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Abstract 
Polygenic risk scores (PRS) based on European training data suffer reduced accuracy in non-European 

target populations, exacerbating health disparities. This loss of accuracy predominantly stems from LD 

differences, MAF differences (including population-specific SNPs), and/or causal effect size differences. 

PRS based on training data from the non-European target population do not suffer from these limitations, 

but are currently limited by much smaller training sample sizes. Here, we propose PolyPred, a method 

that improves cross-population polygenic prediction by combining two complementary predictors: a new 

predictor that leverages functionally informed fine-mapping to estimate causal effects (instead of tagging 

effects), addressing LD differences; and BOLT-LMM, a published predictor. In the special case where a 

large training sample is available in the non-European target population (or a closely related population), 

we propose PolyPred+, which further incorporates the non-European training data, addressing MAF 

differences and causal effect size differences. PolyPred and PolyPred+ require individual-level training 

data (for their BOLT-LMM component), but we also propose analogous methods that replace the BOLT-

LMM component with summary statistic-based components if only summary statistics are available. We 

applied PolyPred to 49 diseases and complex traits in 4 UK Biobank populations using UK Biobank British 

training data (average N=325K), and observed statistically significant average relative improvements in 

prediction accuracy vs. BOLT-LMM ranging from +7% in South Asians to +32% in Africans (and vs. LD-

pruning + P-value thresholding (P+T) ranging from +77% to +164%), consistent with simulations. We 

applied PolyPred+ to 23 diseases and complex traits in UK Biobank East Asians using both UK Biobank 

British (average N=325K) and Biobank Japan (average N=124K) training data, and observed statistically 

significant average relative improvements in prediction accuracy of +24% vs. BOLT-LMM and +12% vs. 

PolyPred. The summary statistic-based analogues of PolyPred and PolyPred+ attained similar 

improvements. In conclusion, PolyPred and PolyPred+ improve cross-population polygenic prediction 

accuracy, ameliorating health disparities. 
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Introduction 
Polygenic risk scores (PRS) can identify individuals at elevated risk of complex diseases, providing 

opportunities for preventative action1–6. However, many studies have shown that PRS based on European 

training data attain lower accuracy when applied to populations of non-European ancestry7–26. This loss 

of accuracy is primarily driven by LD differences12–15, allele frequency differences (including population-

specific SNPs)13,14,27, and causal effect size differences12–14,28–31, though differences in heritability also play 

a minor role13,14,32. PRS based on non-European training data do not suffer from these limitations, but are 

currently limited by much smaller training sample sizes1,12–15,21,33 (however, lower non-European target 

sample sizes do not impact prediction accuracy). The development of new methods to reduce this gap in 

cross-population PRS accuracy has the potential to ameliorate health disparities13. 

Here, we propose PolyPred, which linearly combines two complementary predictors derived from 

European training data: (1) PolyFun-pred, a new predictor that circumvents LD differences by applying 

genome-wide functionally informed fine-mapping34,35 to precisely estimate causal effects (instead of 

tagging effects); and (2) BOLT-LMM36,37, a published predictors that analyzes all loci jointly and can capture 

all signals in extremely polygenic loci. BOLT-LMM requires individual-level training data. If individual-level 

training data is not available, we propose two analogous methods: (i) PolyPred-S, which linearly combines 

PolyFun-pred with SBayesR38, and (ii) PolyPred-P, which linearly combines PolyFun-pred with PRS-CS39.  

Recommendations for when to use PolyPred, PolyPred-S, or PolyPred-P are provided below. 

In the special case where there exists a large (e.g. N≥50K) non-European training sample from the target 

population (or a closely related population), we propose PolyPred+, a polygenic prediction method that 

leverages both European and non-European training data. PolyPred+ linearly combines (1) PolyFun-pred; 

(2) BOLT-LMM; and (3) BOLT-LMM-pop, which is obtained by applying BOLT-LMM to the non-European 

training data, addressing MAF differences and causal effect size differences. If individual-level training 

data is not available, we propose the alternative methods PolyPred-S+ and PolyPred-P+, which replace 

BOLT-LMM with either SBayesR or PRS-CS, respectively.  Recommendations for when to use PolyPred+, 

PolyPred-S+, or PolyPred-P+ are provided below. 

We compared PolyPred and PolyPred+ (and their summary statistic-based analogues) to state-of-the-art 

polygenic prediction methods via simulations and analyses of 49 diseases and complex traits in 4 

populations from the UK Biobank40, additionally incorporating Biobank Japan41 and Uganda-APCDR42,43 to 

increase non-European training sample size and avoid cohort effects. We conclude that PolyPred and its 

summary statistic-based analogues substantially increase cross-population polygenic prediction accuracy, 

and that PolyPred+ and its summary statistic-based analogues further increases cross-population 

prediction accuracy in the special case where non-European training data is available in large sample size. 

Results 

Overview of Methods 
PolyPred combines two complementary predictors: PolyFun-pred and BOLT-LMM (Table 1 and Figure 1a).  

PolyFun-pred is a new predictor that leverages genome-wide functionally informed fine-mapping34,35 to 

estimate posterior mean causal effects  (instead of tagging effects; see Supplementary Note) for all SNPs 

with European MAF≥0.1%  (accounting for MAF-dependent architectures44–46; 18 million SNPs in this 

study) by applying PolyFun + SuSiE35 to European training data across 2,763 overlapping 3Mb loci.  

Leveraging fine-mapped posterior mean causal effects for cross-population polygenic prediction aims to 
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address LD differences between populations; to our knowledge, the application of PolyFun + SuSiE (or any 

other fine-mapping method) to polygenic prediction has not previously been explored. BOLT-LMM36,37 is 

a published predictor that estimates posterior mean tagging effects of common SNPs (1.2 million HapMap 

3 SNPs47 in this study) using European individual-level training data. Combining PolyFun-pred with BOLT-

LMM is advantageous because they have complementary advantages: PolyFun-pred estimates causal 

effects rather than tagging effects. BOLT-LMM estimates tagging effects, but it analyze all loci jointly, and 

it can potentially capture all signals in extremely polygenic loci (i.e., loci harboring >10 causal variants 

within 1.5Mb from the locus center; see Methods). 

In the special case where a large training sample is available in the target population (or a closely related 

population), we propose PolyPred+, which combines three complementary predictors: PolyFun-pred, 

BOLT-LMM, and BOLT-LMM-pop (Table 1 and Figure 1b); BOLT-LMM-pop refers to application of BOLT-

LMM to common SNPs (1.2 million HapMap 3 SNPs in this study) using training data from the non-

European target population, addressing MAF differences and causal effect size differences. 

PolyPred computes linear combinations of the estimated effect sizes of their constituent predictors: 

𝛽�̂�
PolyPred(+)

 =  ∑ 𝑤𝑗𝛽𝑖
�̂�

𝑗
,       (1) 

where 𝑖 indexes SNPs, 𝑗 indexes the constituent predictors (PolyFun-pred and BOLT-LMM for PolyPred; 

PolyFun-pred, BOLT-LMM and BOLT-LMM-pop for PolyPred+), 𝛽�̂�
PolyPred(+)

 is the PolyPred (+) per-allele 

effect size of SNP 𝑖, 𝑤𝑗 are method-specific weights, and 𝛽𝑖
�̂�
 is the per-allele effect size of SNP 𝑖 for method 

𝑗 (or 0 if SNP 𝑖 was not considered by method 𝑗). Predicted phenotypes are computed by applying effect 

sizes to target genotypes: 

�̂� = ∑ 𝑥𝑖𝛽�̂�
PolyPred(+)

 ,           (2)

𝑖

 

where �̂� is the predicted phenotype of an individual from the target population and  𝑥𝑖 is the number of 

minor alleles of SNP 𝑖 carried by the individual. The mixing weights 𝑤𝑗 in Equation 1 are estimated via 

non-negative least squares regression using a small number of training individuals from the target 

population (500 in this study), regressing true phenotypes on a linear combination of the constituent 

predictors (which are computed as in Equation 2).  

PolyPred requires individual-level training data for its BOLT-LMM component. If only summary statistics 

(and summary LD information) are available, we propose two analogous methods (Table 1): (i) PolyPred-

S, which linearly combines PolyFun-pred and SBayesR38; and (ii) PolyPred-P, which linearly combines 

PolyFun-pred and PRS-CS39. We also propose the analogous methods PolyPred-P+ and PolyPred-S+ (Table 

1). Further details of PolyPred and PolyPred+ (and their summary statistic-based analogues) are provided 

in the Methods section; we have publicly released open-source software implementing these methods 

(see URLs). 

We evaluate prediction accuracy for each method and target population using relative-R2, defined as the 

R2 obtained in the target non-European population (after correcting for covariates and potential 

confounders; see Methods) divided by the R2 obtained by BOLT-LMM in UK Biobank non-British Europeans 

(employing the same correction), using the same training data for the numerator and the denominator. 
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This quotient transforms the prediction accuracies from an absolute scale to a scale of relative 

improvement (vs. the BOLT-LMM predictor in the UK Biobank non-British European target population), 

which is invariant to factors such as training sample size and trait heritability. We compute standard errors 

via a genomic block-jackknife, which is conservative compared to a jackknife over individuals (see 

Methods). We meta-analyze relative-R2 across traits in each target population via an inverse variance-

weighted average, weighting traits according to the sampling variance of the BOLT-LMM predictor in the 

target population (estimated via genomic block-jackknife; see Methods). We compare PolyPred and 

PolyPred+ (and their summary statistic-based analogues) to 4 published methods: LD-pruning + P-value 

thresholding (P+T)48,49, BOLT-LMM36,37, SBayesR38, and PRS-CS39 (Table 1). 

Our recommendation for which version of PolyPred to use (see Table 1) depends on three main factors: 
(i) whether individual-level training data is available; (ii) the size and consistency of matched ancestry of 
the LD reference panel (if individual-level training data is not available); and (iii) whether non-European 
training data is available.  Our results for the underlying constituent methods are summarized in Table 2 
(detailed below), and our recommendations are summarized in Figure 2.  
 

Simulations with in-sample LD 
We compared PolyPred, PolyPred-S and PolyPred-P to P+T, BOLT-LMM, SBayesR, and PRS-CS via 

simulations, using real genotypes or in-sample LD (i.e. LD data based on the GWAS sample) from the UK 

Biobank40. We trained each method using 337,491 unrelated British-ancestry individuals40, and computed 

predictions in four target populations: non-British Europeans, South Asians, East Asians, and Africans.  We 

estimated mixing weights for PolyPred, PolyPred-S and PolyPred-P using 500 individuals from the target 

population. We evaluated prediction accuracy using held-out individuals from each target population that 

were not included in the training sets: 42K non-British Europeans, 7.7K South Asians, 0.9K East Asians, and 

6.2K Africans. We computed PRS using 250,963 MAF≥0.1% SNPs with INFO score≥0.6 on chromosome 22 

(including short indels) (we restricted the analysis to chromosome 22 due to alleviate the computational 

burden of running hundreds of simulations). Generative trait architectures were specified as follows. We 

simulated traits with polygenicity (genome-wide proportion of causal SNPs) equal to either 0.1% (less 

polygenic) or 0.3% (more polygenic) and heritability equal to 5% (we specified a heritability that is larger 

than typical chromosome 22 heritability to increase our power to detect differences between methods 

using a limited number of simulations; see below). We specified prior causal probabilities for each SNP in 

proportion to per-SNP heritabilities, which we generated for each SNP based on its British LD, MAF, and 

functional annotations, using the baseline-LF model45 with meta-analyzed functional enrichments from 

real traits as described in our previous work35, and sampled causal SNPs. For each causal SNP, we sampled 

ancestry-specific causal effect sizes (for European, South Asian, East Asian, and African ancestries) from a 

multivariate normal distribution assuming cross-population genetic correlations of 0.8, consistent with 

recent findings13,30; functional annotations impacted prior causal probabilities but not causal effect sizes 

for causal SNPs, consistent with our recent work50. Other parameter settings were explored in secondary 

analyses (see below).  Further details of the simulation framework are provided in the Methods section. 

We computed summary association statistics (used by every method except BOLT-LMM) via linear 

regression. For SBayesR, PRS-CS, and PolyFun-pred, we computed summary LD from a very large (N≥50K) 

subset of the UK Biobank British population, effectively using in-sample LD: For SBayesR we used summary 

LD for 18,040 HapMap 3 SNPs on chromosome 22 estimated from 50K British-ancestry UK Biobank 

individuals, that was made publicly available by the authors of SBayesR51; for PRS-CS we used summary 
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LD for 16,214 HapMap 3 SNPs on chromosome 22 estimated from 375,120 British-ancestry UK Biobank 

individuals, which was made publicly available (in the form required by PRS-CS) by the authors of PRS-

CS39; and for PolyFun-pred we used summary LD estimated from 337,548 British-ancestry UK Biobank 

individuals that we previously made publicly available35. For P+T, we used summary LD estimated from a 

random subset of 10,000 British-ancestry UK Biobank individuals to alleviate computational costs. For 

BOLT-LMM, we used individual-level genotypes at 18,040 HapMap 3 SNPs on chromosome 22, using hard-

called values for imputed alleles. We applied all methods using default or recommended parameter 

settings (Methods). We computed relative-R2 for each method, target population, and trait architecture 

(less polygenic, more polygenic), averaged across 100 simulations. We did not evaluate PolyPred+, 

PolyPred-S+ and PolyPred-P+ in these experiments because of the small size of the UK Biobank non-

European populations. In addition to the simulations with in-sample LD described below, we also 

performed simulations with reference panel LD (Supplementary Note; also see Table 2). 

The simulation results are reported in Figure 3 and Supplementary Table 1 (also see Table 2). PolyPred 

was the most accurate method in each target population for both trait architectures, with relative 

improvements vs. BOLT-LMM (resp. P-values for improvement) ranging from +13% in non-British 

Europeans (P<10-16) to +65% in Africans (P<10-16) for the less polygenic architecture, and from +2% in non-

British Europeans (P=0.0001) to +17% in Africans (P=10-8) for the more polygenic architecture. PolyPred-

S and PolyPred-P performed slightly worse than PolyPred for both trait architectures, but were 

substantially and significantly more accurate than the corresponding constituent methods (SBayesR for 

PolyPred-S, PRS-CS for PolyPred-P). Among the remaining methods, BOLT-LMM was consistently the most 

accurate and P+T was consistently the least accurate method, far underperforming the other methods 

(despite its widespread recent use11,13–18,23,31,52–56). We note that the higher accuracy of BOLT-LMM vs. 

SBayesR and PRS-CS does not imply that BOLT-LMM is a superior method, as BOLT-LMM analyzes 

individual-level training data whereas SBayesR and PRS-CS analyze summary statistics (there also exist 

other methods that analyze individual-level training data, e.g. BayesR57). We emphasize that although 

concentrating 5% heritability into chromosome 22 increases absolute R2, this is not expected to impact 

relative-R2 (or relative improvements vs. BOLT-LMM). 

We performed 5 secondary analyses to investigate the sensitivity of the results to the simulation 

parameters. First, we performed simulations for much less polygenic (0.05%) and much more polygenic 

(0.5%) architectures.  PolyPred remained the most accurate method, attaining the largest relative 

improvements vs. BOLT-LMM for the much less polygenic architecture, with slightly worse results for 

PolyPred-S and PolyPred-P (Supplementary Table 1); we conservatively restricted the remaining 

secondary analyses to the more polygenic (0.3%) architecture (for which PolyPred attains smaller relative 

improvements among the two main architectures simulated) and omitted PolyPred-S and PolyPred-P (due 

to their close similarity to PolyPred), unless otherwise indicated. Second, we performed simulations with 

lower (3%) or higher (7%) chromosome 22 heritability. PolyPred remained the most accurate method, 

with relative improvements vs. BOLT-LMM increasing with heritability (Supplementary Table 1). Third, we 

performed simulations with cross-population genetic correlations increased from 0.8 to 1.0. PolyPred 

remained the most accurate method, with relative improvements vs. BOLT-LMM remaining broadly 

similar (Supplementary Table 1). Fourth, we modified the number of training samples from the target 

population used to estimate mixing weights (Nmix) from 500 to various values from 100-1000.  PolyPred 

remained the most accurate method in all these experiments, with relative improvements vs. BOLT-LMM 

increasing with Nmix but limited improvement above Nmix=500 (Supplementary Table 1). Fifth, we 
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decreased the number of British-ancestry training samples (N) from N=337K to N=100K or N=10K. 

Prediction accuracies decreased with decreasing training sample size for all methods, and the relative 

improvements of PolyPred vs. BOLT-LMM (and other methods) were substantially decreased for N=10K, 

though they remained statistically significant in Africans under 0.1% polygenicity (Supplementary Table 

1).  

We performed two secondary analyses to investigate the sensitivity of the results to the SNP set and 

functional annotations.  First, we evaluated a modified version of PolyPred that uses only 1.2 million 

HapMap 3 SNPs (matching the SNP sets of BOLT-LMM, SBayesR, and PRS-CS) instead of 18 million SNPs. 

PolyPred suffered a substantial loss of accuracy in this setting, demonstrating the importance of using a 

dense SNP set for fine-mapping based PRS (Supplementary Table 1). Second, we evaluated a non-

functionally informed method (PolyPred-NoFun) that linearly combines PolyNoFun-pred (a modification 

of PolyFun-pred that is not functionally-informed; see Methods) and BOLT-LMM, precluding the need for 

functional annotations. PolyPred-NoFun was slightly less accurate than PolyPred, but still more accurate 

than BOLT-LMM (Supplementary Table 1). 

We performed two secondary analyses to evaluate the computational cost and memory cost of each 

method. First, we evaluated the computational cost of each method (for PolyPred, PolyPred-S, and 

PolyPred-P, we included the time cost of each constituent method); we focused on the time cost to 

compute SNP effect sizes used for prediction, as the time cost to compute predictions in target samples 

using these SNP effect sizes is approximately the same for each method. SBayesR was the fastest method 

(2.8 minutes), P+T was the second fastest method (7.4 minutes), PRS-CS was the third fastest method (113 

minutes), BOLT-LMM was the fourth fastest method (224 minutes), PolyPred-S was the fifth fastest 

method (447 minutes), PolyPred-P was sixth fastest method (557 minutes), and PolyPred was the slowest 

method (668 minutes) (Supplementary Table 2). Second, we evaluated the memory cost of each method 

(for PolyPred, we computed the maximum memory cost of each constituent method). We performed this 

analysis using chromosome 1 instead of chromosome 22 because memory cost can increase with the 

number of SNPs in the analysis (but the memory cost of PolyFun-pred is fixed because it analyzes each 

3Mb-locus separately). P+T used the least memory (1.5GB), PRS-CS used the second smallest amount of 

memory (1.8GB), SBayesR used the third smallest amount of memory (2.6GB), BOLT-LMM used the fourth 

smallest amount of memory (11GB), and PolyPred, PolyPred-S, and PolyPred-P all used the most memory 

(57GB) (Supplementary Table 2). The larger computational cost of PolyPred and its summary statistic-

based analogues is dominated by the PolyFun-pred component, which is computationally intensive 

because (i) it performs fine-mapping and (ii) it analyses a large number of SNPs (see Discussion). 

We conclude that PolyPred and its summary statistic-based analogues are more accurate than BOLT-LMM, 

SBayesR, PRS-CS, and P+T, with small but significant improvements vs. BOLT-LMM in Europeans and 

substantial improvements in Africans. 

 

Analysis of 4 UK Biobank populations using UK Biobank British training data 
We applied PolyPred and its summary statistic-based analogues to 49 diseases and complex traits from 

the UK Biobank, analyzing 4 target populations (Methods, Supplementary Table 3). As in our simulations, 

we used UK Biobank British training data (average N=325K) to estimate SNP effect sizes; used 500 

additional individuals from the target population to estimate mixing weights (we note that PolyPred and 

its summary statistic-based analogues are relatively insensitive to the choice of mixing weights; see 
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below); evaluated prediction accuracy using individuals from each of the 4 target populations that were 

not included in the training data, and were unrelated to the training individuals and to each other: 42K 

non-British Europeans, 7.7K South Asians, 0.9K East Asians, and 6.2K Africans; and compared PolyPred 

and its summary statistic-based analogues to P+T, BOLT-LMM, SBayesR, and PRS-CS. We meta-analyzed 

relative-R2 across traits by restricting to 7 well-powered, independent complex traits from the UK 

Biobank40 (|rg|<0.3; see Methods and Supplementary Table 3) that were also available in Biobank Japan 

and in Uganda-APCDR (see below). We excluded the HLA region and two other long-range LD regions from 

the analysis (Methods). We have publicly released SNP effect sizes used for prediction for each of the 4 

methods (see URLs). 

We computed relative-R2 for each method and target population. Results meta-analyzed across traits are 

reported in Figure 4 and Supplementary Tables 4-6 (also see Table 2), and results for each trait are 

reported in Supplementary Tables 4-6. Among the published methods, BOLT-LMM attained the highest 

prediction accuracy in all target populations (differences between BOLT-LMM and SBayesR were small 

and not statistically significant, but the difference between BOLT-LMM and PRS-CS was statistically 

significant in non-British Europeans); as noted above, the higher accuracy of BOLT-LMM vs. SBayesR and 

PRS-CS does not imply that BOLT-LMM is a superior method, as BOLT-LMM analyzes individual-level 

training data whereas SBayesR and PRS-CS analyze summary statistics. P+T was much less accurate than 

the other methods (despite its widespread recent use11,13–18,23,31,52–56), suffering relative losses of 37-50% 

vs. BOLT-LMM. We thus used BOLT-LMM as a benchmark, conservatively assessing the statistical 

significance of improvements vs. BOLT-LMM via genomic block-jackknife across 200 genomic regions 

(Methods). 

Among all 7 methods, PolyPred attained the highest prediction accuracy in each target population. 

Improvements in average relative-R2 of PolyPred vs. BOLT-LMM were equal to +7.5% in non-British 

Europeans (P=0.05), +6.8% in South Asians (P=0.02), +11% in East Asians (P=0.12) and +32% in Africans 

(P=0.02). The larger improvement in Africans reflects the larger LD differences vs. British training data, 

due to earlier divergence times13,14,58. The lack of statistical significance in East Asians reflects the low 

power to detect significant differences in very small target samples (though statistical power is primarily 

limited by genome size due to our conservative use of genomic block-jackknife).  PolyPred-S was 

consistently the second most accurate method, with statistically significant improvements vs. SBayesR 

(and no statistically significant differences vs. PolyPred; up to 3% reduction in average relative- R2). 

PolyPred-P was consistently the third most accurate method, with a statistically significant improvement 

vs. PRS-CS (and a statistically significant differences vs. PolyPred in Non-British Europeans; up to 5% 

reduction in average relative-R2). The relative mixing weight contributions of PolyFun-pred/BOLT-LMM to 

PolyPred were equal to 38%/72% in non-British Europeans, 40%/60% in South Asians, 63%/37% in East 

Asians, and 48%/52% in Africans (Methods, Supplementary Table 4).  Despite the improvements attained 

by PolyPred, the reductions in prediction accuracy in non-European populations remained substantial, 

with meta-analyzed absolute R2 equal to 0.17 in non-British Europeans, 0.11 in South Asians, 0.093 in East 

Asians, and 0.053 in Africans. These reductions were highly statistically significant (P<0.002 for all analyses 

involving European-ancestry training data) (Methods, Supplementary Tables 4-5). 

We assessed the calibration of each prediction method. A predictor is correctly calibrated if a regression 

of the true phenotype vs. the predictor yields a slope of 1, and is miscalibrated otherwise33. Regression 

slopes are reported in Supplementary Table 4. In non-British Europeans, PolyPred was well-calibrated 

(regression slope = 1.01), BOLT-LMM and SBayesR were approximately well-calibrated (0.96-1.08), PRS-
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CS was slightly miscalibrated (1.26), and P+T was poorly calibrated (0.08). In non-European populations, 

PRS-CS was approximately well-calibrated (0.85-1.11), but BOLT-LMM and SBayesR suffered reduced 

regression slopes (0.57-0.90), consistent with reduced prediction accuracy. In contrast, PolyPred and its 

summary statistic-based analogues remained well-calibrated (0.95-1.17), as expected due to their extra 

training step to estimate mixing weights in the target population. For brevity, we focus on PolyPred 

(instead of its summary statistic-based analogues) in the remainder of this subsection (results for all 

methods are reported in Supplementary Tables 4-6). 

We performed 5 secondary analyses to evaluate the impact of the LD reference panel and the SNP set on 

prediction accuracy (we note that analyses of summary statistics from a meta-analysis of many cohorts 

generally require using an LD reference panel instead of in-sample LD). First, we evaluated a modified 

version of PolyFun-pred using a reference panel based on UK10K (N=3,567), and observed a substantial 

and statistically significant reduction in accuracy, to a far greater degree that observed in simulations 

(Supplementary Tables 4-6). Second, we evaluated a modified version of PRS-CS that uses an LD reference 

panel from 1000 Genomes project Europeans (N=489) and observed statistically indistinguishable results 

from those obtained using in-sample LD (unlike in simulations, where we observed significantly reduced 

accuracy when using an LD reference panel from 1000 Genomes project Europeans) (Supplementary 

Tables 4-6). Third, we evaluated modified versions of SBayesR that use (i) an LD reference panel using 

UK10K (N=3,567); (ii) an LD reference panel using 1000 Genomes project Europeans (N=489); or (iii) an LD 

reference panel using a subset of UK10K (N=489). We observed (i) very similar and statistically 

indistinguishable accuracy when using UK10K, (ii) severely reduced accuracy (P<4×10-6) when using 1000 

Genomes project Europeans, and (iii) moderately reduced accuracy (P=0.07 in East-Asians, P<7×10-6 in 

other target populations) when using a subset of UK10K, suggesting that the loss of accuracy primarily 

stems from LD mismatch rather than reduced sample size (Supplementary Tables 4-6). Fourth, we 

evaluated a modified version of SBayesR (SBayesR-2.8M) that uses 2.8M common SNPs specified by the 

authors of SBayesR38 instead of 1.2 million HapMap 3 SNPs. SBayesR-2.8M was less accurate than SBayesR 

(significantly so for Africans) (Supplementary Tables 4-6).  Thus, our use of SBayesR (using 1.2 million 

HapMap 3 SNPs) instead of SBayesR-2.8M in all primary comparisons is a conservative choice, since 

SBayesR outperforms SBayesR-2.8M (we note that naively scaling SBayesR and PRS-CS to use 18 million 

SNPs as in PolyFun-pred would be computationally infeasible38,39). Fifth, we evaluated a modified version 

of BOLT-LMM (BOLT-LMM-727K) that estimates effect sizes using only 727K genotyped SNPs (instead of 

1.2 million imputed HapMap 3 SNPs). BOLT-LMM-727K was substantially and significantly less accurate 

than BOLT-LMM (Supplementary Table 4). 

We performed 10 additional secondary analyses. First, we evaluated LDpred33 using 1000 Genomes 

project Europeans59 or UK10K60 as the LD reference panel (Methods). Both versions of LDpred were 

consistently less accurate than BOLT-LMM (Supplementary Table 4). Second, we evaluated modified 

versions of PolyPred that specify fixed mixing weights instead of estimating mixing weights in the target 

populations. We considered mixing weights for PolyFun-pred/BOLT-LMM equal to 0%/100%, 25%/75%, 

50%/50%, 75%/25%, and 100%/0%. The 25%/75% and 50%/50% methods performed very similarly to 

PolyPred, with no statistically significant differences (Supplementary Table 6). Third, we restricted the 

PolyFun-pred component of PolyPred to only include SNPs with posterior causal probability greater than 

a fixed threshold (0.05, 0.50 or 0.95). This restriction decreased prediction accuracy (Supplementary Table 

4,6), implying that estimating causal effect sizes is beneficial for prediction even at loci that cannot be 

confidently fine-mapped. Fourth, we evaluated a non-functionally informed method (PolyPred-NoFun) 
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that linearly combines PolyNoFun-pred (a modification of PolyFun-pred that is not functionally-informed; 

see Methods) and BOLT-LMM. PolyPred-NoFun was slightly less accurate than PolyPred, but still more 

accurate than BOLT-LMM (Supplementary Tables 4,6). The difference between PolyPred-NoFun vs. 

PolyPred was not statistically significant, in contrast to previous studies reporting a large and statistically 

significant increase in prediction accuracy from incorporating functional annotations61–63. Fifth, we 

reduced the number of training samples from the target population used to estimate mixing weights (Nmix) 

from 500 to 100.  PolyPred suffered slightly reduced accuracy but remained the most accurate method, 

although relative improvements vs. BOLT-LMM were no longer statistically significant due to larger 

standard errors (Supplementary Table 4). Sixth, we computed standard errors of relative-R2 using a 

jackknife over individuals61 (instead of a genomic block-jackknife over SNPs; see Methods). Standard 

errors computed using a jackknife over individuals were generally smaller, increasing the statistical 

significance of relative improvements of PolyPred vs. BOLT-LMM (Supplementary Table 4). Seventh, we 

meta-analyzed the results of each method across three independent diseases: type 2 diabetes, asthma, 

and all autoimmune disease (Methods); these diseases were not included in our primary meta-analyses 

due to low (observed-scale) heritabilities. PolyPred attained the highest prediction accuracy for each 

target population and each disease, except for East Asians (where standard errors were very large in 

relative terms due to the small sample size) and for type 2 diabetes in non-British Europeans (where BOLT-

LMM performed slightly but non-significantly better) (Supplementary Table 4). However, relative 

improvements were not statistically significant due to lower power (Supplementary Table 4). Eighth, we 

observed very similar results when down-sampling the non-British European target sample size to match 

the African target sample size, demonstrating that the reduced accuracy in Africans vs. Europeans is not 

due to the lower target sample size (Supplementary Table 4). Ninth, we evaluated two versions of PRS-CS 

that use pre-specified values of its global shrinkage parameter (0.01 and 0.001, following the 

recommendations of the authors of PRS-CS39). Both versions were less accurate than the default version 

of PRS-CS (which automatically adjusts the value of this parameter), justifying the use of the default 

version of PRS-CS in this work (Supplementary Tables 4-5). Finally, we assessed the potential contribution 

of ancestry-specific heritability to reductions in cross-population prediction accuracy14, by applying 

GCTA64 to estimate the SNP-heritability explained by HapMap 3 SNPs65,66 in each target population. SNP-

heritabilities were largest in non-British Europeans and smallest in Africans (Supplementary Table 7) 

(these differences could be due to SNP ascertainment67, sample ascertainment, and/or ancestry-specific 

architectures30), likely contributing to reductions in cross-population prediction accuracy. 

We conclude that PolyPred and its summary statistic-based analogues substantially increase cross-

population polygenic prediction accuracy vs. published methods (with a particularly large improvement 

in Africans), consistent with simulations. However, there remains a large gap in cross-population polygenic 

prediction accuracy as compared to Europeans. 

 

Analysis of 4 UK Biobank populations using ENGAGE meta-analysis training data 
We sought to analyze training data consisting of summary statistics for real traits from a meta-analysis of 

many European cohorts, for which in-sample LD is generally not available. We analyzed 8.1 million meta-

analyzed summary statistics from the European Network for Genetic and Genomic Epidemiology 

(ENGAGE) consortium68–70  for four traits (BMI, waist-hip-ratio (adjusted for BMI), total cholesterol, and 

triglycerides; average N=61,365), and evaluated the prediction accuracy using the same four UK Biobank 
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populations analyzed previously (Non-British Europeans, South-Asians, East-Asians, and Africans). We 

selected this particular meta-analysis because it includes a dense set of 8.1 million imputed SNPs, which 

enables fine-mapping. For each method, we used an LD reference panel based on UK Biobank British 

individuals (N=337K for PolyFun-pred and PRS-CS, N=50K for SBayesR), as previously described; we 

emphasize that unlike the other primary analyses in this manuscript, the LD reference panel was mis-

specified, because it was not based on in-sample LD. We excluded methods that require individual-level 

training data (BOLT-LMM and PolyPred) from this analysis. 

Results meta-analyzed across traits are reported in Figure 5, Supplementary Table 5, and Supplementary 

Table 8 (also see Table 2), and results for individual traits are reported in Supplementary Table 5 and 

Supplementary Table 8. Briefly, PolyPred-P was generally the most accurate method, and PRS-CS 

outperformed SBayesR (with a significant improvement for non-British Europeans and Africans), 

consistent with a previous study71 (unlike our analysis of UK Biobank training data, where SBayesR 

outperformed PRS-CS; Figure 4). In detail, the average relative-R2 in Non-British Europeans was 0.045 for 

PolyPred-P, 0.044 for PolyPred-S, 0.039 for PRS-CS, 0.033 for SBayesR, and 0.022 for P+T. In Africans, the 

average relative-R2 was 0.015 for PolyPred-P, 0.008 for PolyPred-S, 0.013 for PRS-CS, 0.010 for P+T, and 

0.004 for SBayesR. However, differences between similarly performing methods were generally not 

statistically significant (due to moderately large standard errors), and thus caution should be exercised in 

their interpretation; for this reason, we did not perform secondary analyses to further assess differences 

between methods. 

We conclude that PolyPred-P can increase cross-population polygenic prediction accuracy vs. published 

methods when analyzing summary statistics from a meta-analysis of many cohorts. 

 

Analysis of Biobank Japan and Uganda-APCDR cohorts 
We applied PolyPred and its summary statistic-based analogues to predict 23 diseases and complex traits 

in Biobank Japan41 and 7 complex traits in Uganda-APCDR, an African-ancestry cohort42,43 (Methods, 

Supplementary Table 3). We performed these experiments to avoid training effect sizes and testing 

predictions in the same cohort, which  may produce inflated prediction accuracies33,72–74. We again used 

UK Biobank British training data (average N=325K) to estimate SNP effect sizes, and used 500 individuals 

from the target population to estimate mixing weights. We evaluated prediction accuracy using 

individuals from each of the 2 target cohorts that were not included in the training data, and were 

unrelated to the training individuals and to each other: 5K Biobank Japan individuals and 1.3K Uganda-

APCDR individuals. We again compared PolyPred and its summary statistic-based analogues to P+T, BOLT-

LMM, SBayesR, and PRS-CS. We meta-analyzed relative-R2 across the same 7 well-powered, independent 

complex traits used in the UK Biobank analyses (Supplementary Table 3). 

 

Results meta-analyzed across traits are reported in Figure 6, Supplementary Table 5, and Supplementary 

Table 9, and results for each trait are reported in Supplementary Table 5 and Supplementary Table 9. 

Among the published methods, we again observed that BOLT-LMM attained the highest prediction 

accuracy in each target population (although differences between BOLT-LMM, SBayesR, and PRS-CS were 

not statistically significant), and that P+T was substantially less accurate than the other methods, suffering 

relative losses of 42-61% vs. BOLT-LMM. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2021. ; https://doi.org/10.1101/2021.01.19.21249483doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.19.21249483
http://creativecommons.org/licenses/by/4.0/


11 
 

Among all 7 methods, PolyPred attained the highest prediction accuracy in Biobank Japan, and PolyPred-

P attained the highest prediction accuracy in Uganda-APCDR (although the difference between PolyPred 

and PolyPred-P in Uganda-APCDR was not statistically significant). Improvements of PolyPred vs. BOLT-

LMM in average relative-R2 were equal to +13% in Biobank Japan (P=2×10-6) and +22% in Uganda-APCDR 

(P=0.26), similar to our UK Biobank results above. We observed similar improvements for PolyPred-S vs. 

SBayesR and PolyPred-P vs. PRS-CS (both of which were statistically significant in Biobank Japan). 

Prediction accuracy (and hence relative-R2) for each method was much smaller in Biobank Japan and 

Uganda-APCDR (e.g. 0.32 and 0.11 for PolyPred; Figure 6) than in UK Biobank East Asians and UK Biobank 

Africans (0.62 and 0.34; Figure 4), likely due to higher SNP-heritabilities in the UK Biobank (see below).  

We also applied PolyPred+ and its summary statistic-based analogues to Biobank Japan, incorporating 

Biobank Japan training data (in addition to UK Biobank British training data) to estimate effect sizes 

(average N=124K, distinct from and unrelated to the 5K target individuals), with the caveat that this 

analysis involved training and testing in the same cohort (Methods). PolyPred+ attained increased 

prediction accuracy, with a further +23% improvement vs. PolyPred (P=0.0004), with similar results for 

PolyPred-S+ and PolyPred-P+ (although the improvement of PolyPred-P+ vs. PRS-CS was not statistically 

significant due to large standard errors) (Supplementary Tables 5,9). 

 

We performed additional experiments to investigate the above result of decreased prediction accuracy in 

Biobank Japan vs. UK Biobank East Asians (of predictors trained using UK Biobank British training data). 

We compared BOLT-LMM trained using a reduced set of N=124K UK Biobank British training samples and 

applied to UK Biobank non-British Europeans vs. BOLT-LMM trained using the N=124K Biobank Japan 

training samples and applied to the Biobank Japan target samples. The prediction R2 of BOLT-LMM in UK 

Biobank non-British Europeans was +108% larger than in Biobank Japan, consistent with the +104% 

increase expected from theory75,76 based on the +67% higher SNP-heritabilities in UK Biobank 

(Supplementary Table 10, Supplementary Note). This suggests that differences in SNP-heritability due to 

ancestry differences (e.g. SNP ascertainment67, sample ascertainment, and/or ancestry-specific 

architectures30) or due to cohort differences (e.g. differences in phenotype definitions13, different 

recruiting strategies13, or assay artifacts) may explain most of the differences in prediction accuracies 

observed between the UK Biobank and Biobank Japan. Further experiments and interpretation are 

provided in the Supplementary Note. 

 

We performed 6 secondary analyses. First, we assessed the calibration of each method by computing 

regression slopes (see above), which are reported in Supplementary Table 9. Similar to our above analyses 

of non-European UK Biobank target populations, PolyPred and its summary statistic-based analogues 

were the only approximately well-calibrated methods, as expected due to their extra training step to 

estimate mixing weights in the target population.  We restricted the remaining secondary analyses to 

PolyPred (as PolyPred-S and PolyPred-P are analogous to PolyPred with respect to these analyses). 

Second, we evaluated a modification of PolyPred that estimates mixing weights using 500 UK Biobank 

individuals from the genetically closest target population (UK Biobank East Asians for Biobank Japan, UK 

Biobank Africans for Uganda-APCDR) instead of 500 individuals from the target cohort. The differences 

between the original and modified versions of PolyPred were small and not statistically significant 

(Supplementary Table 9), indicating that PolyPred mixing weights can be estimated using 500 individuals 

from any cohort with the same continental ancestry as the target population. Third, we evaluated 

modified versions of PolyPred that specify fixed mixing weights instead of estimating mixing weights in 
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the target populations. We considered mixing weights for PolyFun-pred/BOLT-LMM equal to 0%/100%, 

25%/75%, 50%/50%, 75%/25%, and 100%/0%. The 25%/75% and 50%/50% methods performed very 

similarly to PolyPred, with no statistically significant differences (Supplementary Table 9). Fourth, we 

reduced the number of training samples from the target population used to estimate mixing weights (Nmix) 

from 500 to 100. PolyPred suffered slightly reduced accuracy but remained the most accurate method, 

with the improvement vs. BOLT-LMM in Biobank Japan remaining statistically significant (Supplementary 

Table 9). Fifth, we computed standard errors of relative-R2 using a jackknife over individuals61 (instead of 

a genomic block-jackknife over SNPs). We obtained standard errors that were almost identical to those 

obtained using a genomic block-jackknife (unlike the above results for UK Biobank), suggesting that 

Biobank Japan may be more heterogeneous across samples, possibly due to its hospital-based recruitment 

(Supplementary Table 9). Finally, we meta-analyzed the results of each method across three independent 

diseases in Biobank Japan: type 2 diabetes, asthma, and all autoimmune disease. Similar to our UK Biobank 

analyses above, PolyPred attained the highest prediction accuracy in each disease, though relative 

improvements were not statistically significant due to lower power (Supplementary Table 9). 

 

We conclude that PolyPred and its summary statistic-based analogues substantially increase cross-

population polygenic prediction accuracy vs. published methods when applied to target cohorts different 

from the training cohort. 
 

Analysis of UK Biobank East Asians using UK Biobank British and Biobank Japan training 

data 
We applied PolyPred+ and its summary statistic-based analogues to predict 23 diseases and complex traits 

in UK Biobank East Asians using UK Biobank British and Biobank Japan training data (Supplementary Table 

3). We performed this experiment to explore the special case where non-European training data is 

available in large sample size from a population that is genetically similar to the target population, in a 

cohort that is distinct from the target cohort; as such, this experiment is a particular strength of this study, 

relative to previous studies that considered only European training data or analyzed non-European 

training data from the same cohort as the target cohort11,13–17.  We note that this experiment is still 

imperfect in that the European training data and non-European target data are from the same cohort (UK 

Biobank); however, we believe that cohort effects (if present) would deflate rather than inflate the 

relative improvement of PolyPred+ vs. other methods, since they would confer an advantage to the 

European training data but not the non-European training data. We used UK Biobank British training data 

(average N=325K) and Biobank Japan training data (average N=124K) to estimate SNP effect sizes. We 

again used 500 individuals from the target population to estimate mixing weights, and evaluated 

prediction accuracy using 900 UK Biobank East Asians that were not included in the training data, and 

were unrelated to the training individuals and to each other. We compared PolyPred, PolyPred+, and their 

summary statistic-based analogues to P+T, BOLT-LMM, SBayesR, and PRS-CS. When training SBayesR 

using Biobank Japan training data, we computed in-sample LD based on N=50K Biobank Japan individuals, 

following the recommendations of the authors of SBayesR38 (analogous to the LD matrices of European 

training data provided by the authors of SBayesR) (Methods). When training PRS-CS using Biobank Japan 

training data, we used East Asian LD matrices based on N=2,181 UK Biobank East-Asian individuals, 

provided by the authors or PRS-CS (Methods). We meta-analyzed relative-R2 across the same 7 well-

powered, independent complex traits used in the previous analyses (Supplementary Table 3). 
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Results meta-analyzed across traits are reported in Figure 7 and Supplementary Tables 4-6, and results 

for each trait are reported in Supplementary Tables 4-6. PolyPred+ attained the highest prediction 

accuracy, with a +24% improvement vs. BOLT-LMM (P=0.0009) and a +12% improvement vs. PolyPred 

(P=0.0014).  This implies that incorporating non-European training data can provide a substantial 

advantage, if it is available in large sample size. Results for PolyPred-S+ (vs. SBayesR and PolyPred-S) and 

PolyPred-P+ (vs. PRS-CS and PolyPred-P) were similar. We emphasize that the +12% improvement for 

PolyPred+ vs. PolyPred should be viewed as a lower bound on the improvement that would be obtained 

in settings without cohort effects that may confer an advantage to the European training data. 

We performed 6 secondary analyses. We restricted these secondary analyses to PolyPred+ (as PolyPred-

S+ and PolyPred-P+ are analogous to PolyPred+ with respect to these analyses). First, we verified that 

PolyPred+ using European and East Asian training data does not outperform PolyPred in UK Biobank 

populations other than East Asians; differences between PolyPred+ and PolyPred were very small and not 

statistically significant (Supplementary Table 6). Second, we verified that PolyPred+ was well-calibrated 

(Supplementary Table 4; results for other methods are described above), as expected due to its extra 

training step to estimate mixing weights in the target population. Third, we evaluated a modified version 

of PolyPred+ that estimates mixing weights using 500 Biobank Japan individuals instead of 500 UK Biobank 

East Asians. The modified version of PolyPred+ was far less accurate than the original version (52% lower 

relative-R2; Supplementary Table 6). The mixing weights estimated in Biobank Japan assign much higher 

weight to the Biobank Japan training data (Supplementary Table 6), perhaps due to cohort effects; thus, 

it may be important to estimate PolyPred+ mixing weights using the target cohort (as opposed to the 

training cohort) if cohort effects are present.  Fourth, we reduced the number of training samples from 

the target population used to estimate mixing weights (Nmix) from 500 to 100. PolyPred+ suffered slightly 

reduced accuracy, though the difference was not statistically significant (Supplementary Table 6). Fifth, 

we evaluated a prediction method using only the N=124K Biobank Japan individuals to train effect sizes 

(BOLT-LMM-BBJ). BOLT-LMM-BBJ substantially underperformed methods that use UK Biobank British 

training data (−27% vs. BOLT-LMM, −34% vs. PolyPred, −41% vs. PolyPred+; Supplementary Table 4). 

Finally, we computed standard errors of relative-R2 using a jackknife over individuals61 (instead of a 

genomic block-jackknife over SNPs).  Standard errors computed using a jackknife over individuals were 

smaller, increasing the statistical significance of relative improvements of PolyPred+ vs. other methods 

(Supplementary Table 6). 

We conclude that PolyPred+ and its summary statistic-based analogues further increase cross-population 

prediction accuracy in the special case where non-European training data from the target population (or 

a closely related population) is available in large sample size. We emphasize that efforts to assess the 

benefit of incorporating non-European training data should analyze non-European training data from a 

cohort that is distinct from the target cohort, otherwise results may be inflated due to cohort effects. 

Discussion 
We have introduced PolyPred, which improves cross-population polygenic risk prediction by incorporating 

causal effects in addition to tagging effects, addressing cross-population LD differences. Across seven well-

powered independent traits, PolyPred significantly increased prediction accuracy over BOLT-LMM by 32% 

in UK Biobank Africans and by 13% in Biobank Japan (with similar results vs. SBayesR and PRS-CS). In the 

special case where a large training sample is available in the non-European target population (or a closely 

related population), we have introduced PolyPred+, which further incorporate the non-European training 
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data, addressing MAF differences and causal effect size differences. PolyPred+ significantly increased 

prediction accuracy in UK Biobank East Asians over BOLT-LMM by 24% (and over PolyPred by 12%). 

PolyPred and PolyPred+ require individual-level training data (for their BOLT-LMM component), but we 

have also introduced summary statistic-based analogues of PolyPred and PolyPred+ in cases where 

individual-level training data is not available; specific recommendations are provided in Figure 2 (also see 

Table 2). We previously demonstrated that linearly combining PRS from European and non-European 

training samples improves cross-population prediction accuracy7. However, these previous results did not 

incorporate causal effects and used P+T, which is highly inaccurate despite its widespread use11,13–18,23,31,52–

56, as PolyPred obtained up to 164% greater accuracy than P+T. In conclusion, PolyPred and its summary 

statistic-based analogues substantially improve cross-population polygenic prediction accuracy, 

ameliorating health disparities13. We have publicly released the PRS coefficients for all SNPs and traits 

analyzed under all evaluated methods (see URLs). 

Although we substantially improved cross-population PRS accuracy over the state of the art, prediction 

accuracy in non-Europeans is still substantially lower compared to Europeans, even within the UK Biobank. 

There are two reasons for the remaining accuracy gap. First, European sample sizes are still limited, which 

limits the ability of PolyFun-pred to estimate causal rather than tagging effects (mathematical theory 

guarantees perfect estimation of causal effect sizes in European cohorts under an infinite sample size if 

model assumptions hold77). Second, non-European sample sizes are limited, which limits the ability of 

BOLT-LMM applied to non-European samples to estimate tagging effects. Even with an infinite European 

training sample, which allows estimating causal effects perfectly (thus addressing LD differences), 

prediction accuracy could still be higher for Europeans vs. non-Europeans due to cross-population genetic 

correlations less than 113,30,78,79 and different allele frequencies (including population-specific SNPs) 

(Methods). (We note that cross-population genetic correlations less than 1 could potentially be explained 

by GxE interactions80, e.g. if G and GxE effects are shared across ancestries but the (average) value of E 

differs across ancestries30. However, if E is unmodeled, it is difficult to distinguish this scenario from the 

scenario of different G effects for other reasons.) Hence our theory and results confirm that larger non-

European GWAS are the best way to further improve PRS accuracy in non-European populations9,10,12,13,21. 

One of the main conclusions of our work is that leveraging training data from different ancestry groups 

(e.g. different continental ancestries) improves PRS in diverse populations.  However, we recommend 

against using training data consisting of a traditional fixed-effect meta-analysis of GWAS data from 

different ancestry groups, for two reasons: (i) fixed-effect meta-analysis implies that European training 

samples and training samples from the non-European target population would receive equal weight, 

whereas our work shows that the latter should receive higher weight in order to maximize PRS accuracy; 

and (ii) it may be challenging to construct an LD reference panel whose ancestry matches the ancestry of 

the meta-analysis of different ancestry groups. When possible, it would be preferable to separately 

incorporate European training data and training data from the non-European target population, with 

appropriate LD reference panels. Although there is no single optimal way to choose a training cohort, 

training sample size should be a primary consideration, as it is a critical factor impacting PRS accuracy.  

Our results corroborate previous results that predictions within the UK Biobank are often more accurate 

than off-cohort predictions to the same target ancestry72–74. This raises the question of whether the higher 

within-UK Biobank prediction accuracy is inflated by cohort effects. Our analysis suggests that within-UK 

Biobank prediction accuracy is not inflated, because most of the off-cohort loss of accuracy is driven by 

heritability differences. These heritability differences could be driven by between-cohort factors such as 
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differences in phenotype definitions13, different recruiting strategies13, or assay artifacts. Our results are 

consistent with recent results showing almost no loss of accuracy when applying PRS based on UK Biobank 

training data to other European-ancestry cohorts38. Importantly, our results suggest that factors that 

inflate within-cohort PRS accuracy81 (such as cohort-specific GxE, cohort-specific indirect effects82, cohort-

specific population structure, or cohort-specific assortative mating) are unlikely explanations for the 

observed accuracy differences between the UK Biobank and Biobank Japan. 

Our work has several limitations, providing opportunities for future work. First, we did not evaluate a 

setting where the British training data, the non-British training data, and the target population are 

sampled from three different cohorts. However, we hypothesize that the relative improvement of 

PolyPred+ over PolyPred when applied to UK Biobank East Asians reflects a lower bound on the 

improvement in relative-R2 that would have been obtained in such an experiment.  Second, PolyPred and 

its summary statistic-based analogues are slower than alternative PRS methods, requiring over 1,000 

hours of computation time for training, vs. less than 100 hours for BOLT-LMM. This is dominated by the 

PolyFun-pred component, which is computationally intensive because (i) PolyFun-pred performs fine-

mapping, which is a more computationally intensive task than other approaches to computing PRS 

coefficients (e.g. computing posterior mean tagging effect sizes, as in SBayesR); and (ii) PolyFun-pred 

analyzes a large number of SNPs, e.g. 18 million SNPs in UK Biobank training data and 8.1 million SNPs in 

ENGAGE training data (vs. 1.2 million SNPs for SBayesR). We do not foresee the larger computation time 

for training as a major limitation in real-world settings, because training only needs to be performed once, 

can be parallelized, and provides genome-wide fine-mapping results of direct interest35. Third, PolyPred 

requires a large number of SNPs (e.g. 8.1 million SNPs in the ENGAGE analysis) to perform fine-mapping. 

In addition, these SNPs must be imputed in the target sample (whereas BOLT-LMM uses only HapMap 3 

SNPs, which are typically well-imputed across most cohorts83), motivating the need for large cross-

population imputation panels (PolyPred becomes far less accurate when using only HapMap 3 SNPs). We 

note that naively scaling BOLT-LMM, SBayesR, or PRS-CS to use such a large number of SNPs would be 

computationally infeasible. Fourth, our block-jackknife standard error estimates may be conservative, 

though they may be better suited for evaluating the sampling variance introduced by the training set (vs. 

individual-level jackknife, which assumes a fixed training set; see Methods). Fifth, our PRS do not capture 

effects from the HLA region, which explains a large proportion of the variance of several diseases and 

traits, owing to the very complex and long-range LD patterns in this region. Sixth, PolyPred requires a large 

European training sample to perform accurate fine-mapping (we recommend N>100K based on previous 

studies35). Seventh, PolyPred+ requires a large training sample that is closely related to the target 

population. However, it is not clear exactly how large this sample should be (we currently recommend 

N>50K), or how to quantify genetic similarity between the training and target populations (as LD 

differences between populations are driven by divergence rather than genetic drift58). Eighth, PolyPred 

ideally requires a small training sample from the target cohort to estimate mixing weights. Our results 

suggest that it is possible to improve cross-population PRS accuracy even without such a training sample, 

by linearly combining PolyFun-pred and BOLT using mixing weights of either 25%/75% or 50%/50%, 

respectively. However, we caution that PRS linearly combined using fixed mixing weights may not always 

be well-calibrated. Ninth, it may be preferable to construct a European and a non-European PRS 

jointly24,25, rather than linearly combining a European and a non-European PRS as performed in PolyPred+. 

Tenth, it may be possible to improve PRS accuracy for admixed individuals by using European effect sizes 

for European alleles and non-European effect sizes for non-European alleles16,17. Eleventh, cross-

population prediction accuracy may be improved by identifying SNP sets other than HapMap 3 that yield 
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better prediction accuracy across cohorts. Twelfth, prediction accuracy could in principle be improved if 

it were possible to decompose the PolyFun-pred and BOLT-LMM predictors into shared and non-shared 

components, to improve upon double counting of shared components vs. single counting of non-shared 

components (Supplementary Note). Thirteenth, prediction accuracy could potentially be improved by 

applying PolyFun-pred to non-European training data and incorporating this predictor (although existing 

non-European training samples are generally not large enough to reap the benefits of PolyFun-pred). 

Finally, PolyPred may be able to estimate causal effect sizes more accurately by using a cross-population 

fine-mapping method (instead of PolyFun-pred, which uses only European training data). Despite all these 

limitations, PolyPred and PolyPred+ and their summary statistic-based analogues provide a clear 

improvement for cross-population polygenic risk prediction. 

 

Methods 

PolyPred and its summary statistic-based analogues 

All methods in this paper use a linear PRS, i.e., �̂� = ∑ 𝑥𝑖�̂�𝑖𝑖 , where �̂� is the PRS of an individual, 𝑥𝑖 is the 

number of minor alleles of SNP 𝑖 carried by that individual, and �̂�𝑖 is the estimated per-allele causal effect 

size of SNP 𝑖. The methods differ in the way they estimate �̂�𝑖. 

PolyPred and PolyPred+ both combine the methods PolyFun-pred and BOLT-LMM; PolyPred-S and 

PolyPred-S+ both combine the methods PolyFun-pred and SBayesR; and PolyPred-P and PolyPred-P+ both 

combine the methods PolyFun-pred and PRS-CS. PolyFun-pred estimates �̂�𝑖 as the (approximate) 

posterior mean causal effect size of SNP 𝑖, as estimated by PolyFun + SuSiE35 based on European training 

data, using 187 functional annotations to specify prior causal probabilities (see below). BOLT-LMM (resp. 

SBayesR and PRS-CS) estimates tagging effects (Supplementary Note) of HapMap 3 SNPs by applying 

BOLT-LMM36,37 (resp. SBayesR38 and PRS-CS39) to European training data. BOLT-LMM (resp. SBayesR) treats 

the effect of each SNP 𝑖 as a random effect sampled from a mixture of two (resp. four) zero-mean normal 

distributions, whose variances and mixture weights are determined in a data-driven manner. PRS-CS 

treats the effect of each SNP 𝑖 as a random effect sampled from a continuous shrinkage prior distribution. 

PolyPred and its summary statistic-based analogues compute the effect size of each SNP 𝑖 that is either in 

HapMap 3 or has a European MAF≥0.1% and INFO score ≥0.6 as a weighted combination of (1) its PolyFun-

pred effect size based on European training data; and (2) its BOLT-LMM (resp. SBayesR and PRS-CS) effect 

size based on European training data: 

𝛽�̂�
PolyPred(−S)

 =  𝑤PolyFun−pred𝛽�̂�
PolyFun−pred

+ 𝑤BOLT−LMM/SBayesR/PRS−CS 𝛽�̂�
BOLT−LMM/SBayesR/PRS−CS

,       (1) 

where 𝛽�̂�
PolyFun−pred

 is the PolyFun-pred approximate posterior mean causal effect size of SNP 𝑖 based 

on European training data, 𝛽�̂�
BOLT−LMM/SBayesR/PRS−CS

 is the approximate posterior mean tagging effect 

size of SNP 𝑖 based on European training data using the indicated method (setting the effects of SNPs not 

in HapMap 3 to zero), and 𝑤PolyFun−pred, 𝑤BOLT−LMM/SBayesR/PRS−CS  are mixing weights. PolyPred 

estimates the mixing weights via non-negative least squares estimation (i.e., least squares estimation 

constrained to produce to non-negative estimates) based on training individuals from the target cohort. 

Specifically, PolyPred (resp. PolyPred-S and PolyPred-P) estimates the mixing weights by computing the 
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PRS corresponding to the PolyFun-pred effect sizes (given by �̂�PolyFun−pred = ∑ 𝑥𝑖�̂�𝑖𝑖
PolyFun−pred

) and 

the PRS corresponding to the BOLT-LMM (resp. SBayesR and PRS-CS) effect sizes (given by 

�̂�BOLT−LMM = ∑ 𝑥𝑖�̂�𝑖𝑖
BOLT−LMM

), and then fitting the mixing weights by regressing the true phenotypes 

𝑦𝑖  of the training individuals in the target cohort on the PolyFun-pred and the BOLT-LMM (resp. SBayesR 

and PRS-CS) PRSs. The use of non-negative least squares estimation guarantees that the correlation of the 

predicted phenotype with the true phenotype is at least as large as the smallest correlation obtained by 

the constituent predictors.  

PolyPred+ and its summary statistic-based analogues compute the effect size of each SNP 𝑖 that is either 

in HapMap 3 or has a European MAF≥0.1% as a weighted combination of (1) its PolyFun-pred effect size 

based on European training data; (2) its BOLT-LMM (resp. SBayesR and PRS-CS) effect size based on 

European training data; and (3) its effect size as estimated by applying BOLT-LMM (resp. SBayesR and PRS-

CS) to training data from the target population (or a closely related population): 

𝛽�̂�
PolyPred+

 =  𝑤PolyFun−pred𝛽�̂�
PolyFun−pred

+ 𝑤BOLT−LMM/SBayesR/PRS−CS 𝛽�̂�
BOLT

+ 𝑤BOLT−LMM/SBayesR/PRS−CS−nonEur𝛽�̂�
BOLT−LMM/SBayesR/PRS−PRS−CS−nonEur

,       (2) 

where 𝛽�̂�
BOLT−LMM/SBayesR/PRS−PRS−CS−nonEur

 is the BOLT-LMM (resp. SBayesR or PRS-CS) approximate 

posterior mean tagging effect of SNP 𝑖 based on training data from the non-European population (and set 

to zero for SNPs that are not in HapMap 3), and 𝑤BOLT−LMM/SBayesR/PRS−CS−nonEur is the mixing weight 

of 𝛽�̂�
BOLT−LMM/SBayesR/PRS−PRS−CS−nonEur

. The mixing weights are estimated as in PolyPred. We note 

that the weighting used by PolyPred and its summary statistic-based analogues may be suboptimal if the 

correlations between PolyFun-pred effect sizes and BOLT-LMM effect sizes (resp. SBayesR and PRS-CS 

effect sizes) vary across the genome (Supplementary Note). 

In practice, we apply PolyPred and its summary statistic-based analogues by linearly combining the 

PolyFun-pred PRS and the BOLT-LMM (or SBayesR or PRS-CS) PRS (rather than linearly combining the SNP 

effect sizes). The two procedures are almost mathematically identical, with the only difference being that 

a linear combination of PRSs can also accommodate an intercept, which explicitly bias-corrects the PRS to 

the target population. 

We applied PolyFun-pred in the same way that we applied PolyFun + SuSiE in our previous work35. Briefly,  

we applied PolyFun-pred across 2,763 overlapping 3Mb loci (equally spaced starting at chromosome 1, 

position 0) spanning 18,212,157 European MAF>0.1% imputed SNPs with INFO score>0.6 (excluding the 

HLA and two other long-range LD regions)35, assuming 10 causal SNPs per locus. We used summary 

statistics computed by BOLT-LMM, based on up to N=337,491 unrelated British-ancestry UK Biobank 

individuals, and using summary LD information estimated directly from the target samples. Full details are 

provided in ref. 35. We note that the use of BOLT-LMM summary statistics is mathematically equivalent to 

regressing the target phenotypes on BOLT-LMM off-chromosome PRS prior to applying PolyFun + SuSiE37.  

We also note that the use of 3Mb loci guarantees that for each SNP, the estimation of its causal effect size 

takes into account virtually all relevant SNPs that may be in LD with that SNP (because LD in European 

populations rarely ranges beyond 1Mb59), allowing to disentangle its causal effect size from its tagging 

effect size. 
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In secondary analyses, we evaluated alternative versions of PolyFun-pred that assume a single causal SNP 

per locus (and hence do not require an LD reference panel35) or a non-functionally-informed version that 

specifies the same prior causal probability to all SNPs in each locus. 

PRS methods that include non-common SNPs (MAF<5%) may be sensitive to MAF-dependent and LD-

dependent architectures (e.g., low-MAF SNPs have a smaller average per-SNP heritability44–46). Previous 

PRS methods have largely alleviated this concern by discarding non-common SNPs instead of explicitly 

modeling their lower per-SNP heritability33,38,39,61–63,72,73,84–86. In contrast, PolyFun-pred accounts for MAF-

dependent and LD-dependent architectures by specifying SNP-specific prior causal probabilities based on 

the baseline-LF model45 (Supplementary Table 11). In detail, PolyFun-pred used 187 overlapping 

functional annotations from the baseline-LF model (previously described in ref. 35), including 10 common 

MAF bins (MAF≥0.05); 10 low-frequency MAF bins (0.05>MAF≥0.001); 6 LD-related annotations for 

common SNPs (levels of LD, predicted allele age, recombination rate, nucleotide diversity, background 

selection statistic, CpG content); 5 LD-related annotations for low-frequency SNPs; 40 binary functional 

annotations for common SNPs; 7 continuous functional annotations for common SNPs; 40 binary 

functional annotations for low-frequency SNPs; 3 continuous functional annotations for low-frequency 

SNPs; and 66 annotations constructed via windows around other annotations87 (Supplementary Table 11). 

We did not include a base annotation that includes all SNPs, because such an annotation is linearly 

dependent on all the MAF bins when using the same set of SNPs to compute LD-scores and to estimate 

annotation coefficients35. 

 

Estimating relative-R2 and its standard error 

We measured prediction accuracy for each trait via a measure that we call relative-R2, defined via the 

following computations: 

1. Compute R2-PRS: the R2 obtained via a linear predictor that includes PRS, age ,sex, age*sex (if the 

correlation with age was <0.95), UK Biobank assessment center (defined as a set of dummy binary 

variables), genotyping array, 10 principal components (computed separately for each ancestry; 

see below), and dilution factor (for biochemical traits only). 

2. Compute R2-noPRS, defined like R2-PRS but omitting the PRS 

3. Compute R2-PRS-BOLT-EUR, computed by applying BOLT-LMM to UK Biobank non-British 

Europeans as in step 1 

4. Compute R2-noPRS-BOLT-EUR, computed by applying step 2 to non-British Europeans 

5. Compute relative-R2 as (R2-PRS - R2-noPRS) / (R2-PRS-BOLT-EUR - R2-noPRS-BOLT-EUR) 

We note that relative improvement in relative-R2 is the same as relative improvement in absolute 

difference in R2, (i.e., in R2-PRS - R2-noPRS), because the denominator (R2-PRS-BOLT-EUR - R2-noPRS- 

EUR) can be regarded as a trait-specific scaling factor. 

We computed standard errors via genomic block-jackknife, partitioning the genome into 200 equally-sized 

consecutive loci and omitting each one in turn. We similarly computed standard errors of differences in 

relative-R2 (e.g. vs. BOLT-LMM) via genomic block-jackknife, computing the difference after omitting each 

block in turn. In secondary analyses, we computed standard errors by applying jackknife over individuals 

from the target population. These analyses yielded much smaller standard errors in the UK Biobank, 

suggesting that genomic block-jackknife standard errors may be conservative, whereas individual-based 
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jackknife estimates maty be anti-conservative. We emphasize that individual-based jackknife explicitly 

assume a fixed training set. 

We meta-analyzed relative-R2 via an inverse-variance weighted average, using weights inversely 

proportional to the standard error of the R2 of BOLT-LMM in the target ancestry (as estimated via genomic 

block-jackknife). We estimated the standard error of the meta-analyzed relative-R2 as the square root of 

the weighted average of the trait-specific sampling variances, divided by the number of traits. We meta-

analyzed the difference in relative-R2 vs. an alternative method (typically BOLT-LMM) in the same way. 

We computed p-values of differences in relative-R2 via a Wald test, based on the block-jackknife standard 

error estimates (for single traits) and based on the meta-analyzed standard errors (for the meta-analyzed 

results). 

We computed ancestry-specific regression slopes by regressing true phenotypes on the PRS (including an 

intercept) in each respective population. We computed the standard errors of regression slopes via 

genomic block-jackknife, using 200 jackknife blocks. 

We computed the statistical significance of the decrease in R2 in non-European vs. European target 

samples via a Wald test for the difference in R2, conservatively estimating the sampling variance of this 

difference as the sum of the sampling variances of the European R2 and the non-European R2 (this is a 

conservative estimate as long as the R2 estimates in Europeans and non-Europeans are not negatively 

correlated, which is extremely unlikely). 

 

Cohorts Analyzed 

UK Biobank 
The UK Biobank is a UK-based population cohort40. We used version 3 of the imputed genotypes, as 

described in our previous work35. We computed ancestry-specific PCs for UK Biobank Africans, UK Biobank 

East Asians, and UK Biobank South Asians via plink 1.988, restricting to SNPs with ancestry-specific 

MAF>5%, missingness<10%, HWE p-value>10-10, and LD-pruned using the command --indep-pairwise 

1000 50 0.05, and restricted to unrelated individuals (kinship coefficient <0.05) from the target ancestry 

with missingness <10%. We used the UK Biobank provided PCs for UK Biobank Europeans. 

We defined the ‘autoimmune disease’ trait in the UK Biobank as a union of the following UK Biobank 

codes: 1154 (irritable bowel syndrome); 1222 (type 1 diabetes); 1224 (thyroid problem); 1225 

(hyperthyroidism/thyrotoxicosis); 1226 (hypothyroidism/myxoedema); 1256 (acute infective 

polyneuritis/guillain-barre syndrome); 1260 (myasthenia gravis); 1261 (multiple sclerosis); 1313 

(ankylosing spondylitis); 1372 (vasculitis); 1377 (polymyalgia); 1378 (wegners granulmatosis); 1381 

(systemic lupus erythematosis/sle); 1382 (sjogren's syndrome/sicca syndrome); 1384 

(scleroderma/systemic sclerosis); 1437 (myasthenia gravis); 1453 (psoriasis); 1456 (malabsorption/coeliac 

disease); 1461 (inflammatory bowel disease); 1462 (Crohns disease); 1463 (ulcerative colitis); 1464 

(rheumatoid arthritis); 1477 (psoriatic arthropathy); 1522 (grave's disease); 1661 (vitiligo); 1667 (alopecia 

/ hair loss).  

European Network for Genetic and Genomic Epidemiology 
European Network for Genetic and Genomic Epidemiology (ENGAGE) is a consortium comprised of 24 

cohorts to study the impact of genetic variations on medical phenotypes (e.g., type 2 diabetes, BMI, lipid 
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phenotypes, etc.) through GWAS68. The consortium has performed over 80,000 GWASs using genetic and 

phenotype samples from over 600,000 individuals, and made the GWAS summary statistics publicly 

available68. 

We obtained ENGAGE GWAS summary statistics, representing fixed-effect meta-analyses from 22 studies 

of European ancestry, for 2 lipid phenotypes69 (triglyceride (N=56,267) and total cholesterol (N=58,327)), 

and 2 obesity-related phenotypes70 (BMI (N=80,938) and BMI-adjusted waist hip ratio (N=49,877)). In each 

ENGAGE study, up to 37.4 million autosomal variants were imputed using the 1000 Genomes Project (we 

used 8.1 million variants which were also imputed in the UK Biobank); phenotypes were adjusted for age, 

age squared, genotype principal components, and other study-/trait-specific covariates, and were inverse 

rank normalized; GWASs were performed for each sex separately and combined using fixed-effect meta-

analysis; a single genomic control correction was performed for each study prior to a cross-study meta-

analysis69,70.  

Biobank Japan 
BioBank Japan (BBJ) is a multi-institutional hospital-based biobank with DNA and serum samples from 

approximately 200,000 participants from 12 medical institutions in Japan41.  The participants are mainly 

of Japanese ancestry and had been diagnosed with at least one of 47 diseases by physicians at the 

cooperating hospitals. Written informed consent was obtained from all the participants, as approved by 

the ethics committees of RIKEN Center for Integrative Medical Sciences and the Institute of Medical 

Sciences at the University of Tokyo. 

We genotyped samples with either (i) the Illumina HumanOmniExpressExome BeadChip or (ii) a 

combination of the Illumina HumanOmniExpress and HumanExome BeadChips. We applied standard 

quality control criteria for both samples and variants as detailed elsewhere89. We then pre-phased 

genotypes with Eagle290 and imputed dosages with Minimac391 using 1000 Genomes project phase 3 

(version 5) data (N=2,504) and Japanese whole-genome sequencing (WGS) data (N=1,037) as a 

reference89. We computed PCs using EIGENSOFT’s smartpca92. 

For phenotypes, we retrieved clinical medical records from the participating hospitals through interviews 

and a standardized questionnaire. We used 23 diseases and complex traits in Biobank Japan which are 

also analyzed in UK Biobank (Supplementary Table 3). We normalized quantitative phenotypes via inverse-

rank normal transformation as described elsewhere93. We defined the ‘autoimmune disease’ trait in 

Biobank Japan as a union of Graves’ disease and rheumatoid arthritis patients. 

Uganda-APCDR 
Uganda-APCDR is a population-based cohort from the General Population Cohort (GPC), Uganda. We 

retrieved genotype and phenotype data through the African Partnership for Chronic Disease Research 

(APCDR) initiative via the European Genome-Phenome Archive (EGA), using EGAD00010000965 to access 

genotype data. Phenotype data were accessed via sftp from EGA (reference: DD_PK_050716 

gwas_phenotypes_28Oct14.txt). The participants are from nine ethno-linguistic groups in sub-Saharan 

Africa and had been recruited from the study area located in southwestern Uganda in Kyamulibwa 

subcounty of Kalungu district, approximately 120 km from Entebbe town. These ethno-linguistic groups 

have diverse population structure with varying degrees of admixture between Eurasian and East African 

Nilo-Saharan ancestries, which has been extensively characterized elsewhere94. The detailed cohort 

demographics, sample collection, and processing were described previously42,43. 
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Briefly, the samples were genotyped using the Illumina HumanOmni 2.5M BeadChip at the Wellcome 

Trust Sanger Institute. We used the Ricopili pipeline to conduct pre-imputation QC and perform phasing 

and imputation95. Briefly, we phased the data using Eagle 2.3.590 and imputed variants using minimac391 

in chunks ≥3Mb. The 1000 Genomes project phase 3 haplotypes59 were used as the reference panel for 

phasing and imputation. 

As described previously, phenotypes were collected using a standard individual questionnaire, blood 

samples (laboratory tests), and biophysical measurements (height, weight, waist and hip circumferences 

and blood pressure)42. We normalized quantitative phenotypes via inverse-rank normal transformation. 

 

UK Biobank Simulations 
We simulated data based on real genotypes of UK Biobank individuals, using 250,963 MAF≥0.1% SNPs 

with INFO score≥0.6 on chromosome 22 (including short indels). To simulate data, we first computed the 

variance of per-standardized-genotype effect 𝜂𝑖  for every SNP 𝑖 with annotations 𝒂𝑖 using the baseline-LF 

(version 2.2.UKB) model, var[𝜂𝑖|𝒂𝑖] = ∑ 𝜏𝑐𝑎𝑖
𝑐

𝑐 , where 𝑐 are annotations and 𝜏𝑐 estimates are taken from 

a fixed-effects meta-analysis of 16 well-powered genetically uncorrelated (|rg|<0.2) UK Biobank traits (age 

of menarche, BMI, balding, bone mineral density, eosinophil count, FEV1/FVC ratio, forced vital capacity, 

hair color, height, platelet count, red blood cell distribution width, red blood cell count, systolic blood 

pressure, tanning, waist-hip ratio adjusted for BMI, white blood count), scaled such that ∑ var[𝜂𝑖|𝒂𝑖]𝑖  is 

the same across all traits (as detailed in ref.35). Each SNP was specified to be causal with probability 

proportional to var[𝜂𝑖|𝒂𝑖], such that the average causal probability was equal to the desired proportion 

of causal SNPs (0.1% or 0.3% in most simulations). 

We generated ancestry-specific effect sizes as follows. First, we generated a British per-allele causal effect 

size for each SNP 𝑖 via 𝛽𝑖
British = 𝛾𝑖/√2𝑓𝑖(1 − 𝑓𝑖) , where 𝛾𝑖 ∼ 𝒩(0, ℎ2/𝑚), 𝑚 is the number of causal 

SNPs, and 𝑓𝑖 is the maximal MAF of SNP 𝑖 among British, non-British European, South Asian, East Asian, or 

African UK Biobank individuals. Afterwards, for each of the main UK Biobank non-European ancestries 

(South Asian, East Asian, and African) 𝑎 we generated an ancestry-specific per-allele effect size 𝛽𝑖
𝑎 via 

𝛽𝑖
𝑎 = 𝑟𝑔 ⋅ 𝛽𝑖

British + √1 − 𝑟𝑔
2𝑧𝑖

𝑎, where 𝑟𝑔 is the cross-population genetic correlation (set to 0.8 by default, 

following previous works30,78,79), and 𝑧𝑖
𝑎 ∼ 𝒩(0,1). The use of 𝑓𝑖 bounds the per-allele causal effect sizes 

by the MAF of the ancestry in which the SNP is most common, which guarantees that SNPs that are 

infrequent in Europeans but are common in other ancestries do not explain a very large proportion of 

heritability. 

After generating ancestry-specific per-allele causal effect sizes, we generated a phenotype 𝑦 for every UK 

Biobank individual in each ancestry 𝑎 via 𝑦 = ∑ 𝑥𝑖𝛽𝑖
𝑎

𝑖 + 𝜖, where 𝑥𝑖 is the number of minor alleles of SNP 

𝑖 carried by that individuals, 𝛽𝑖
𝑎 is the ancestry-specific per-allele causal effect size of SNP 𝑖, and 𝜖 ∼

𝒩(0,1 − ℎ2) is the environmental variance of the generated trait. We generated phenotypes based on 

dosage data from imputed genotypes, using Plink 2.096,97. We used self-reported ancestry based on UK 

Biobank data field 21000 (Ethnic background). We considered Irish-ancestry as a non-British European 

ancestry. 

We trained all methods using 337,491 unrelated British-ancestry individuals40, and we estimated the 

mixing weights of PolyPred and its summary statistic-based analogues using up to 1000 additional 
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individuals from each of the four non-British ancestries (Nmix≤1000). We computed summary statistics by 

applying linear regression via Plink 2.0. We did not evaluate PolyPred+ in the simulations because of the 

relatively small sample sizes of the UK Biobank non-European populations. 

We evaluated prediction accuracy via R2, using held-out individuals that were not included in the training 

sets, using 42K non-British Europeans, 7.7K South Asians, 0.9K East Asians, and 6.2K Africans. We 

computed PRSs by applying plink 2.0 with the --score command, using imputed dosage data (rather than 

hard-called SNP values). We computed standard errors via a jackknife over simulations. 

We trained BOLT-LMM by applying BOLT-LMM v2.3.4 to plink files of HapMap 3 SNPs (hard-coded from 

imputed dosages), using the same covariates specified in the “Estimating relative-R2 and its standard 

error” Methods subsection, and specifying the flag –predBetasFile to report PRS coefficients. 

We trained SBayesR using summary statistics from the infinitesimal version of BOLT-LMM (BOLT-LMM-

inf36), which yielded far superior accuracy vs. using summary statistics from the non-infinitesimal version 

of BOLT-LMM (BOLT-LMM) (results not shown), possibly indicating that the non-infinitesimal version of 

BOLT-LMM violates some of the underlying assumptions behind the SBayesR model. We ran SBayesR 

using 10,000 iterations, 4,000 burn-in iterations, using values from 10% of the iterations to compute 

posterior means, using the HapMap 3 LD files published the SBayesR authors51. We attempted to run 

SBayesR using a mixture of four distributions (using 𝜋 = [0.95,0.02,0.02,0.01] and 𝛾 = [0,0.01,0.1,1]). In 

case SBayesR failed with these parameters, we iteratively shrank the last entry in the vector 𝛾 by 50% 

until it was smaller than 10−6, at which point we removed the last mixture component and redefined 𝜋 

such that the first entry was equal to 0.95 and all other entries had the same value such that all values 

sum to 1.0. 

We trained PRS-CS using summary statistics from BOLT-LMM-inf (as in SBayesR) with the parameters a=1, 

b=0.5, thin=5, n_iter=10000, n_burnin=500, and without specifying the value of phi (corresponding to 

PRS-CS-auto). We used the UK Biobank LD reference panels made publicly available by the authors of PRS-

CS (see URLs). We did not compute additional LD reference panels because the PRS-CS software does not 

provide this capability. 

We trained P+T by applying plink with the command –clump-r2 0.5 –clump-kb 250 with various values of 

–clump-p1 (following ref.13), and using 10,000 randomly selected unrelated UK Biobank British individuals 

to compute LD. We estimated LD using 10,000 individuals to balance between runtime and accuracy 

(noting that P+T is relatively insensitive to the LD reference panel size compared to the other methods 

evaluated in this manuscript). We used summary statistics based on BOLT-LMM, using marginal effect 

sizes derived from reported 𝜒2 values (i.e., the square root of the 𝜒2 divided by the square root of the 

BOLT-LMM effective sample size35 and multiplied by the sign of the effect size estimated by the 

infinitesimal version of BOLT-LMM), because the non-infinitesimal version of BOLT-LMM does not 

estimate effect sizes. We used the best value of –clump-p1 (out of the evaluated values 10-2, 10-3, 10-4,  

10-6, 5×10-8) based on the target sample phenotypes, which leads to anti-conservative prediction accuracy 

estimates for P+T. 

When modifying the training sample size, we kept the LD reference panel sample size fixed to alleviate 

computational costs. 
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We used slightly different LD reference panels for PolyFun-pred, SBayesR, and PRS-CS, because (i) they 

use different algorithms to impose sparsity on LD matrices, and different file formats to store them; and 

(ii) we assume that naively running SBayesR or PRS-CS using summary LD from the 18 million SNPs used 

by PolyFun-pred would be computationally infeasible, based on information provided in the manuscripts 

describing these methods38,39.  As noted above, increasing the number of SNPs analyzed by SBayesR from 

1.2 million to 2.8 million does not improve the prediction accuracy of SBayesR (Supplementary Table 4). 

Analysis of UK Biobank, Biobank Japan and Uganda-APCDR cohorts 

We performed three sets of analyses: (i) Analysis of 4 UK Biobank populations using UK Biobank British 

training data; (ii) Analysis of Biobank Japan and Uganda-APCDR cohorts; and (iii) Analysis of UK Biobank 

East Asians using UK Biobank British and Biobank Japan training data. In all analysis sets, we evaluated 

PRSs generated by training all methods using unrelated UK Biobank British-ancestry individuals. In a 

subset of analysis set (ii) and in analysis set (iii) we additionally evaluated PRSs generated by training BOLT-

LMM-BBJ (BOLT-LMM trained on Biobank Japan individuals). The details below pertain to all three analysis 

sets unless specified otherwise. 

We selected the 7 traits to meta-analyze by first restricting the set of 49 traits analyzed in ref.35 to traits 

that are available in Biobank Japan and Uganda-APCDR and are well-powered across multiple ancestries, 

having h2>0.05 in UK Biobank non-British Europeans, in UK Biobank South Asians, and in UK Biobank 

Africans (see below for details on ancestry-specific heritability estimation). We then iteratively greedily 

selected ranked traits according to their heritability in UK Biobank non-British Europeans (estimated as in 

ref. 35), such that no selected trait had |rg|<0.3 with a previously selected trait. 

We computed ancestry-specific SNP heritabilities in each UK Biobank ancestry by applying GCTA64 to 

unrelated sets of individuals using hard-called HapMap 3 SNPs (using a random set of 10,000 individuals 

for non-British Europeans to facilitate the computations). We did not use more advanced methods98 

because of the relatively small sample sizes. We meta-analyzed ancestry-specific SNP heritabilities by 

averaging the estimated heritabilities, and we estimated the meta-analyzed standard error via the square 

root of the average sampling variance, divided by the square root of the number of traits. 

We trained all PRS methods on UK Biobank unrelated British-ancestry individuals (average N=325) as 

described in the Methods subsection “UK Biobank simulations”, but using summary statistics generated 

by BOLT-LMM when applied to UK Biobank British-ancestry individuals, as described in our previous 

work35. We trained P+T separately for each non-UK Biobank cohort by restricting the set of SNPs 

considered to the set of SNPs available in the target cohort. We computed the contribution of PolyFun-

pred (resp. BOLT-LMM) towards PolyPred via the ratio of the mixing weight of PolyFun-pred (resp. BOLT-

LMM) to the sum of the mixing weights of PolyPred and of BOLT-LMM. 

In analysis sets (i) and (iii), we computed a PRS for each UK Biobank individual using imputed dosage data 

as described in the “UK Biobank Simulations”. In analysis set (ii), we computed a PRS for each individual 

in Biobank Japan and in Uganda-APCDR using imputed dosage data and PRS coefficients from UK Biobank 

Europeans using Plink 2.096,97. 

In secondary analyses of analysis set (i) we also evaluated LDpred33. We trained LDpred using HapMap 3 

SNPs and using two different LD reference panels: 1000 Genomes project59 and UK10K60. We used 

summary statistics from the infinitesimal version of BOLT-LMM (as in SBayesR) and with default 
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parameters, using the parameter --ldr 400. We used the value of “--F" (corresponding to the assumed 

proportion of causal SNPs, using all the default evaluated values) that yielded the best prediction accuracy 

in the target sample, yielding anti-conservative accuracy estimates as in P+T. 

In analysis sets (ii) and (iii), we trained BOLT-LMM-BBJ, SBayesR-BBJ, and PRS-CS-BBJ (BOLT-LMM, 

SBayesR, and PRS-CS, respectively, trained using Biobank Japan training data) (average N=124K). We 

selected individuals for training these methods as described in our previous work13, but excluding a 

random subset of 5,000 individuals that were used for evaluating prediction accuracy. For SBayesR-BBJ, 

we used a subset of individuals (N=50K) from Biobank Japan to compute an in-sample LD, following the 

recommendations of the authors of SBayesR38. For PRS-CS-BBJ, we used the East Asian LD reference panels 

made publicly available by the authors of PRS-CS (see URLs). 

 

Loss of accuracy under an infinite European training sample 
Under an infinite European training sample, the ratio between 𝑅Eur

2  and 𝑅non−Eur
2 , which denote 𝑅2 in 

an European sample and in a non-European sample, respectively, is approximately given by: 

𝜌𝑔
2 ×

ℎnon−Eur
2

ℎEur
2 × (∑ √

𝑝k,non−EUR(1 − 𝑝k,non−EUR)

𝑝k,EUR(1 − 𝑝k,EUR)
𝑘

)

2

×
var(PGSEUR)

var(PGSnon−EUR)
. 

Here, 𝜌𝑔 is the cross-population genetic correlation, ℎnon−Eur
2 , ℎEur

2  are the heritabilities in the non-

European and the European populations, respectively, 𝑘 iterates over causal SNPs, 𝑝k,non−EUR, 𝑝k,EUR are 

minor allele frequencies in the non-European and the European population, respectively, and 

var(PGSEUR), var(PGSnon−EUR) are the variances of the polygenic risk scores in the non-European and 

the European populations, respectively. This equation is directly derived from Equation 1 in ref.14, after 

assuming that causal SNPs are approximately not in LD with each other, and that the predictor SNPs are 

the causal SNPs under an infinite sample size. 
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URLs 
Software implementing PolyPred and PolyPred+: https://www.hsph.harvard.edu/alkes-price/software 

Baseline-LF v2.2.UKB annotations and LD-scores for UK Biobank SNPs:  

https://data.broadinstitute.org/alkesgroup/LDSCORE/baselineLF_v2.2.UKB.tar.gz 

Summary LD information of N=337K British-ancestry UK Biobank individuals for 2,763 overlapping 3Mb 

loci: https://data.broadinstitute.org/alkesgroup/UKBB_LD/ 

PRS coefficients for all analyzed SNPs: https://data.broadinstitute.org/alkesgroup/polypred_results 

BOLT-LMM: https://data.broadinstitute.org/alkesgroup/BOLT-LMM 

SBayesR: https://cnsgenomics.com/software/gctb 

PRS-CS: https://github.com/getian107/PRScs 

UK Biobank Resource: http://www.ukbiobank.ac.uk 

 

Code and data availability 
PolyPred and PolyPred+ are provided as part of the open-source software package PolyFun, which is freely 

available at https://github.com/omerwe/polyfun. Access to the UK Biobank resource is available via 

application (http://www.ukbiobank.ac.uk). PRS coefficients generated in this study are available for public 

download at http://data.broadinstitute.org/alkesgroup/polypred_results. 
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Tables 
Table 1: Summary of main methods evaluated. For each method we report its constituent methods (or 

“-“ for individual methods), the set of SNPs analyzed in model training using UK Biobank training data (and 

its size when restricted to imputed UK Biobank SNPs with European MAF≥0.1% and INFO score≥0.6), the 

training data analyzed, whether it incorporates fine-mapped effect sizes (as opposed to tagging effect 

sizes), whether it can work with summary statistics, and the corresponding reference. Eur: European; 

target pop: non-European target population; Method-pop: Method applied to training data from non-

European target population. 

Method 
Constituent 

methods 
SNP set 

Training 
data 

Fine-
mapped 

effect sizes 

Summary 
statistics 

Ref. 

P+T - 
All (18 

million) 
Eur No Yes 48,49 

BOLT-LMM - 
HapMap 3 

(1.2 
million) 

Eur No No 36,37 

SBayesR - 
HapMap 3 

(1.2 
million) 

Eur No Yes 38 

PRS-CS - 
HapMap 3 

(1.2 
million) 

Eur No Yes 39 

PolyPred 
PolyFun-pred, 

BOLT-LMM 
All (18 

million) 
Eur Yes No 

This 
work 

PolyPred-S 
PolyFun-pred, 

SBayesR 
All (18 

million) 
Eur Yes Yes 

This 
work 

PolyPred-P 
PolyFun-pred, 

PRS-CS 
All (18 

million) 
Eur Yes Yes 

This 
work 

PolyPred+ 

PolyFun-pred, 
BOLT-LMM, 
BOLT-LMM-

pop 

All (18 
million) 

Eur + 
target 
pop 

Yes No 
This 
work 

PolyPred-S+ 
PolyFun-pred, 

SBayesR, 
SBayesR-pop 

All (18 
million) 

Eur + 
target 
pop 

Yes Yes 
This 
work 

PolyPred-P+ 
PolyFun-pred, 

PRS-CS, 
PRS-CS-pop 

All (18 
million) 

Eur + 
target 
pop 

Yes Yes 
This 
work 
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Table 2: Summary of the relative performance of constituent PRS methods. For each of three constituent 

PRS methods (BOLT-LMM, SBayesR, PRS-CS) we report its relative performance in prediction in UK 

Biobank non-British Europeans under various settings; we also provide links to the corresponding 

Figure(s)/Table(s) (red font for simulations, blue font for real trait analyses). ✔✔: the method is 

significantly more accurate than the second best method in the same row, and combining this method 

with PolyFun-pred increases prediction accuracy; ✔✔*: the method is significantly more accurate than 

the second best method in the same row, and combining this method with PolyFun-pred does not increase 

prediction accuracy; ✔: the method is significantly less accurate than the best method in the same row, 

but is significantly more accurate than P+T; 🗶: the method is not significantly more accurate than P+T;  

---: the method is not applicable, because it requires individual-level data. For Very large unmatched LD 

(a likely scenario when analyzing summary statistics from a meta-analysis of many cohorts), we performed 

real trait analyses only, as simulations would have required another very large individual-level data set in 

addition to UK Biobank (see Supplementary Note). For Individual-level data, the difference between BOLT-

LMM and the second-best method was significant in simulations but non-significant in real trait analyses.  

For In-sample LD, the difference between SBayesR and PRS-CS was significant in simulations but non-

significant in real traits analyses. For Very large unmatched LD (a likely scenario when analyzing summary 

statistics from a meta-analysis of many cohorts), we performed real trait analyses only (see explanation 

in Supplementary Note).  For small unmatched LD, we performed both simulations and real trait analyses 

but report results of real trait analyses, which we believe to be most reflective of real-life settings (in 

simulations, SBayesR was significantly more accurate than PRS-CS). Results for non-European target 

populations from UK Biobank were similar, though some of the differences were not statistically 

significant due to smaller prediction accuracies and sample sizes. We have facilitated the use of very large 

LD reference panels for European training data by publicly releasing summary LD information for N=337K 

British-ancestry UK Biobank samples across 18 million SNPs (see Data availability).  

LD 
BOLT 
-LMM 

SBayesR 
PRS- 
CS 

Figure(s)/ 
Table(s) 

Individual-level data (UKB, N=337K) ✔✔ ✔ ✔ Figures 3,4,7 

In-sample LD (UKB, N=337K) --- ✔✔ ✔ Figures 3,4,7 

Very large unmatched LD (UKB, N=337K) --- ✔ ✔✔ Figure 5 

Small unmatched LD (1000G, N=489) --- 🗶 ✔✔*
 Tables S4-S6 
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Figures 
(a) 

 

(b) 

 

Figure 1: Overview of PolyPred and PolyPred+. (a) Overview of PolyPred. PolyPred linearly combines the 

effect sizes of BOLT-LMM (𝛽BOLT−LMM) and PolyFun-pred (𝛽PolyFun−pred), (trained using European 

training data). It uses a small training sample from the target population to estimate mixing weights (𝜔1, 

𝜔2) for the constituent methods. (b) Overview of PolyPred+. PolyPred+ linearly combines the effect sizes 

of BOLT-LMM (𝛽BOLT−LMM), PolyFun-pred (𝛽PolyFun−pred) (trained using European training data), and 

BOLT-LMM-pop (𝛽BOLT−LMM−pop) (trained using non-European training data from the target population). 

It uses a small training sample from the target population to estimate mixing weights (𝜔1, 𝜔2, 𝜔3) for the 

constituent methods. PolyPred-S and PolyPred-P (resp. Poly-Pred-S+ and PolyPred-P+) replace all 

instances of BOLT-LMM with SBayesR or PRS-CS, respectively. 

 

 

 

 

PolyFun-pred

small training sample
from target cohort (N=500)

PolyPred effect sizes

BOLT-LMM

large European sample
(N>100,000) BOLT-LMM effect sizes

PolyFun-pred effect sizes

PolyPred

PolyFun-pred

small training sample
from target cohort (N=500)

PolyPred effect sizes

BOLT-LMM

large European sample
(N>100,000) BOLT-LMM effect sizes

PolyFun-pred effect sizes

large non-European
sample (N>100,000)
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Figure 2: Recommendations for the application of PolyPred, PolyPred+ and related methods. (a) 

Flowchart of recommendations when only European training data is available. (b) Flowchart of 

recommendations when both European and non-European training data are available. We note that when 

working with summary statistics from a meta-analysis of many cohorts, there is typically no LD reference 

panel that closely matches the GWAS population. Also, it is possible that the answers to the flowchart 

questions are different for European vs. non-European training data, in which case the recommendation 

would be to use a hybrid method based on the answers to each flowchart in turn (e.g. PolyFun-pred + 

BOLT-LMM + PRS-CS-pop; not listed in Table 1). For both (a) and (b), we recommend training PolyFun-

pred using a very large LD reference panel (e.g. N=337K UK Biobank British) with a dense SNP set (e.g. 8 

million SNPs). We have facilitated this by publicly releasing summary LD information for N=337K British-

ancestry UK Biobank samples across 18 million SNPs (see Data availability). 

 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 20, 2021. ; https://doi.org/10.1101/2021.01.19.21249483doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.19.21249483
http://creativecommons.org/licenses/by/4.0/


39 
 

 

Figure 3: Cross-population PRS results for simulated UK Biobank traits using in-sample LD. We report 

average prediction accuracy (relative-R2; see main text) for PRS trained in UK Biobank British samples 

(N=337K) and applied to 4 UK Biobank target populations across 100 simulated traits with less polygenic 

(0.1% of SNPs causal; left panel) or more polygenic (0.3% of SNPs causal; right panel) architectures. Target 

population sample sizes are indicated in parentheses; PolyPred and its summary statistic-based analogues 

used 500 additional training samples from each target population to estimate mixing weights. Asterisks 

above each bar denote statistical significance of the difference vs. BOLT-LMM, with black asterisks 

denoting an advantage and red asterisks denoting a disadvantage (*P<0.05; **P<0.001).  Errors bars 

denote standard errors. Numerical results, absolute prediction accuracies (R2), and P-values of relative 

improvements vs. BOLT-LMM are reported in Supplementary Table 1. 
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Figure 4: Cross-population PRS results for real UK Biobank traits. We report average prediction accuracy 

(relative-R2; see main text), meta-analyzed across 7 well-powered, independent traits, for PRS trained in 

UK Biobank British samples (average N=325K) and applied to 4 UK Biobank target populations. Target 

population sample sizes are indicated in parentheses; PolyPred and its summary statistic-based analogues 

used 500 additional training samples from each target population to estimate mixing weights. Asterisks 

above each bar denote statistical significance of the difference vs. BOLT-LMM, with black asterisks 

denoting an advantage and red asterisks denoting a disadvantage (*P<0.05; **P<0.001).  Errors bars 

denote standard errors. Numerical results, results for all 49 traits analyzed, absolute prediction accuracies 

(R2), and P-values of relative improvements vs. BOLT-LMM are reported in Supplementary Tables 4-6. 
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Figure 5: Cross-population PRS results for real UK Biobank traits, using summary statistics from a meta-

analysis of many cohorts. We report average prediction accuracy (relative-R2; see main text), meta-

analyzed across 4 well-powered, approximately independent traits, for PRS trained in European Network 

for Genetic and Genomic Epidemiology (ENGAGE) samples (average N=61,365) and applied to 4 UK 

Biobank populations. Target population sample sizes are indicated in parentheses; PolyPred and its 

summary statistic-based analogues used 500 additional training samples from each target population to 

estimate mixing weights. Asterisks above each bar denote statistical significance of the difference vs. PRS-

CS, with red asterisks denoting a disadvantage (*P<0.05; **P<0.001).  Errors bars denote standard errors. 

Numerical results, results for all 4 traits analyzed, absolute prediction accuracies (R2), and P-values of 

relative improvements vs. PRS-CS are reported in Supplementary Table 5 and Supplementary Table 8. 
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Figure 6: Cross-population PRS results for Biobank Japan and Uganda-APCDR traits. We report average 

prediction accuracy (relative-R2; see main text), meta-analyzed across 7 well-powered, independent traits, 

for PRS trained in UK Biobank British samples (average N=325K) and applied to Biobank Japan and Uganda-

APCDR target populations. Target population sample sizes are indicated in parentheses; PolyPred and its 

summary statistic-based analogues used 500 additional training samples from each target population to 

estimate mixing weights. Asterisks above each bar denote statistical significance of the difference vs. 

BOLT-LMM, with black asterisks denoting an advantage and red asterisks denoting a disadvantage 

(*P<0.05; **P<0.001).  Errors bars denote standard errors. Numerical results, results for all 23 traits 

analyzed, absolute prediction accuracies (R2), and P-values of relative improvements vs. BOLT-LMM are 

reported in Supplementary Table 9. 
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Figure 7: Cross-population PRS results for UK Biobank East Asians when incorporating both European 

and non-European training data. We report average prediction accuracy (relative-R2; see main text), 

meta-analyzed across 7 well-powered, independent traits, for PRS trained in UK Biobank British (average 

N=325K) and Biobank Japan samples (average N=124K; used by PolyPred+ and its summary statistic-based 

analogues only) and applied to UK Biobank East Asians. The target population sample size is indicated in 

parentheses; PolyPred, PolyPred+, and their summary statistic-based analogues used 500 additional 

training samples from the target population to estimate mixing weights. Asterisks above each bar denote 

statistical significance of the difference vs. BOLT-LMM, with black asterisks denoting an advantage and 

red asterisks denoting a disadvantage (*P<0.05; **P<0.001).  Errors bars denote standard errors. 

Numerical results, results for all 23 traits analyzed, absolute prediction accuracies (R2), and P-values of 

relative improvements vs. BOLT-LMM are reported in Supplementary Tables 4-6. 
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