Supplemental Table 3), and SARS-14 

CoV-2-specific antibodies measured at 28 days and 7 months post-enrollment. We identified 87 15 

plasma proteins that were significantly associated with SARS-CoV-2-specific T cell responses at 16 

day 28, and 91 and 13 plasma proteins significantly associated with S protein-binding IgG at 17 

day 28 days and month 7, respectively (top 10 significant proteins shown in Figure 5A, 18 

Supplemental table 3).  Several proteins were associated with higher levels of SARS-CoV-2-19 

specific T cells and the antibody response (Figure 5E), including RIG-I (gene symbol DDX58), 20 

chemokines (CXCL11), and other proteins (KRT19, AREG) also associated with control of viral 21 

load. Induction of early transcriptomic pathways were also associated with the development of 22 

SARS-CoV-2 specific T cells and S protein-binding IgG at day 28 (top 10 significant pathways 23 

shown in Figure 5B, Supplemental Table 3). 24 

 25 
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We further examined immune pathways and proteins associated with multiple clinical, virologic, 1 

and immune outcomes in COVID-19 patients. We identified 21 plasma proteins and 15 immune 2 

pathways that are correlated with three out of four aspects of the patient outcomes (Figure 5C 3 

and D). These include expected direct links (e.g. the correlation between immunoglobulin 4 

production� pathway and S protein-binding IgG) and more indirect links (e.g. the correlation 5 

between proinflammatory cytokines and S protein-binding IgG) between immune 6 

measurements. To establish a sequential order of pathway activation and protein expression, 7 

we fit a quadratic regression for each measurement, and then identified the time when the 8 

measurement reached maximal expression (Supplemental Figure 2A). This revealed 4 plasma 9 

proteins and 12 immune pathways whose expression were significantly associated with time. 10 

Among them, the interferon-gamma response, T cell cytokine production and several interferon 11 

induced cytokines (MCP1, MCP2, CXCL10 and CXCL11) reached maximal expression within 12 

the first 5 day after symptom onset (Figure 5E). Pathways related to B cell activation and 13 

antibody production reached maximum the latest, 10 to 15 days after symptom onset. A 14 

previous GWAS study has shown that symptom severity is associated with genetic variations 15 

near the interferon receptors (INFAR2) and CCR2 (receptor for MCP1, MCP2 and MCP3) loci. 16 

In addition, these variations were predicted to increase the expression of IFNAR2 and CCR226.  17 

While the exact causal relationship cannot be established from our observational data, together 18 

our results suggest that the early interferon-related response and downstream CCR2 signaling 19 

shape later adaptive responses, and have long-term impact on the clinical, virological and 20 

immunological outcomes in COVID-19 patients.  21 

 22 

Interestingly, plasma levels of RIG-I (gene symbol DDX58) were significantly associated with all 23 

examined virologic and immunologic outcomes (Figure 5F), as well as symptom severity (Figure 24 

4B). Higher levels of plasma RIG-I were associated with less oropharyngeal viral load, more 25 

severe symptoms, increased SARS-CoV-2 specific T cell responses, and increased levels of S 26 
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protein-binding IgG to SARS-CoV-2.  Since RIG-I is a cytosolic PRR that, upon recognition of1 

short viral double-stranded RNA during a viral infection, leads to upregulation of interferon2 

signaling27, we explored associations between plasma RIG-I levels and related immune3 

measurements, including the mRNA-level and protein-level expression of RIG-I and interferons,4 

as well as RIG-I and interferon-related pathways. We found that the plasma RIG-I levels were5 

modestly correlated with mRNA-level expression of RIG-I (correlation = 0.23, p value = 0.004,6 

Figure 5G), as well as Rig-I signaling and Interferon related pathways (Figure 5C). Interestingly,7 

we found a strong correlation between plasma level of RIG-I and plasma level of DFFA, an8 

intracellular protein known to be involved in apoptosis (Figure 5H)28,29. In addition, the top 109 

plasma proteins correlated with the plasma level of RIG-I are all intracellular proteins (Figure10 

5H).  These data are consistent with the hypothesis that plasma RIG-I is associated with a cell11 

death process that releases intracellular protein into the plasma. Furthermore, since plasma12 

levels of RIG-I were not significantly associated with time (Fig 5E), these data suggest that13 

plasma RIG-I levels might serve as a powerful and stable biomarker for predicting several14 

clinical, viral and immunological outcomes in patients with COVID-19.  15 
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Figure 5: Plasma RIG-I is a biomarker for viral shedding, T cell activity, and spike (S)-binding IgG levels (A) The association 1 
between plasma proteins and viral shedding, memory T cell activity, and anti-S binding IgG levels. Memory CD4+ T cell 2 
activities are measured by the percent of cytokine positive T cells (TNF-α+ or TNFγ+ or IL21+) after spike protein 3 
stimulation. T cells are collected from patients 28 days after enrollment. Spike protein-binding IgG levels are measured 28 4 
days or 7 months after enrollment. We fitted regression models to test the relationship between the immune measurements 5 
and viral shedding, memory T cell activity, and S protein binding IgG level while controlling for the time after symptom onset. 6 
The bar plot shows the t score of the regression coefficient for viral shedding, memory T cell activity, and anti-S binding IgG 7 
levels. (B) The association between immune pathways and viral shedding, memory T cell activity, and S protein binding IgG 8 
levels. (C-D) Association between plasma proteins and immune pathways that are associated with multiple outcomes. The 9 
heatmaps include immune measurements that are significantly associated (indicated by stars) with at least 3 outcomes. (E) 10 
The estimated time during which an immune measure reaches the maximum level. The error bars represent standard 11 
deviation derived from bootstrapping. The immune measures with stars are significantly associated with time. (F) Correlation 12 
between plasma RIG-I (DDX58) and viral shedding, memory T cell activity, and S protein binding IgG levels. (G) Correlation 13 
between plasma RIG-I protein and selected level of plasma proteins, genes, and pathways. (H) The top 10 plasma proteins 14 
correlated with plasma RIG-I protein.  15 

 16 

Similar trajectories of immune responses induced by SARS-CoV-2 infection and COVID-17 

19 mRNA vaccine. 18 

The BNT162b2 (Pfizer–BioNTech) vaccine has been widely used throughout the world and is 19 

highly effective in preventing SARS-CoV-2 infection, as well as protecting patients from severe 20 

symptoms after infections15. We leveraged a recently published Olink proteomics dataset from a 21 

BNT162b2 vaccine study30 to compare the immune response induced by COVID-19 vaccine 22 

and SARS-CoV-2 infections. Among the 66 protein markers shared between our SARS-CoV-2 23 

infection dataset and the vaccination dataset, 8 proteins were significantly associated with time 24 

in the SARS-CoV-2 infection dataset, and 22 proteins were significantly associated with time in 25 

the vaccination dataset. It should be noted that the data collection in the vaccine study is highly 26 

synchronized, with well-defined vaccination day (day 0).  In contrast, the time of infections in the 27 

SARS-CoV-2 infection dataset are only approximated by the self-reported time since symptom 28 

onset.  29 

 30 

Comparison of the datasets reveals that the immune response after the first dose of vaccination 31 

(day 0 to day 21) largely mirrors the trajectory of immune response after SARS-CoV-2 infection.  32 

Early immune markers in the SARS-CoV-2 infection dataset, including IFNγ, MCP1, CXCL11, 33 

MCP2 and CXCL10 are upregulated within the first 7 days of the vaccination. Late immune 34 
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markers in the SARS-CoV-2 infection dataset, including SLAMF1, TNFRSF9, CCL3, CCL4, 1 

TGFα and TNFSF14 are upregulated much later and show highest levels 21 days after the 2 

vaccination (Figure 6A).  In contrast, the response after the second dose of vaccine (day 22 to 3 

day 28) is characterized by fast upregulation of both early and late protein markers (Figure 6A). 4 

Interestingly, three proteins that are significantly upregulated in SARS-CoV-2 patients were not 5 

induced after the second dose of vaccine, including TRAIL, CXCL1 and CXCL6. All three 6 

proteins are highly expressed in neutrophils31, and have been shown to regulate neutrophil 7 

recruitment (CXCL1 and CXCL6)  or apoptosis (TRAIL) during inflammation32–34. The lack of 8 

TRAIL, CXCL1 and CXCL6 suggests an absence of neutrophil response to the second dose of 9 

vaccine.  10 

 11 

Our analysis of the SARS-CoV-2 infection dataset reveals multiple plasma markers that are 12 

associated with T cell and antibody responses in COVID-19 patients (Figure 5).  We next 13 

examined the trajectory of these proteins in response to the BNT162b2 vaccine. Among the top 14 

10 proteins positively associated with CD4+ T cell response, 8 proteins are significantly induced 15 

by the vaccine (Figure 6B). Among the top 10 proteins positively associated with S protein-16 

binding antibody levels, 6 proteins are significantly induced by the vaccine (Figure 6C). Similar 17 

to the result in Figure 6A, we found multiple neutrophil related proteins (CXCL1, IL8 and CCL11) 18 

to be induced by the first vaccine dose, but are absent in response to the second vaccine dose. 19 

Interestingly, we found that the vaccine also induced two proteins that are negatively associated 20 

with T cell and antibody response following natural infection, including TWEAK and DNER 21 

(Figure 6D). TWEAK has been known to attenuate the adaptive immunity by inhibiting STAT-1 22 

and NF-κB35, suggesting that its induction could have a negative impact on the protective 23 

immunity against COVID-19. Taken together, our comparative analysis shows that the 24 

proteomic response of the  BNT162b2 vaccine mirrors in many ways the proteomic response 25 

after SARS-CoV-2 infection. At the same time, we found important distinctions, including fast 26 
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activation of adaptive immunity, an absence of neutrophil response in response to the second1 

dose of vaccine and the induction of TWEAK that may negatively affect the adaptive response.  2 

3 

Figure 6: Comparing the immune response induced by SARS-CoV-2 infection and COVID-19 vaccine (BNT162b2). (A) The heat4 
map shows the expression level of plasma proteins at 0-15 days after symptom onset in COVID-19 patients (left) and 0-28 days5 
after vaccination in healthy individuals (right). The values from the SARS-CoV-2 dataset are calculated by fitting quadratic6 
regressions and are scaled to a mean of 0 and a standard deviation of 1. The values from the vaccination dataset are computed by7 
fitting using linear interpolation between the measured time points (days in red color) and are scaled to a mean of 0 and a standard8 
deviation of 1. The black bar on the right side shows the protein markers that are significantly associated with time in COVID-199 
patients (FDR<0.05). The blue bar on the right side shows the protein markers that are significantly associated with time after10 
vaccination (FDR<0.05). The black arrows indicate the time of the first and the second doses of vaccination. (B) The vaccine11 
response of the top 10 plasma proteins that are associated with CD4+ T cell response in SARS-CoV-2 patients. The blue bar on the12 
right side shows the protein markers that are significantly associated with time after vaccination (FDR<0.05, p values are adjusted13 
within the 10 protein set). (C) The vaccine response of the top 10 plasma proteins that are associated with spike (S)-binding IgG14 
levels in SARS-CoV-2 patients. The blue bar on the right side shows the protein markers that are significantly associated with time15 
after vaccination (FDR<0.05, p values are adjusted within the 10 protein set). (D) A scatter plot showing the plasma proteins profiled16 
in both natural infection and vaccination studies. The X axis shows the association (t score of the regression coefficient)  between17 
plasma proteins and the SARS-CoV-2-specific memory CD4+ T cell response in natural infection. The Y axis shows the association18 
(t score of the regression coefficient) between plasma proteins and the Spike protein binding IgG in natural infection. Points in red19 
show if the protein is induced after vaccination.   20 

 21 

Plasma proteins predict symptom severity, T cell response and Spike protein-binding IgG22 

levels in COVID-19 patients.  23 

We performed predictive modeling to test if plasma proteins measured early following infection24 

can accurately predict symptom severity, oropharyngeal viral load, and SARS-CoV-2 specific25 

memory T cell and antibody responses manifested later in the study. We adopted a computation26 

pipeline to select a small subset of predictive biomarkers from the 184 proteins measured by27 

Olink assays. We used a leave-one-out cross validation strategy to iteratively evaluate the28 

model performance. We used Random Forest for feature selection and for building the final29 

model (Figure 7A). Based on results from cross-validation, we selected between 8 to 10 protein30 

markers measured at early infection to predict each of the five outcomes. The final models31 

achieved cross-validation AUC of 0.84, 0.66, 0.77, 0.84 and 0.75 for predicting symptom32 
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severity, oropharyngeal viral load, memory t cell activity, day 28 spike protein binding IgG levels 1 

and month 7 spike protein binding IgG levels, respectively (Figure 7B).  2 

 3 

We compared the final models to baseline models that use only demographic (age and gender) 4 

data. The selected protein markers substantially improved the prediction of symptom severity, 5 

spike protein binding IgG levels at day 28 and month 7, and memory T cell responses at day 28. 6 

On the other hand, protein markers did not improve the prediction for oropharyngeal viral load. 7 

 8 

We further tested if our model can accurately predict symptom severity in an independent 9 

dataset. We identified a published dataset that characterized the plasma proteins from 58 10 

COVID-19 patients (26 moderate cases and 34 severe cases)36. Our model was able to 11 

accurately identify severe cases in the independent dataset, achieving an AUC  of  0.96. The 12 

individuals in the test dataset already manifested severe symptoms while our training dataset 13 

was collected before the severe symptom were shown, potentially explaining the higher model 14 

performance in the test dataset than in the training dataset.  15 
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1 

Figure 7: Plasma protein markers predict symptom severity, T cell response, and S protein-binding IgG level in COVID-192 
patients. (A) machine-learning procedure for predicting COVID-19 patient outcomes using Olink proteomics data. (B)3 
Random forest models were built to predict symptom severity, S protein-binding IgG level  at 28 days and 7 months after4 
enrollment, and cytokine+ memory CD4+ T cells 28 days after enrollment. The plot shows the leave-one-out cross-validation5 
performance (measured by AUC of the receiver operator characteristics curve(ROC)) achieved by random forest models6 
with different numbers of features. (C) The leave-one-out cross-validation performance of the best performing models and7 
the models using demographical data (age and sex) only. (D) Feature importance of the final random forest models for8 
predicting symptom severity, S protein-binding IgG level at 28 days and 7 months after enrollment, and cytokine+ memory9 
CD4+ T cells at 28 days after enrollment. (E) We used the final model to predict severe cases in an independent dataset.10 
The y axis of the plot shows the predicted probability. The x-axis shows the observed severity. (F) The performance of the11 
final model measured by the ROC curve.  12 

 13 

Discussion  14 

 In this study, we longitudinally characterized the early immune response in patients who15 

initially presented with mild to moderate COVID-19. With transcriptomic and proteomic profiling,16 

we reveal a sequential activation of interferon signaling, NK cells, T cells and B cells within 217 

weeks of symptom onset. We also identified associations between early immune profiles and18 

later clinical, virologic, and immunologic outcomes. These data suggest that variations in19 

plasma RIG-I levels, early interferon signaling, and related cytokines (MCP1, MCP-2 and MCP-20 

3) are associated with multiple aspects of patient outcomes, including symptom severity, viral21 

shedding, and the SARS-CoV-2 specific T cell and antibody response measured up to 7 months22 
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after enrollment.  We also observed that the immune response after the first dose of SARS-1 

CoV-2 mRNA vaccination largely recapitulates the trajectory of immune response after SARS-2 

CoV-2 infection while the response to the second dose of vaccine is characterized by fast 3 

upregulation of both early and late protein markers and absence of a neutrophil response.  4 

Finally, we demonstrate that a machine learning model is able to predict symptom severity, T 5 

cell memory response and antibody response accurately using 8-10 plasma protein markers.    6 

 7 

We observed that high plasma RIG-I levels were associated with greater disease severity, T cell 8 

activity, and the antibody response, suggesting that plasma RIG-I is a biomarker for increased 9 

immune activity in COVID-19 patients. High plasma RIG-I levels were also associated with 10 

lower SARS-CoV-2 viral loads, suggesting a potential role of this protein in restricting early virus 11 

replication. RIG-I has been shown to be critically important in the response to several RNA 12 

viruses, including influenza virus, typically via interactions with the adapter protein mitochondrial 13 

antiviral-signaling protein (MAVS) and downstream Type I and Type III interferon upregulation.  14 

RIG-I was recently shown to play an important role in both sensing SARS-CoV-2 RNA and 15 

inhibiting SARS-CoV-2 replication in human lung cells, but not via downstream MAVS 16 

induction37. Rather, interactions between the RIG-I helicase domain and SARS-CoV-2 RNA 17 

induced an inhibitory effect on viral replication, independent of downstream interferon 18 

upregulation37. This may explain the rather modest correlations observed between plasma RIG-I 19 

and RIG-I signaling and interferon related pathways. In contrast, we observed significant 20 

correlations between plasma RIG-I levels and plasma levels of DFFA, an intracellular protein 21 

known to be involved in cell death29, as well as other intracellular proteins, suggesting that 22 

plasma RIG-I levels may reflect increased cellular apoptosis. This hypothesis is consistent with 23 

a recent report which observed significant associations between gene expression signatures of 24 

apoptosis in plasmacytoid dendritic cells with increased disease severity9.   25 

 26 
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Our analysis also suggests that the variations in the early immune response shape the long-1 

term outcome of COVID-19 patients. However, the cause of variations in the early responses 2 

are not fully understood. We observed that higher expression of three CCR2 ligands (MCP1, 3 

MCP2 and MCP3) were associated with multiple patient outcomes in COVID-19 patients, 4 

including increased disease severity and higher T cell activity and S protein-binding IgG levels. 5 

In addition MCP1 and MCP3 are negatively associated with oropharyngeal viral load. Our result 6 

is consistent with previous studies that show CCR2 signaling is associated with symptom 7 

severity in multiple viral infections, including SARS-Cov-2 and influenza38,39. A previous GWAS 8 

study has also identified an association between COVID-19 symptom severity and genetic 9 

variations that leads to increased CCR2 expression (receptor to interferon induced MCP1, 10 

MCP2 and MPC3)26. On the other hand, mouse studies show that CCR2 is essential for the 11 

survival of mice after pathogen challenge40–42. Our study also shows that the CCR2 ligands are 12 

associated with positive outcomes in patients with COVID-19, including reduced oropharyngeal 13 

viral load, increased memory T cell and IgG antibody response. Taken together, the results 14 

demonstrated the complex role of CCR2 signaling in regulating immune response. While it’s 15 

essential for an effective immune response, it also leads to severe symptoms and tissue 16 

damage. Therapeutic strategies to balance the  positive and negative effects of CCR2 may 17 

benefit the management of COVID-19 patients.  18 

 19 

Although naturally acquired SARS-CoV-2 infection results in protective antibody and T cell 20 

immune responses, reinfections can occur, and the precise determinants driving susceptibility to 21 

reinfection remain unclear43. The BNT162b2 (Pfizer–BioNTech) vaccine has been shown to be 22 

highly effective in preventing SARS-CoV-2 infection15, although breakthrough cases have been 23 

increasingly reported since its approval44. Comparing the vaccine response with the immune 24 

response of natural infection may shed light on determinants of protective immunity to SARS-25 

CoV-2, and potential ways to improve COVID-19 vaccines. Our analysis reveals that the 26 
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proteomic response of the BNT162b2 vaccine mirrors in many ways the proteomic response 1 

after SARS-CoV-2 infection, including the induction of protein markers that are positively 2 

associated with T cell and antibody response in COVID-19 patients. At the same time, we found 3 

important distinctions. In particular, proteomic signatures of a neutrophil response were absent 4 

in response to the second dose of vaccine. Multiple studies have demonstrated the importance 5 

of neutrophils in protection against both viral and bacterial reinfection45,46, although it remains 6 

unclear whether a neutrophil response may be beneficial, or detrimental, following vaccination. 7 

In addition, we found that the vaccine also induced proteins that are negatively associated with 8 

T cell and antibody response following natural infection, including TWEAK35. Further studies will 9 

be required to determine whether inhibiting TWEAK could potentially improve vaccine efficacy. 10 

  11 

Our study has some limitations. First, while we identified multiple associations between early 12 

immune measures and the outcome of COVID-19 patients, we did not establish causal 13 

relationships between them. Future studies are needed to perturb key immune pathways in the 14 

early immune response and test their effect on the patient outcomes. Second, our study 15 

measured the immune response during the first 2 weeks of symptom onset in COVID-19 16 

patients. Earlier immune responses between the initial infection and symptom onset have not 17 

been characterized. This is due to the difficulty to detect pre-symptomatic COVID-19 infection. 18 

Routine SARS-COV-2 monitoring in a select cohort will be required to acquire samples prior to 19 

and immediately after the infection in order to assess whether pre-infection signatures predict 20 

outcomes in COVID-19 patients. Third, our analysis focused on individual plasma proteins 21 

(based on olink data) and immune related Gene Ontology pathways (based on RNA-seq data). 22 

We used the Gene Ontology-based pathways to provide a high-level overview of the immune 23 

response in COVID-19 patients. Caution should be taken when interpreting the Gene Ontology 24 

pathways results, as the pathways are manually curated gene lists from literature and subject to 25 

publication bias, curation errors and over-simplification of biological processes.  We encourage 26 
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others to investigate the immune response of individual genes of interest using our shared RNA-1 

seq data. Finally, we have created machine learning models to predict multiple outcomes in 2 

COVID-19 patients, including symptom severity, T cell response and antibody responses. While 3 

we are able to validate the model for predicting symptom severity in an independent dataset, 4 

additional datasets are needed to validate our model for predicting T cell and antibody 5 

responses.  6 

 7 

In this study, we identified multiple biomarkers for predicting clinical and immunological 8 

outcomes in COVID-19 patients, including plasma level of RIG-I and the CCR2 ligands (MCP1, 9 

MCP2 and MCP3). In addition, we demonstrate that machine learning models using 8-10 10 

biomarkers are highly effective in predicting these outcomes. The models can potentially be 11 

used to identify high-risk COVID-19 patients who will develop life-threatening symptoms, and to 12 

predict the degree of immune memory development. In addition, these biomarkers and models 13 

could also help explain variations in the response to COVID-19 vaccines, and to further identify 14 

differences between natural infection and vaccine-induced immunity.  15 
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 14 

 15 

Methods 16 

Lambda Study Design and Oversight 17 

Data and samples were obtained from a Phase 2, single-blind, randomized placebo-controlled 18 

trial to evaluate the efficacy of Lambda in reducing the duration of viral shedding in outpatients. 19 

The trial was conducted within the Stanford Health Care System. Adults aged 18-65 years with 20 

an FDA emergency use authorized reverse transcription-polymerase chain reaction (RT-PCR) 21 

positive for SARS-CoV-2 within 72 hours from swab to the time of enrollment were eligible for 22 

participation in this study. We included both symptomatic and asymptomatic patients based on 23 

the previous finding that the detected infectious virus were similar in samples from 24 

asymptomatic and symptomatic persons44.  Symptomatic individuals were eligible given the 25 

presence of mild to moderate symptoms without signs of respiratory distress. Asymptomatic 26 
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individuals were eligible if infection was the initial diagnosis of SARS-CoV-2 infection. Exclusion 1 

criteria included current or imminent hospitalization, respiratory rate >20 breaths per minute, 2 

room air oxygen saturation <94%, pregnancy or breastfeeding, history of decompensated liver 3 

disease, recent use of interferons, antibiotics, anticoagulants or other investigational and/or 4 

immunomodulatory agents for treatment of COVID-19, and prespecified lab abnormalities. Full 5 

eligibility criteria are provided in the study protocol. The protocol was amended on June 16th, 6 

2020 after 54 participants were enrolled but before results were available to include adults up to 7 

75 years of age and eliminate exclusion criteria for low white blood cell and lymphocyte count.  8 

The trial was registered at ClinicalTrials.gov (NCT04331899). The study was performed as an 9 

investigator-initiated clinical trial with the FDA (IND 419217), and approved by the Institutional 10 

Review Board of Stanford University.  11 

 12 

Participant Follow Up and Sample Collection 13 

Participants completed a daily symptom questionnaire using REDCap Cloud version 1.5. In-14 

person follow-up visits were conducted at day 1, 3, 5, 7, 10, 14, 21, and 28, with assessment of 15 

symptoms and vitals, and collection of oropharyngeal swabs (FLOQ Swabs; Copan 16 

Diagnostics). Peripheral blood was collected at enrollment, day 5, day 28, and month 7 post 17 

randomization. Whole blood was collected in Paxgene Tubes, and remaining blood was 18 

processed for plasma and peripheral blood mononuclear cells.  19 

  20 

Clinical Laboratory procedures 21 

Laboratory measurements were performed by trained study personnel using point-of-care CLIA-22 

waived devices or in the Stanford Health Care Clinical Laboratory. Oropharyngeal swabs were 23 

tested for SARS-CoV-2 in the Stanford Clinical Virology Laboratory using an emergency use 24 

authorized, laboratory-developed, RT-PCR. Centers for Disease Control and Prevention 25 

guidelines identify oropharyngeal swabs as acceptable upper respiratory specimens to test for 26 
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the presence of SARS-CoV-2 RNA, and detection of SARS-CoV-2 RNA swabs using 1 

oropharyngeal swabs was analytically validated in the Stanford virology laboratory. 2 

  3 

Whole blood transcriptomics 4 

Whole blood transcriptomics were performed at Novogene Corporation, Inc. Briefly, whole blood 5 

samples collected in Paxgene Tubes were first treated with Proteinase K, and then RNA 6 

extraction performed using Quick-RNA MagBead Kit (R2132) on KingFisher followed by sample 7 

quality control checks using a Qubit and Bioanalyzer 2100. Libraries were prepared using 8 

ZymoSeq RiboFree Total RNA Library Kit (R3000). Sequencing took place on a Nova6000 on 9 

an S4 lane, 30M paired reads, PE 150.  10 

 11 

Whole blood transcriptomic data analysis  12 

The transcript-level count data and transcript per million (TPM) data was calculated using 13 

Kallist47 (v0.46.2) and human cDNA index produced using kallisto on Ensembl v96 14 

transcriptomes. We identified all gene ontology terms that are the child term of immune system 15 

process  (GO:0002376). We removed highly redundant gene ontology terms by grouping terms 16 

with >80% overlap of genes and manually selected the representative terms within each group. 17 

For each RNA-seq sample, we calculated the single-sample enrichment score of each gene 18 

ontology term using the fgsea R package48. The enrichment scores of the gene ontology terms 19 

were normally distributed across samples and are  treated as variables,  similar to individual 20 

protein markers,  in the downstream analysis.  21 

  22 

Plasma protein profiling using Olink panels   23 

We measured proteins in plasma using Olink multiplex proximity extension assay (PEA) 24 

inflammation panel and immune response panel (Olink proteomics, www.olink.com) according 25 

to the manufacturer’s instructions. The PEA is a dual-recognition immunoassay, where two 26 
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matched antibodies labeled with unique DNA oligonucleotides simultaneously bind to a target 1 

protein in solution. This brings the two antibodies into proximity, allowing their DNA 2 

oligonucleotides to hybridize, serving as a template for a DNA polymerase-dependent extension 3 

step. This creates a double-stranded DNA “barcode” unique for the specific antigen and 4 

quantitatively proportional to the initial concentration of target protein. The hybridization and 5 

extension are immediately followed by PCR amplification and the amplicon is then finally 6 

quantified by microfluidic qPCR. 7 

 8 

T Cell Assays 9 

SARS-CoV-2 specific T cell peptide pools were purchased from Miltenyi Biotec (PepTivator® 10 

SARS-CoV-2 Prot_S, Prot_S1, Prot N, and Prot M) and resuspended in DMSO. These 11 

PepTivator® reagents are pools of lyophilized peptides of 15 amino acid length with 11 amino 12 

acid overlap, covering immunodominant sequence domains of the Spike (S and S1) (aa 13 

sequence 1-1273), Nucleocapsid (N) or Membrane (M) proteins of SARS-CoV-2.  14 

 15 

Antigen-specific T cell responses were measured using an intracellular cytokine staining assay.  16 

Briefly, cryopreserved PBMCs were thawed, counted, and resuspended in complete RPMI 17 

(RPMI (Corning) supplemented with 10% FBS (Gibco), 100 IU Penicillin (Corning), 100 ug/ml 18 

Streptomycin (Corning), 1 mM Hepes (Corning) and 2 mM L-glutamine (Corning)). The cells 19 

were plated in 96-well U bottom plates at 1x10e6 PBMCs per well and then rested overnight at 20 

37°C in a CO2 incubator. The following morning, cells were cultured in presence of either 21 

SARS-CoV-2 peptides (1 μg/ml), PMA (300 ng/ml) and Ionomycin (1.5 μg/ml) as positive 22 

control, or media as a negative control for 6 hours at 37°C. All conditions were in the presence 23 

of brefeldin A (BD Pharmingen), monensin (BD Pharmingen), and CD107a. After a 6-hour 24 

incubation, cells were washed and surface stained for CCR7 for 15 min at 37°C, followed by  25 

the remaining surface stain for 30 min at room temperature (RT) in the dark. Thereafter, cells 26 
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were washed twice with PBS containing 0.5% BSA and 2 mM EDTA, then fixed/permeabilized 1 

(FIX & PERM® Cell Permeabilization Kit, Invitrogen) and stained with intracellular antibodies for 2 

20 min at RT in the dark. A complete list of antibodies are listed in Supplementary Methods. All 3 

samples were analyzed on an Attune NXT flow cytometer and analyzed with FlowJo X (Tree 4 

Star) software.  5 

 6 

Antibody Assays 7 

IgG antibody titers against the SARS-CoV-2 full length spike protein were assessed by enzyme-8 

linked immunosorbent assay (ELISA)27. Briefly, 96 Well Half-Area microplates (Corning 9 

(Millipore Sigma)) plates were coated with antigens at 2 μg/ml in PBS for 1h at RT. Next, the 10 

plates were blocked for an hour with 3% non-fat milk in PBS with 0.1% Tween 20 (PBST). 11 

Plasma was diluted fivefold starting at 1:50 in 1% non-fat milk in PBST. 25 μl of the diluted 12 

plasma was added to each well and incubated for 2h at RT. Following primary incubation, 25 μl 13 

of 1:5000 diluted horse radish peroxidase (HRP) conjugated anti-Human IgG secondary 14 

antibodies (Southern Biotech) were added and incubated for 1h at RT. The plates were 15 

developed by adding 25 μl/well of the chromogenic substrate 3,3′,5,5′-tetramethylbenzidine 16 

(TMB) solution (Millipore Sigma). The reaction was stopped with 0.2N sulphuric acid (Sigma) 17 

and absorbance was measured at 450nm (iD5 SPECTRAmax, Molecular Devices). The plates 18 

were washed 5 times with PBST between each step and an additional wash with PBS was done 19 

before developing the plates. All data were normalized between the same positive and negative 20 

controls and the binding AUC were calculated using GraphPad PRISM (Version 9). 21 

 22 

Quantifying oropharyngeal viral load 23 

We identified the cycle threshold (Ct) value using the fluorescence vs cycle data reported from 24 

RT-PCR scanner. We subtract the Ct value from the detect limit (Ct=41) to quantify the viral 25 
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shedding in each OP swap. We plotted the viral shedding in each visit versus time, and 1 

calculated the area under the curve using numerical integration based on the trapezoid rule.  2 

 3 

Analysis of Olink data from the vaccine study 4 

The olink data from the mRNA vaccine study was previously obtained and published 30.We 5 

tested if the level of the proteins are significantly altered after vaccination using ANOVA 6 

(expression ~ time), where time is treated as a categorical variable to account for non-linear 7 

behavior of the proteins. P values from the ANOVA models are adjusted using the False 8 

Discovery Rate (FDR) method49. To visualize the trajectory of the proteins, we imputed the 9 

protein level in each day using linear interpolation with the ‘approx’ function in R.  10 

 11 

Statistical analysis  12 

Principal component analysis was conducted by applying the prcomp function in base R to the 13 

whole Olink dataset or the top 500 genes with the highest variance. To access the association 14 

between the principal components and clinical data, we fitted regression models (PC ~ clinical 15 

variable). The percent of variances explained by the clinical variable is used to measure the 16 

association.  17 

We accessed the association between the expression of immune pathways or protein markers 18 

with time using the regression model (expression ~ time + time2). It should be noted that our 19 

study contains repeated measures of the same individuals in two time points (0 and 5 days after 20 

enrollment). While including subjects as random effects in the regression model allows the 21 

model to adjust for individual differences, it resulted in near-singular fits of the data for many of 22 

the immune measurements. To avoid model over-fitting, we decided to only include the fixed 23 

effects (time) in our model. To find significant associations, we compared the model with the 24 

base model (expression ~ 1) and used the F test to calculate the p value. We adjusted the p 25 

value using the False Discovery Rate (FDR) method. We performed a parallel analysis using 26 
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mixed-effect models [expression ~ time + time2 + subject ID(random effect)] to fit the data and 1 

found that all significant (FDR<0.05) variables identified using the fixed effect model were also 2 

significant in the mixed-effect model (Supplemental Table 2).  3 

 4 

We estimated the enrichment score of the major immune cell types using the xCell package23. 5 

The association between the xCell scores and time were tested using the same regression 6 

method described above.  7 

 8 

We tested the association between immune measurements and symptom severity using 9 

regression models (measurements ~ symptom severity + time + time2) and the lm function in R. 10 

The p value of the symptom severity term is adjusted using the FDR method. Similar regression 11 

models were used to test the association between immune measurements and other outcomes, 12 

including the oropharyngeal viral load, the memory CD4+ T cell activity and S protein binding 13 

IgG levels. To test between immune measurements and symptom severity without adjusting the 14 

time to symptom onset, we performed a one-way anova analysis using the lm function in R 15 

(measurements ~ symptom severity) .  16 

 17 

To estimate the time in which an immune measurement reaches the maximum level, we first fit 18 

a quadratic regression model (measurement ~ time + time2). We then identified the day 19 

(between 0 - 15 after symptom onset) in which the fitted regression model reached the maxim. 20 

We repeated the process 100 times to estimate the variance of the time.  21 

 22 

Predictive modeling 23 

We used the protein measurements (measured by Olink assays) to predict the clinical, 24 

virological and memory T cell activity and IgG antibodies. Since the outcomes are a mixture of 25 

categorical (symptom severity) and continuous (viral load, T cell and antibody responses) 26 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 29, 2021. ; https://doi.org/10.1101/2021.08.27.21262687doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.27.21262687
http://creativecommons.org/licenses/by-nc-nd/4.0/


 35

variables, we framed the all prediction tasks as classification problems by dichotomizing the 1 

continuous variables using median as cutoffs. To prevent overfitting, we selected 30 proteins 2 

with the highest variance as input data, as the highly variable proteins best capture the inter-3 

subject difference across the COVID-19 patients. We further select features using random forest 4 

and  leave-one-out validation. In step 1, we train a random forest model using data from all 5 

samples but one left out sample. In step 2, we rank the feature importance of the 30 protein 6 

markers based on the gini index reported by the random forest model. In step 3, We train 7 

reduced random forest models with 1-29 most important proteins. In step 4,  we predict the 8 

outcomes using the data from the left out sample. We repeat steps 1-4 until we predict the 9 

outcome of all samples. We calculate the model performance using the area under the receiver 10 

operator characteristic curve (AUC). The variable combinations that give rise to the highest AUC 11 

are selected as the optimal model. The optimal model for predicting symptom severity was 12 

tested using Olink data from two independent studies.  13 

 14 

Data availability 15 

The RNA-sequencing data, Olink, clinical, virological, and immunological, as well as the 16 

machine learning models, are available upon request.   17 

All codes for data analysis are available upon request.  18 

 19 
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