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Supplementary Information Appendix 

 
Materials and methods: 
 
Model conceptualization and vetting 
Model design was informed by several frozen fruit and vegetable manufacturers and their trade association, 
the American Frozen Food Institute. Following initial development, the model was vetted by food industry 
experts: Dr. Sanjay Gummalla [Senior Vice President, Scientific and Regulatory Affairs, American Frozen 
Food Institute] and Dr. Lory Reveil [Director, Scientific and Regulatory Affairs, American Frozen Food 
Institute].  
 
Data sources 
The model assumed two infected workers (as unvaccinated or as rare breakthrough infections) and that the 
infected and susceptible workers were independent of one another. To calculate viral shedding of the infected 
workers, we converted PCR-based genome equivalent copies to PFU using a 1:100 conversion, as previously 
applied by Pitol et al.1 This resulted in SARS-CoV-2 titers in saliva (range: 6·1 to 7·4 log10 PFU/mL),2,3 
representative of peak virus titer reported around the time of symptom onset 3,4 and the acute phase of 
infection, when the majority of transmission events are thought to occur.4,5 The same distribution of shedding 
data was used for both infected workers. To determine the amount of virus expelled into the air by the infected 
workers, the total fraction of saliva volume released during coughing was calculated for each droplet (50-
60μm, 60-100μm, >100μm) and aerosol (<50μm) range as described in 6 using respiratory particle counts 
and size distributions from empirical studies.7  
 
The model simulated equal probability of cough events for each infected worker, ranging from 0-10 coughs, 
over the duration of product packaging (1h-period). Aerosol transport properties of the differently-sized 
respiratory particles informed the contamination potential of the plastic packaging. For instance, aerosols 
defined as <50 μm in diameter settle from the air according to their terminal settling velocity. Droplets (50-
750 μm) fall rapidly due to gravitational forces and their ability to contaminate fomites as fallout or spray 
was determined by size and distance traveled based on modeling studies.8 The proportion of droplets that 
reached the plastic cartons or plastic wrap within 0 to 3 feet distancing was derived from modeling studies 
by.8  
 
Viral decay 9 was included at two stages in the model: 1) virus-containing aerosols or droplets in the air; and 
2) the virus-contaminated hands of the susceptible worker. The model assumed no viral decay during pallet 
transport, holding, and unpacking while under cold chain storage conditions.9-12 Additionally, the model 
assumed the susceptible worker had no additional SARS-CoV-2 exposures in the receiving warehouse (e.g., 
local community transmission, other infected workers in the receiving warehouse etc.,). Given heterogeneity 
in the volume of products processed over a contiguous workday, a 1-hour period was modeled to more 
precisely represent the number of products handled by workers within under cold-chain conditions. Further, 
the model exclusively simulated fomite-mediated transmission and did not capture potential respiratory 
exposures associated with re-aerosolization of virus particles from fomites. Virus transfer efficiencies from 
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plastic fomite surfaces (individual plastic cartons, palletized cartons, plastic wrap) to hands leveraged 
laboratory-based studies using acrylic surfaces under low-humidity conditions and the viral surrogate MS2.13 
Sequential tactile events were modeled from the initial contact of the susceptible worker’s hand to the fomite 
surface (one contact/individual plastic carton; up to 20 contacts on the pallet plastic wrap) followed by hand 
contact to facial mucous membranes (0·8 contacts/minute).14 SARS-CoV-2 infection risks were estimated 
using an exponential dose-response model based on the pooled data from studies of SARS-CoV and murine 
hepatitis virus infection in mice by intranasal administration 15,16 with the ID50 equal to 102 infectious 
particles. We applied this SARS-CoV dose-response model given the high degree of comparability to SARS-
CoV-2 (e.g., genetic and amino acid homology, transmission pathways, etc.).17  
 
Infection control measures were implemented to reduce contamination of the plastic packaging (i.e., mask 
use by the infected workers) or to disrupt the transfer of virus from the susceptible worker’s hands to their 
mucous membranes (handwashing). Laboratory-based studies on mask filtration efficiencies 18-21 were used 
to inform estimates of surgical masking efficacy. Using these empirical studies, which reported mask 
filtration efficiencies for either source control and/or recipient protection, we calculated the mask efficacy 
for when the infected workers wore the mask (source) and for when the susceptible worker (recipient) wore 
the mask. Of note, we assumed no reduction in hand to face contacts when the susceptible worker was 
contacting their face. Handwashing and package surface disinfection virus removal efficiencies were 
representative of current CDC and EPA List N: Disinfectants for Coronavirus (COVID-19) products: 
handwashing (2 log10 virus removal);22 and plastic packaging decontamination (3 log10 virus removal).23 For 
all mitigation strategies (mask use, handwashing, and surface decontamination), we assumed that these were 
implemented with 100% compliance and in the specified manner. A routine ventilation rate was applied 
across all modeled scenarios defined as two complete room air changes per hour (ACH).  
 
Vaccination was incorporated into the model representing two doses of mRNA vaccine (Moderna/Pfizer) and 
was applied with and without the standard infection control measures. For the first vaccination scenario, we 
assumed only the susceptible worker was vaccinated with two doses of mRNA vaccine (Moderna/Pfizer) and 
vaccine effectiveness (VE) against susceptibility to infection was simulated across three vaccination states. 
These included: 1) no vaccination/no prior immunity; 2) lower VE ranging from 6424-80%25 representative 
of reduced protection (variants of concern, waning immunity, immunocompromised and elderly or at-risk 
populations); and 3) optimal VE ranging from 86%26,27-9928% among healthy adults 14 days or more after 
second mRNA dose. The second vaccine scenario represented vaccine effectiveness against transmission, 
where all workers are assumed to vaccinated with two doses of the mRNA vaccines and hence the model 
simulated rare breakthrough infections. Vaccine effectiveness against transmission (VET) was modeled by 
applying the combined effect of the reduction in risk of infection to the susceptible worker and the risk of 
transmissibility given a rare breakthrough infection among the vaccinated workers. We used the VET 
estimate (88·5% [95%CI: 82·3%, 94·8%] derived from Prunas et al.,29 VET was modeled across a range of 
three peak infectious viral shedding concentrations representative of possible increased transmissibility 
and/or infectiousness of variants of concern: 1) 8·1-9·4 log10 viral particles; 2) 7·1-8·4 log10 viral particles; 
and 3) 6·4-7·7 log10 viral particles. These viral shedding levels are 100-, 10-, and 2-times, respectively, the 
increased viral shedding concentration simulated in the base model analysis. For all vaccination scenarios, 
VE was applied directly to the model-derived risk estimates to represent reduction in infection risk. An 
assumption of this model is that VE would have the same impact across transmission pathways (aerosol, 
droplet, and fomite-mediated). 
 
Model parameters associated with the indoor facility and respiratory transmission (aerosols and droplets) 
modes were described in.30 However, air temperature was modified from 70 to 55°C to represent ambient air 
temperatures used during the process of freezing and packaging frozen foods. In addition, extensive 
sensitivity analyses including the number of simulations needed to achieve model stability; variability and 
uncertainty propagation throughout the model; and identifying the most influential parameters for SARS-
CoV-2 infection risk, reported as Spearman’s correlation coefficients, were previously described in Sobolik 
et al.30  
 
Results: 
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Impact of infection control measures on fomite-mediated SARS-CoV-2 infection risks with variants of 
concern from breakthrough cases   
Increased viral shedding (8·1-9·4 log10 infectious virus [100X baseline shedding concentration]) resulted in 
an infection risk of 2·8 x 10-2 per 1h-period (95%CI: 7·8 x 10-5, 1·1 x 10-1) (Figure 2B). Implementing 
standard infection control measures reduced risk to near the 10-4 risk threshold: by 98·9% for handwashing 
(3·2 x 10-4 risk per 1h-period, 95%CI: 7·8 x 10-7, 2·7 x 10-3) and by 99·6% for handwashing and masks (1·1 
x 10-4 risk per 1h-period, 95%CI: 2·6 x 10-7, 9·4 x 10-4), relative to no infection control measures. 
 
Estimated SARS-CoV-2 concentration on combined plastic packaging under cold-chain conditions 
SARS-CoV-2 concentration on combined plastic packaging in the absence of infection control measures was 
11·7 infectious viruses/m2 (95%CI: 2·6 x 10-2, 6·9 x 101) (SI Appendix, Figure S1.A). Mask use led to a 
66·7% reduction in SARS-2 concentration on fomites. The addition of plastic packaging decontamination 
resulted in 3·5 log10 reduction (3·9 x 10-3 infectious viruses/m2 [95%CI: 8·8 x 10-6, 2·3 x 10-2]). Handwashing 
by the infected workers had no impact on the fomite SARS-CoV-2 concentration as this exposure route was 
not considered.  
 

 
 
Fig. S1. Concentration of SARS-CoV-2 on combined fomites (individual plastic cartons, plastic wrap). 
SARS-CoV-2 concentrations on plastic fomite surfaces associated with standard SARS-CoV-2 infection 
control measures (hourly handwashing, universal surgical mask usage) under cold-chain conditions. 
Ventilation (two air changes per hour [ACH]) was assumed for all simulations. Percent reduction reported 
above each boxplot relative to no interventions. 
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Table S1. Model parameter inputs and distributions. 
Parameter Units Description Distribution Input Values 

 
Citations 

Viral shedding 

Log10(Cvirus) PFU/mL Concentration of virus in saliva 
100X increased viral shedding 
10X increased viral shedding 
2X increased viral shedding 

Triangular 
 
 
 
 

6·8 (6·1, 7·4) 
 
8·8 (8·1, 9·4) 
 
7·8 (7·1, 8·4) 
 
7·1 (6·4, 7·7) 

2,3 

VF,c mL/Cough Fraction of volume associated 
with aerosols (2–45μm) 

Triangular  2·3 x 10-6 (1·4 x 10-6, 2·6 
x 10-6) 

7 

VF,c mL/Cough Fraction of volume associated 
with droplets (50–60μm) 

Triangular 6·0 x 10-6 (3·5 x 10-6, 6·7 
x 10-6) 

7 

VF,c mL/Cough Fraction of volume associated 
with droplets (60–100μm) 

Triangular 4·9 x 10-6 (1·1 x 10-6, 8·4 
x 10-6) 

7 

VF,c mL/Cough Fraction of volume associated 
with droplets (100–750μm) 

Triangular 6·8 x 10-3 (4·0 x 10-3, 7·6 
x 10-3) 

7 

FC Cough/h Number of coughs per hour Empirical 1/11 equal probability (0, 
10) 

31,32 

𝜆virus Hour Viral decay of SARS-CoV-2 at 
40% relative humidity, 55°F 

Point value 0·1447 33 

pp Probability Probability respiratory particles 
will remain in the air as 
respiratory spray between 0 and 
1m distancing 

Uniform 50-60µm:  
1m: 0·82;  
60-100µm: 
1m: 0·44; 
>100µm: 
1m: 0·04 

8 

ppdroplets Probability Probability respiratory particles 
(>100 µm) will remain in the air 
as respiratory spray between 0 
and 1m distancing 

Uniform (0·01, 0·22) 8 

ppfalldroplets Probability Probability respiratory particles 
(>100 µm) will settle to the 
fomite surfaces between 0 and 
1m distancing 

Uniform (0·07, 0·78) 8 

Risk mitigation interventions1 

Smask Log reduction Source protection surgical mask 
efficacy 

Uniform (0·39, 0·57) 20,34,35 

RSmask Percent reduction Recipient surgical mask efficacy Uniform (0·37, 0·998) 20,34,35 

SDeff Log reduction Plastic fomite surface 
decontamination efficiency 

Point value 3Log10 virus 23,36 

HWeff Log reduction Handwashing efficiency  Point value 2Log10 virus 37,38 

HWfreq Handwashing/h Frequency of handwashing per 
hour 

Point value 1·0 Expert 
elicitation 

Rair Air changes/h Frequency of room air changes 
per hour (ACH) 

Point value ACH 2 
 

Expert 
elicitation 

VEoptimal Percent reduction Vaccine effectiveness Uniform (0 ·86,0·99) 26-28  

VEreduced Percent reduction Vaccine effectiveness Uniform (0·64,0·80) 24,25 

VET Percent reduction Vaccine effectiveness against 
transmission 

Triangular 0·89(0·82,0·95)  29 

Fomite-mediated transmission 

SAcarton.top m2 Surface area of top of individual 
plastic carton 

Uniform  (0·106, 0·116) Assumed 

SAcarton m2 Surface area of a single 
individual plastic carton 

Uniform  (0·41, 0·54) Assumed 

Cartons Cartons/h Number of individual plastic 
cartons processed per h 

Uniform (144, 216) Assumed 
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Pallets Pallets/h Number of pallets processed per 
h 

Point value 4 Assumed 

SAplasticwrap.side m2 Surface area of a single side of 
plastic wrapped pallet 

Uniform  (4·2, 6·97) Assumed 

SAplasticwrap m2 Surface area of entire plastic 
wrapped pallet 

Uniform  (25·2, 41·8) Assumed 

Fingerssa m2 Surface area of three finger tips 
touching the surface 

Point value 0·00042 39 

Hsa m2 Area of two hands (palms only) Point value 0·049 39 

Fdecay Hour Viral decay rate (PFU per hour) Point value 0·15 9 

TEfh PFU Viral transfer fraction from 
fomite to hand with relative 
humidity (40-65%); acrylic 
surface 

Normal 
 

0·795 (0·212) 
 

13 

TEhf PFU Viral transfer fraction from hand 
to fomite surface 

Point value 0·025 40-43 

TEhm PFU Viral transfer fraction from hand 
to face 

Normal 0·20 (0·063) 13 

freq.hs Contacts/min Frequency of contacts from hand 
to individual plastic cartons 

Point value Cartons/60 Assumed 

freq.hs.pw Contacts/min Frequency of contacts from hand 
to plastic wrap 

Uniform (4/60, 20/60) Assumed 

freq.hf Contacts/min Frequency of contacts from hand 
to face 

Point value 0 ·8 14 

Handdecay Minutes Viral decay rate on hands 
(PFU/min) 

Uniform (0·92, 1·47) 41 

eyes.sa m2 Surface area of mucous 
membranes—eyes  

Uniform (1x10-5, 2x10-4) 44 

nose.sa m2 Surface area of mucous 
membranes—nose 

Uniform (1x10-5, 1x10-3) 44 

mouth.sa m2 Surface area of mucous 
membranes—mouth 

Uniform (1x10-4, 4.1x10-3) 44 

SARS-CoV-2 dose and risk characterization 

Ratioinfectious No units Infectious to non-infectious ratio Point value 1:100 45 

krisk PFU-1 Dose-response parameter Point value 0·00680 1 

1All interventions were assumed to be implemented with 100% compliance. 
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