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Materials and Methods 
Ethics 

All work conducted under this study was approved by Institutional Ethics Committees at NCDC 

and CSIR-IGIB. Testing and sequencing of positive samples for genomic surveillance is exempted 

from individual informed consent, being a mandated public health service of NCDC and CSIR-IGIB 

for public health purposes. The use of deidentified data generated through clinical and public health 

services for research was reviewed and approved under certificates CSIR-IGIB/IHEC/2020-21/01 

Dt. 28.03.2020, and NCDC Ethical review committee No:  2020/NERC/14. The serosurvey was 

approved under certificate CSIR-IGIB/IHEC/2020-21/01 Dt. 28.03.2020 and CSIR-

IGIB/IHEC/2020-21/02 Dt. 23.02.2021, for project entitled “Phenome India - A long-term 

longitudinal observational cohort study of health outcomes” with individual informed consent from 

each participant (4).  

  

Sampling and Metadata Collection 

Nasopharyngeal and throat swab samples from COVID-19 confirmed cases with Ct value < 

25 were collected and transported to Biotechnology Division, National Centre for Disease Control 

(NCDC), New Delhi, from the various testing sites across different states in India as per the sampling 

strategy of Central Surveillance Unit (CSU) of Integrated Disease Surveillance Programme (IDSP), 

NCDC. 24 post-vaccination RT-PCR confirmed SARS-CoV-2 positive samples were also included 

in this study (Data S4). All patient details and metadata were filled on the patient identification form 

and were accompanied with the samples. A total of 11,335 samples were received for whole genome 

sequencing at NCDC between November 2020 to May 2021 which were processed for viral genome 

sequencing. 

 

PCR Amplification, Viral Genome Sequencing and Assembly 

Viral RNA was isolated from the patient samples using MagNA Pure RNA extraction system 

(Roche) following the manufacturer’s instructions. Whole-genome sequencing of the viral isolates 

was done as per the COVIDSeq protocol by Illumina using the NextSeq 550 platform. A total of 376 

samples per lot were processed in batches of 94 with indexes A-D by loading 1.4 pmol of the library 

on the 75 cycle High Output Kit flow cell. Approximately 20GB of data was generated by genome 

sequencing which was processed using the Illumina DRAGEN COVID Pipeline and DRAGEN 

COVID Lineage Tools (v3.5.1). The raw data sequencing data generated in binary base call format 

(BCL) from the NextSeq 550 instrument was demultiplexed to FASTQ files using bcl2fastq 

(Illumina, v2.20). The raw reads were aligned against the SARS-CoV-2 reference genome 

(NC_045512.2) following the pipeline (20). The minimum accepted alignment score was set to 12 

and alignment results with scores <12 were discarded. The coverage threshold and virus detection 

threshold were set to 20 and 5 respectively. The variant calling target coverage which specifies the 

maximum number of reads with a start position overlapping any given position was set at 50. The 

consensus sequences generated for the samples at the end of the DRAGEN COVID Pipeline were 

used for downstream analysis including lineage assignment and phylogenetic analysis. Out of the 

9,557 genome sequences generated, 7,858 sequences with complete metadata were used for further 

analysis. 

 

Genome Datasets and Lineage Analysis 

Two datasets were compiled to estimate the lineage frequency of SARS-CoV-2 for the state of 

Delhi and other surrounding states and union territories (UTs) in North India: Punjab, Haryana, Uttar 



3  

Pradesh, Chandigarh, Himachal Pradesh, Uttarakhand, Jammu and Kashmir, and Ladakh (Data S1). 

Dataset A comprises 7,858 genome sequencing data generated in this study. Dataset B comprises 

SARS-CoV-2 genome sequences from these states publicly available in GISAID (with collection 

dates up to 30th June 2021). Only those sequences from GISAID having complete date of collection 

(YYYY-MM-DD) were included in Dataset B and appended to Dataset A. For Dataset A, lineages 

were assigned to the genome sequences using the Pangolin tool (14,15) (version 3.1.8, pangoLEARN 

version 2021-07-28) to match the current version of lineage assignments on GISAID. The lineage 

data was segregated according to states and date of collection. State wise frequency of variant of 

concern B.1.617.2 (Delta) was plotted along with frequencies of B.1.617.1 (Kappa), B.1.1.7 (Alpha), 

B.1, B.1.36 and ‘other variants’. For Delhi, proportions of the different lineages were calculated as 

weekly aggregates and for the period April 2020 to June 2021 and plotted in context with the weekly 

aggregates of the number of new cases of COVID-19 reported from the state and test positivity rate. 

The dataset of number of tests, confirmed cases and positivity rate for the state of Delhi was taken 

from the state level database maintained at NCDC (Data S2). For states other than Delhi, sequences 

with dates of collection between 1 November 2020 and 30 June 2021 were used to analyze lineage 

frequencies of the virus aggregated monthly. The dataset of the number of tests and confirmed cases 

for other states was accessed from https://covidtoday.github.io/backend/. A table describing the 

GISAID accession IDs, date of collection and lineages of the samples used to calculate lineage 

proportions in different states from Datasets A and B is given as Data S1. The acknowledgement 

table for genome sequences downloaded from GISAID is given as Data S3. All FASTA sequences 

included as Dataset A are available at https://github.com/banijolly/ncov-Delhi-Epidemiology. 

Details for the 24 post-vaccination samples and the respective genome sequence IDs are given in 

Data S4. Raw Ct values for genes ORF1a (Target 1) and E (Target 2) analysed for the time period 

between July 2020 – June 2021 is available as Data S5.  

 

Phylogenetic Analysis 

1787 genome sequences from the state of Delhi were used for phylogenetic analysis along with 

an additional 152 B.1.617.2 (Delta) and 271 B.1.1.7 (Alpha) genomes from the state of Maharashtra 

and Punjab respectively. The phylogenetic tree was constructed following the Nextstrain protocol 

for genetic epidemiology of SARS-CoV-2 (https://nextstrain.github.io/ncov/) (21,22). Briefly, the 

genome sequences were aligned against the SARS-CoV-2 reference genome MN908947 (20) using 

NextAlign (21) using the default parameters of the Nextstrain protocol. The first 100 and last 50 

bases were masked in the resulting alignment file before further processing. A fast maximum 

likelihood phylogenetic tree was constructed using IQTREE2 (23) using a general time reversible 

model (GTR) by specifying a log-likelihood epsilon value of 0.05 for final model parameter 

estimation. The tree was further processed to resolve polytomies and rerooted to have sample hCoV-

19/Wuhan/WH01/2019 (EPI_ISL_406798) as the root. The pipeline further processes the tree using 

TreeTime (22) to estimate a skyline coalescent using a fixed clock rate of 8x10-4. The resulting 

phylogenetic tree was visualized and annotated using the R package ggtree (24). The phylogenetic 

network of SARS-CoV-2 isolates from Punjab collected during February-March 2021 was visualized 

in Auspice (fig. S3). The tree files generated by the analysis are available at 

https://github.com/banijolly/ncov-Delhi-Epidemiology.  

 

Serosurvey 

The serosurvey was conducted through a voluntary participation wherein personnel working at 

CSIR labs/centers and their family members gave their blood samples in July-Sep 2020 (Phase 1) 

and January-February 2021 (Phase 2) and May-July 2021 (Phase 3) (details are given in table S1 

https://covidtoday.github.io/backend/
https://github.com/banijolly/ncov-Delhi-Epidemiology
https://nextstrain.github.io/ncov/)
https://github.com/banijolly/ncov-Delhi-Epidemiology
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and Data S6). The study was approved by the Institutional Human Ethics Committee of CSIR-IGIB 

vide approval CSIR-IGIB/IHEC/2019–20 & CSIR-IGIB/IHEC/2020-21/02 and carried out in over 

40 CSIR laboratories and centers spread across the country. Blood samples (6 ml) were collected 

in EDTA vials from each participant and analyzed on site or transported to CSIR-IGIB, New Delhi 

for Analysis. Elecsys Anti-SARS- CoV-2 kit from Roche Diagnostics was used to detect antibodies 

to SARS-CoV-2 NucleoCapsid antigen. It is a qualitative kit which was used for screening and a 

Cut-off index COI >1 was considered seropositive. Positive samples were further tested for 

quantitative antibody titers using the same manufacturer's kit directed against the spike protein (S-

antigen). An antibody levels >0.8 U/ml was considered sero-positive as per manufacturer’s 

protocol. The detection range of this kit is from 0.4 U/ml to 250 U/ml. For samples, where values 

of >250 U/ml were obtained; appropriate dilutions were made. Neutralizing antibody (NAB) 

response directed against the spike protein (RBD site) was assessed using GENScript cPass kit 

which is a surrogate virus neutralization test (sVNT). A value of 30% or above was considered to 

have neutralizing ability. sVNT neutralization assay data for Phase 1 and Phase 2 is available as 

Data S7 and data for subjects with and without reinfection is available as Data S8 and Data S9 

respectively. 

 

Protein annotation and modelling 

SARS-CoV-2 genomes were annotated for amino-acid substitutions by SnpEff version 4.5. The 

annotation was done according to the SARS-CoV-2 reference genome (NC_045512) (20). The 

structural model of the spike in 1 RBD-up state was generated using cryoEM structure of the spike 

1 RBD-up state (PDB ID: 6VSB) as a template (25). To generate ACE2 bound structure, we took 

the X-ray structure of human ACE2 bound to the RBD domain with PDB ID: 6M0J (26). Detailed 

modelling methodology is mentioned in our previous work (27). The structural mutant model of 

B.1.617.2 variant was generated using the structural model of ACE2-bound 1 RBD-up spike 

conformation as a reference. Each chain was mutated for missense mutations using ChimeraX (28) 

whereas deletions in each chain were introduced by employing Coot (29). 
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Supplementary Text 

Epidemiological Model 

The model described here builds on a previously published model of SARS-CoV-2 transmission 

introduced in Flaxman et al, 2020 (30), subsequently extended into a two-category framework in 

Faria et al, 2020 (31). Replication code is available at 

https://github.com/ImperialCollegeLondon/Delta_Variant_Delhi. 

Model Specification The model describes two categories, denoted 𝑠 ∈ {1,2}. The population-

unadjusted reproduction number for the first category is defined as 

 

 𝑅𝑠=1,𝑡 = 𝜇0 2 𝜎(𝑋𝑡) , 1 

 

where 𝜇0 is a scale parameter (3.3), 𝜎 is a logistic function, and 𝑋𝑡 is an second-order autoregressive 

process with weekly time innovations, as specified in earlier work(32). The population-unadjusted 

reproduction number of the second category is modelled as 

 𝑅𝑠=2,𝑡 = 𝜌𝟏[𝑡2,∞)𝑅1,𝑡  , 2 

 

with 

 𝜌 ∼ Gamma(5,5)  ∈ [0,∞) , 3 

 

where 𝜌 is a parameter defining the relative transmissibility of category 2 compared to category 1 

and 𝟏[𝑡2,∞) is an indicator function taking the value of 0 prior to 𝑡2, and 1 thereafter, highlighting 

that category 2 does not contribute to the observed epidemic evolution before its emergence. The 

prior for 𝜌 is chosen because it weakly informative, setting 90% of prior mass a between × 0.4 and 

× 1.8 increase in transmissibility, while maintaining a neutral to conservative default in the context 

of increased transmissibility since it has a mean of × 1 and median of × 0.9. 

Infections arise for each category according to a discrete renewal process (33,34) 

 𝑖𝑠,𝑡 = (1 −
𝑛𝑠,𝑡
𝑁
)𝑅𝑠,𝑡∑𝑖𝑠,𝜏

𝜏<𝑡

𝑔𝑡−𝜏  , 
4 

 

where 𝑁 is the total population size, 𝑛𝑠,𝑡 is the total extent of population immunity to category 𝑠 

present at time 𝑡, and 𝑔 is the generation interval distribution. 

The susceptible depletion term for category 𝑠 is modelled as 

 𝑛𝑠,𝑡 =∑𝑖𝑠,𝜏
𝜏<𝑡

𝑊𝑡−𝜏 + 𝛽𝑠(1 − 𝛼𝑠,𝑡)∑𝑖\𝑠,𝜏
𝜏<𝑡

𝑊𝑡−𝜏  . 
5 

 

where \𝑠 denotes not-𝑠, under assumptions of symmetric cross-immunity with prior 

 𝛽 ∼ Beta(2,1) . 6 

 

https://github.com/ImperialCollegeLondon/Delta_Variant_Delhi
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Immune escape or the evasion of cross-immunity of Delta, as reported in the analysis, is defined as 

the complement of the cross-immunity parameter, that is (1 − 𝛽). The prior for 𝛽 has been chosen 

to reflect our default assumption that the mostly likely scenario is no evasion of cross-immunity. 

𝑊𝑡−𝜏 is the time-dependent waning of immunity elicited by previous infection, which is modelled as 

a Rayleigh survival-type function with Rayleigh parameter of sigma = 310, which produces 50% of 

individuals still immune after 1 year. The cross-immunity susceptible term 𝛼𝑠,𝑡 is modelled as 

 
𝛼𝑠,𝑡 =

(1 − 𝛽𝑠)∑ 𝑖𝑠,𝜏𝜏<𝑡 𝑊𝑡−𝜏

𝑁 − 𝛽𝑠 ∑ 𝑖𝑠,𝜏𝜏<𝑡 𝑊𝑡−𝜏
  . 

7 

Infections in Delhi are seeded for six days at the start of the epidemic from 𝑡1 as 

 𝑖1,𝑡1 ∼ Exponential(1/𝜏) , 8 

with 

 𝜏 ∼ Exponential(0.03) , 9 

 

and the second category for six days from 𝑡2, which is 14-02-2021 in the central scenario, as 

 𝑖2,𝑡2 ∼ Normal(1, 202)  ∈ [1,∞) . 
 

10 

 

Non-unit seeding of the B.1.617.2 variant and the diffuse prior represent our uncertainty in the 

precise date and magnitude of B.1.617.2’s introduction/importation into Delhi. 

The model generates deaths via the following mechanistic relationship: 

 𝑑𝑡 =∑ ifr𝑠
𝑠

∑𝑖𝑠,𝜏
𝜏<𝑡

𝜋𝑡−𝜏  . 
11 

 

The infection fatality ratios of each of the categories (ifr𝑠) are given moderately informative priors: 

 ifr𝑠 ∼ Normal(0.25, 0.022)   ∈ [0,100]  12 

 

with our central estimate based on the results of Brazeau et al (35) and adjusted for the demography 

of the city. We allow for variation around the estimate of 0.25 however, with the prior providing 

some support for IFRs in the range 0.15% - 0.35%. This range is similar to estimates by Banaji for 

Mumbai, a city with comparable demographics, for which an IFR is reported with 95% confidence 

intervals of (0.15%, 0.33%)(36). A limitation of the model is the assumption of homogeneous 

exposure across subsets of the population. 

Likelihood component 1. The observation model uses three types of data from four sources. In 

the first, the likelihood for the expected deaths 𝐷𝑡, is modelled as negative-binomially distributed, 

 
𝐷𝑡 ∼ NegativeBinomial (𝑑𝑡(1 − 𝜔), 𝑑𝑡 +

𝑑𝑡
2

𝜙
) , 

13 
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with mortality data 𝑑𝑡 and diffuse dispersion prior 

 𝜙 ∼ Normal(0, 52)   ∈ [0,∞) . 14 

 

and underreporting factor 𝜔, which describes the degree of death underascertainment, e.g. a value of 

0.25 means 25% of COVID-19 deaths are not reported (due, e.g. to limited testing). The central 

scenario chosen for death underreporting is 50%, due to the wide range values reported in available 

literature for Delhi and India(36–41). To mitigate the effect of the uncertainty in death 

underreporting, sensitivity tests are carried out a range of values, 𝜔 in {10%, 33%, 50%, 66%}, to 

ensure inferences are robust. 

Likelihood component 2. The second likelihood is based on genomic data from individuals 

where infections were sequenced and where the sequence was uploaded to GISAID. Specifically, the 

proportion of sequenced genomes identified as B.1.617.2 at time 𝑡 are modelled with a binomial 

likelihood 

 𝐺𝑡
+ ∼ Binomial(𝐺𝑡

+ + 𝐺𝑡
−, 𝜃𝑡) , 15 

 

with positive counts for B.1.617.2 denoted 𝐺𝑡
+ and counts for lineages not belonging to B.1.617.2 

recorded as 𝐺𝑡
−. The success probability for B.1.617.2 positivity is modelled as the infection ratio 

 
𝜃𝑡 =

𝑖̃2,𝑡
𝑖1̃,𝑡 + 𝑖̃2,𝑡

  , 
16 

 

where 𝑖̃𝑠,𝑡 is given by 

 𝑖̃𝑠,𝑡 =∑𝑖𝑠,𝜏
𝜏≤𝑡

 𝜅𝑡−𝜏  , 
17 

 

to account for the time varying PCR positivity displayed over the natural course of a COVID-19 

infection. The distribution 𝜅 describes the probability of being PCR positive over time following 

infection, and is based on (42). 

Likelihood component 3. Serological data are incorporated in our modelling framework, using 

results from the survey presented in this work, and from Velumani et al. (43). The observed 

seropositivity (𝑆𝑡) on a given day, 𝑡, is modelled as follows 

 
𝑆𝑡
+ ∼ Binomial(𝑆𝑡

+ + 𝑆𝑡
−,  𝜈𝑡∑𝑖𝑠,𝜏

𝜏≤𝑡

𝐶𝑡−𝜏) , 
18 

 

where 𝐶𝑡−𝜏 is the cumulative probability of an individual infected on day 𝜏 having seroconverted less 

seroreverted by time 𝑡. This distribution is empirical and based on (44). The term 𝜈𝑡 is a 

multiplicative random effect specified to mitigate likely biases in the serological data 

𝜈𝑡 = 2𝜎(𝑌𝑡) , 𝑌𝑡 ∼ 𝜇 + 𝜂𝑡  , 𝜇 ∼ 𝑁(0,1) , 𝜂𝑡 ∼ 𝑁(0, 𝛿) , 𝛿 ∼ 𝑁+(0,1) ,  

  19 
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where 𝜎 is the logistic function. 

Eq 4 can be modified to account for population effects (decreasing susceptible population over time) 

such that no over-shooting happens due to discretization as follows (45,46): 

 
𝑖𝑠,𝑡 = (𝑁 − 𝑛𝑠,𝑡) (1 − exp (−

𝑖𝑠,𝑡
𝑁
)) , 

20 

 

The formula for 𝑖𝑠,𝑡 is derived from a continuous time model on [𝑡 − 1, 𝑡]. This is to avoid discrete 

time effects such as infections going above the total population 𝑁. Specifically, we assume that the 

infections 𝑖(𝛥𝑡) in [𝑡 − 1, 𝑡 − 1 + 𝛥𝑡] are given by the differential equation ∂𝑖(𝛥𝑡)/ ∂𝛥𝑡 =

𝑖𝑡 (1 − (𝑛𝑠,𝑡 + 𝑖(𝛥𝑡)) /𝑁), which has the solution 𝑖(1) = 𝑖𝑡 as above. 

Modelling limitations Inferences from the model are subject multiple limitations, arising from 

biases in the data, and in our choices of priors. In particular, the level of underreporting in Delhi is 

poorly characterised. This uncertainty is mitigated by sensitivity testing, as described in the 

Supplementary Information. Similarly, uncertainty in the temporal waning of immunity, the date of 

when Delta was first introduced to Delhi, and the IFRs of SARS-CoV-2 variants in Delhi, all provide 

sources of bias that we currently only mitigate through sensitivity testing. Furthermore, we note 

serological data is likely to be systematically biased. This is partially addressed through the inclusion 

of an additional term in the serology likelihood that provides a multiplicative random effect. 

Computational notes The analysis uses R version 3.6.3. Inferences are based on 2000 iterations 

of Hamiltonian Monte Carlo using 2 chains, with rhat statistics confirmed to be less than 1.02. The 

inference is performed using rstan version 2.21.2. Replication code and data are available at 

https://github.com/ImperialCollegeLondon/Delta_Variant_Delhi. 

  

https://github.com/ImperialCollegeLondon/Delta_Variant_Delhi


9  

 

                                                                             p<0.001 

 
 

Month / year Positive samples  
 (Ct <=35) 

Jul 20 2303 

Aug 20 3332 

Sep 20 4552 

Oct 20 3666 

Nov 20 4555 

Dec 20 1281 

Jan 21 239 

Feb 21 61 

March 21 897 

April 21 9431 

May 21 3968 

Jun 21 168 

 

fig. S1. E gene Ct Values (blue) and Fraction of samples with Ct<20 (red) from July 2020 to 

June 2021. Mean +/- SE (blue bar) is shown for Ct Values for monthly clinical samples testing 

positive on a single COBAS 6800 automated testing system at NCDC, Delhi. All Ct values less or 

equal to 35 were used for the analysis. Number of positive samples meeting the criteria is shown in 

the table. Proportion +/- SE is shown for fraction of high viral load samples (red line). Statistical 

significance of difference is calculated from two sample Z-tests for means and proportions between 

Nov 2020 and April 2021, as corresponding transmission surge time-periods. p<0.001 
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fig. S2. Correlation plot between %Delta lineage (X-axis) and epidemiological variables for the 

April surge (Cases, Hospitalizations, ICU, Deaths). Spearman coefficients were calculated for all 

epidemiological variables with % Delta.  
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fig. S3. Molecular signature of super-spreader event in Punjab. Time-resolved phylogenetic 

tree for genome sequences from Punjab using samples collected during February-March 2021. 

Strong identity can be seen between sequences from various districts, corresponding to known 

social events during this period 
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fig. S4. Displacement of Alpha by Delta strain all over North India. Normalized stacked bar 

graphs of main lineages for the states of Chandigarh, Himachal Pradesh, Madhya Pradesh, 

Uttarakhand, Jammu and Kashmir, and Ladakh. Outbreaks were seen in these states during April 

and May 2021, coincident with the rise of Delta (fig S5). 
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fig. S5. Outbreaks by Delta strain all over North India. Biweekly new cases and test positivity 

rates  are shown for states around Delhi from November 2020 to June 2021 , coincident with the 

rise of Delta. Tests are a mixture of RT-PCR and antigen tests and separate positivity rates are 

not available. Peaks are coincident with Delta dominance on genome sequencing (Fig 3D-F and 

fig S4)  
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fig S6. Mutant spike protein of B.1.617.2 lineage has critical mutations at furin cleavage and 

RBD sites that may enhance binding and cleavage. The structural model of spike protein with 

seven mutations was generated and side-chains are highlighted in blue and red color to illustrate 

amino-acid substitutions. On the right panel, we show a zoomed snapshot of three critical regions 

namely, NTD, RBD, and furin cleavage sites. The resulting structural map provides insights into the 

plausible mechanisms of regulation of virus entry and binding. It contains seven mutations in the 

spike protein, excluding the predominant D614G substitution. Three of these mutations, two 

substitutions (T19R and R158G) and one deletion (ΔE156-F157), were found in NTD region. The 

six nucleotides spanning the entire stretch of deletion (ΔE156-F157) was juxtaposed with R158G 

mutation, with one nucleotide of glycine contributed from E156 and the rest two nucleotides 

contributed by R158, resulting in GGA codon for glycine. The mutations within NTD occur on N1 

and N3 loops that composes the prominent mABs recognition sites (47,48). In our mutated model, 

R19 and G158 residues are surface accessible while in wild-type the T19, E156-F157 were relatively 

buried. We also found a unique RBD mutation T478K, in addition to previously reported L452R in 

B.1.617.2. Previous reports have associated L452R amino-acid change with antibody binding and 

has been classified as an escape variant (49,50). T478, on the other hand, is previously unidentified 

and is present directly on the receptor binding motif (RBM). The inherent long side-chain of mutated 

lysine reduces the gap with the ACE2 receptor as compared to the wild type. The distance between 

spike: K478 and ACE2:L85 is 8.3 Å, while the threonine maintains a distance of 10 Å. However, 

these distances may vary with other conformational states of spike RBD.  We also observed 

significant increase in number of ACE2 residues around these mutated sites (L452R, T478K) in 

B.1.617.2.  In contrast with 10 residues, 24 residues of ACE2 were in close proximity to the mutated 

side chains of B.1.617.2 RBD mutations.  In addition, we observed two mutations (P681R and 

D950N) in proximity to the S1/S2 cleavage site. Previous reports have also shown that the dominant 

D614G, although distal to the furin cleavage site has an allosteric effect on conformational changes 

leading to RBD opening (51). The location of mutated residues 

is marked in red and, and critical regions such as RBM and S1/S2 site are highlighted for clarity. 
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Table S1. Seropositivity in the Delhi CSIR cohort. Seropositivity is shown for Phase I to III, along 

with 95% CI. In the beginning of the pandemic, with strong lockdowns, higher infection rates were 

seen in outsourced staff providing frontline and essential services, while laboratory employees and 

students were relatively protected. By mid-pandemic, with lockdowns lifted by July 2020, use of 

private vs public transport also determined risk. By the end of the Delta wave in Delhi, all subgroups 

reached similar seropositivity, suggesting universally high exposures. For comparisons between 

serially obtained values, or between sub-groups, statistical significance of difference of proportions 

was calculated via the standard 2x2 Chi-statistic; p<0.01 was considered significant. 
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Table S2.  

Inferred changes in epidemiological characteristics of B.1.617.2, depending on the timing of 

introduction assumed in the model, and level of under-ascertainment present in Delhi mortality data. 

Results presented are the median, with the 50% Bayesian Credible Interval, bCI, in brackets. Note 

that “Immune escape” refers specifically to the escape of immunity conferred by prior infection with 

other variants, rather than escape from immunity acquired through vaccination. It is further important 

to note that immune escape and transmissibility increase inferred for B.1.617.2 are values given with 

reference to the composition of earlier and co-circulating variants in Delhi, from the start of the 

epidemic to 25 May 2021.  

 Inferred epidemiological characteristic 

Timing of B.1.617.2 

introduction 

Mortality under-

ascertainment 
Immune escape  

Transmissibility 

increase  

15 Jan 2021 10% 0.34 (0.16-0.60)  1.48 (1.35-1.57)  

31 Jan 2021 10% 0.39 (0.18-0.59)  1.45 (1.36-1.55)  

14 Feb 2021 10% 0.42 (0.21-0.64)  1.47 (1.37-1.58)  

28 Feb 2021 10% 0.45 (0.23-0.65)  1.55 (1.45-1.65)  

15 Jan 2021 33% 0.29 (0.11-0.55)  1.48 (1.35-1.60)  

31 Jan 2021 33% 0.29 (0.10-0.55)  1.49 (1.35-1.59)  

14 Feb 2021 33% 0.38 (0.16-0.64)  1.47 (1.34-1.59)  

28 Feb 2021 33% 0.43 (0.20-0.67)  1.54 (1.42-1.67)  

15 Jan 2021 50% 0.15 (0.07-0.35)  1.54 (1.40-1.62)  

31 Jan 2021 50% 0.15 (0.07-0.33)  1.54 (1.40-1.61)  

14 Feb 2021 50% 0.22 (0.08-0.48)  1.53 (1.35-1.50)  

28 Feb 2021 50% 0.31 (0.12-0.59)  1.56 (1.40-1.70)  

15 Jan 2021 66% 0.43 (0.35-0.60)  1.22 (1.11-1.30)  

31 Jan 2021 66% 0.42 (0.35-0.55)  1.23 (1.13-1.31)  

14 Feb 2021 66% 0.49 (0.37-0.67)  1.23 (1.11-1.32)  

28 Feb 2021 66% 0.59 (0.42-0.76)  1.28 (1.17-1.40)  
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Table S3 

Inferred changes in epidemiological characteristics of B.1.617.2, depending on prior assumptions in 

the model. Results presented are the median, with the 50% Bayesian Credible Interval, bCI, in 

brackets. Prior sensitivity analyses assume 50% underreporting in deaths. 

 Inferred epidemiological characteristic 

Sensitivity  
Prior Immune escape  

Transmissibility 

increase  

Cross-immunity 

Beta(1,1) 0.43 (0.14-0.79)  1.38 (1.21-1.58)  

Beta(2,1) 0.22 (0.08-0.48)  1.53 (1.35-1.50)  

Beta(3,1) 0.12 (0.06-0.26)  1.60 (1.49-1.67)  

Beta(4,1) 0.10 (0.04-0.18)  1.62 (1.55-1.68)  

Complete escape 1  1.11 (1.08-1.15)  

Complete cross-

protection 
0  1.71 (1.67-1.75)  

Timing to 50% waning 

½ year 0.57 (0.35-0.76)  1.51 (1.45-1.58)  

1 year 0.22 (0.08-0.48)  1.53 (1.35-1.5)  

2 years 0.14 (0.08-0.24)  1.55 (1.45-1.63)  

Transmissibility 

increase 

Gamma(2,2) 0.13 (0.06-0.29)  1.60 (1.47-1.67)  

Gamma(5,5) 0.22 (0.08-0.48)  1.53 (1.35-1.65)  

Gamma(10,10) 0.28 (0.13-0.58)  1.48 (1.30-1.60)  

IFR 

N(0.125,0.02) 0.73 (0.65-0.81)  1.11 (1.04-1.17)  

N(0.25,0.02) 0.22 (0.08-0.48)  1.53 (1.35-1.5)  

N(0.5,0.02) 0.41 (0.20-0.64)  1.48 (1.39-1.58)  
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Data S1 (separate file) 

GISAID accession IDs, date of collection and lineages of the samples used to calculate lineage 

proportions in different states from Datasets A and B. 

Data S2 (separate file) 

Cases, Tests, Hospitalizations, ICU Admissions, Deaths data for Delhi from the state level database 

maintained by NCDC. 

Data S3 (separate file) 

Acknowledgement table for the genomes accessed from GISAID. 

Data S4 (separate file) 

Details of 24 post-vaccination samples 

Data S5 (separate file) 

Raw Ct Values for July 2020-June 2021 for Delhi 

Data S6 (separate file) 

Serosurvey data for the three phases conducted in Delhi (Fig.  2A) 

Data S7  (separate file) 

sVNT assay data Phase I vs Phase II serosuvey (Fig. 2D) 

Data S8 (separate file) 

Data for Subjects with Reinfection (Fig. 2C) 

Data S9 (separate file) 

Data for Subjects without Reinfection (Fig. 2D) 
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