The relationship between sleep disturbance and cognitive impairment in mood disorders: A systematic review

Oliver Pearson1,2, Nora Uglik-Marucha1, Kamilla W. Miskowiak3, Scott A. Cairney4,5, Ivana Rosenzweig6,7, Allan H. Young2,8, Paul R.A. Stokes2,8

1Psychometrics and Measurement Lab, Biostatistics and Health Informatics Department, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, SE5 8AF, London, UK
2Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry & Psychology and Neuroscience, King’s College London
3Copenhagen Affective Disorder Research Centre (CADIC), Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
4Department of Psychology, University of York, York, YO10 5DD
5York Biomedical Research Institute, University of York, York, YO10 5DD
6Sleep and Brain Plasticity Centre, Department of Neuroimaging, IoPPN, KCL
7Sleep Disorders Centre, Guy’s and St Thomas’ Hospital, GSTT NHS, London
8South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Monks Orchard Road, Beckenham, Kent, BR3 3BX, United Kingdom

Corresponding Author:
Oliver Pearson
Email: oliver.pearson@kcl.ac.uk
Research assistant
Psychometrics and Measurement Lab
Department of Biostatistics and Health Informatics
Institute of Psychiatry, Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, London, SE5 8AF, UK

Abstract word count: 256, Text word count: 3436,
Number of Tables: 2, Number of Figures: 1

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Background: Cognitive impairment experienced by people with bipolar disorders (BD) or major depressive disorder (MDD) is associated with impaired psychosocial function and poorer quality of life. Sleep disturbance is another core symptom of mood disorders which may be associated with, and perhaps worsen, cognitive impairments. The aim of this systematic review was to critically assess the relationship between sleep disturbance and cognitive impairment in mood disorders. **Methods:** In this systematic review, relevant studies which examined sleep disturbance and cognitive function in people with mood disorders were identified using electronic database searches of PsychINFO, MEDLINE, Embase and Web of Science. **Findings:** Fourteen studies were included; eight investigated people with BD, five investigated people with MDD, and one included both people with MDD and people with BD. One study was an intervention for sleep disturbance and the remaining thirteen studies used either a longitudinal or cross-sectional observational design. Ten studies reported a significant association between subjectively measured sleep disturbance and cognitive impairment in people with MDD or BD after adjusting for demographic and clinical covariates, whereas no such association was found in healthy participants. Two studies reported a significant association between objectively measured sleep abnormalities and cognitive impairment in mood disorders. One study of cognitive behavioural therapy for insomnia modified for BD (CBTI-BD) found an association between improvements in sleep and cognitive performance in BD. **Interpretation:** There is preliminary evidence to suggest a significant association between sleep disturbance and cognitive impairment in mood disorders. These findings suggest that identifying and treating sleep disturbance may be important when addressing cognitive impairment in MDD and BD. **Funding:** none.

Key words: sleep disturbance, sleep disorder, insomnia, hypersomnia, cognitive impairment, bipolar disorder, major depressive disorder
Introduction

Cognitive impairment in people with bipolar disorders (BD) or major depressive disorder (MDD) is associated with reduced functional capacity,1,2 poor illness prognosis,3,4 and poor quality of life.5,6 Meta-analyses have reported significant deficits in executive function, memory and attention in people with MDD currently experiencing a depressive episode, with effect sizes ranging from $d = -0.32$ to -0.97.7,8 In BD, a meta-analysis has reported moderate effect size deficits in executive function in people experiencing depressive episodes ($d = -0.55$) and large effect sizes in people experiencing manic episodes ($d = -0.72$).9 However, cognitive impairment is not confined to mood episodes, but persists during euthymia in MDD and BD. For example, Rock et al.7 found moderate effect size deficits in executive function and attention in people with remitted MDD, while Semkovska et al.10 identified deficits in working memory and long-term memory. In BD, medium to large effect size deficits in executive function, verbal memory, sustained attention and psychomotor speed have been identified by a meta-analysis.11 Nevertheless, there is considerable heterogeneity in cognitive impairments across people with mood disorders and approximately 35% of people with MDD12 and 20-40% of people with BD13,14 experience moderate to severe impairment in several cognitive domains.

The aetiology of cognitive impairment in mood disorders is not fully understood,15 and determining how cognitive impairment is mediated in MDD and BD is a key priority. Sleep disturbance may be one contributing factor. Sleep disturbances are core features of manic episodes, hypomanic episodes and major depressive episodes manifesting as insomnia or hypersomnia and fatigue in major depressive episodes and a decreased need for sleep in manic or hypomanic episodes.16 There is also growing evidence to suggest that sleep disturbance persists during euthymia in a substantial proportion of people with mood disorders. Clinically significant sleep disturbances are reported by 70% of euthymic people with BD17 and 44-60% of euthymic people with MDD18–20. Moreover, sleep disturbance is associated with higher rates of relapse and suicide attempts in both BD21 and MDD22. Sleep disturbances escalate just before manic and depressive relapse in BD, and worsen during these episodes.23
There is strong evidence detailing the negative effects of sleep disturbance on many aspects of cognition in healthy individuals24, including fragmented memory loss25 and impaired suppression of unwanted thoughts26. Recently, evidence has emerged to suggest an association between sleep disturbance and cognitive impairment in mood disorders. For example, Bradley et al.27 found that people with BD and abnormal sleep patterns, as measured by sleep actigraphy, performed significantly poorer than healthy participants in cognitive performance, whereas people with BD and normal sleep patterns did not significantly differ from healthy participants. As yet, there has not been a systematic review of the relationship between sleep disturbance and cognitive impairment in mood disorders.

The aim of this systematic review was to critically analyse the relationship between sleep disturbance and cognitive impairment in MDD and BD. In particular, the association between sleep disturbance and cognitive impairment, and relevant factors moderating, mediating, and confounding the relationship will be examined.

Methods

Literature search

Two reviewers (OP and NUM) independently performed the literature search. Relevant studies were identified using electronic database searches of PsychINFO, MEDLINE, Embase and Web of Science. The following search string was used: [(sleep disturb*) OR (sleep disorder*) OR (insomn*) OR (hypersomn*)] AND [(cognitive impair*)] AND [(bipolar*) OR (depress*)]. Papers were extracted from inception until February 2021. Only studies written in English were considered. The relevance of the article was initially verified by title and abstract review and then by a further review of each manuscript to verify whether they met the inclusion and exclusion criteria. This systematic review followed PRISMA 202028 guidelines, although a study protocol was not registered.

Inclusion and exclusion criteria

All databases were screened following the same protocol. Included studies were required to include participants with a diagnosis of MDD, BD-I or BD-II, meeting criteria for ICD-929 or subsequent editions, or DSM-III30 or subsequent editions. Included studies were required to measure both sleep disturbance and cognition.
Studies were excluded if they: did not primarily include people with a diagnosis of MDD, BD-I or BD-II; included only participants with dysthymia or cyclothymia or with comorbid neurological disorders (e.g. dementia, epilepsy or stroke) or mild cognitive impairment (MCI); included primarily older participants; were follow-up studies or case reports; were not published by a peer-reviewed scientific journal.

Data extraction
The following data were extracted: study name and year; participant sample size, age range, disorder and mood state of participants, measures of sleep and cognition, a summary of main findings and study limitations.

Quality assessment
Two reviewers (OP and NUM) independently assessed the quality of included studies using the Quality Assessment Tool for Quantitative Studies, developed by the Effective Public Health Practice Project (EPHPP). The following criteria of each study were rated as either strong, moderate or weak: selection bias, design, confounders, blinding, data collection methods, and withdrawals/drop-outs (if applicable). These ratings were aggregated to form a global rating: studies were rated globally as strong if they received no weak ratings; moderate if they received one weak rating; and weak if they received two or more weak ratings.

Results
A total of 3094 studies were identified, which was reduced to 2208 after duplicates were removed. Following primary assessment of titles and abstracts, this was reduced to 30 studies. Based on secondary assessment of full texts, we included 14 studies that fulfilled the eligibility criteria (please see Figure 1 for further details).

INSERT FIGURE 1 HERE PLEASE

Studies
Of the 14 included studies, eight included people with BD, five included people with MDD, and one included both people with MDD and people with BD (see Table 1). These studies were published between years 2012-2020. A total of 2353 people with mood disorders were included in these studies, 1083 people with MDD
and 1270 people with BD. The mood state of participants varied across studies. Of the eight BD studies, six included only euthymic participants\(^{32,33,35,37,44}\), whereas two included participants in any mood state.\(^{27,34}\) Of the five MDD studies, four only included people currently experiencing a depressive episode; however, Wilckens et al. included both people with current depression and people with remitted depression. Mood state was not described in the one study of people with MDD or BD\(^{43}\).

BD results

Six of the eight BD studies reported associations between sleep disturbance and cognitive impairment. Kanady et al.\(^{33}\) found that greater sleep time variability predicted poorer working memory \((p < 0.01)\) and verbal learning performance \((p < 0.01)\) in BD. Furthermore, following treatment with cognitive behaviour therapy for insomnia modified for bipolar disorder (CBTI-BD\(^{45}\)), a reduction in total wake time predicted improved working memory \((p < 0.05)\) and a reduction in sleep time variability predicted improved verbal learning \((p < 0.05)\). Laskemoen et al.\(^{34}\) found significant associations between insomnia and processing speed \((p < 0.001)\), insomnia and inhibition \((p < 0.01)\), hypersomnia and processing speed \((p < 0.01)\), and hypersomnia and inhibition \((p < 0.05)\) in people with BD, whereas no association between sleep disturbances and cognition was found in healthy participants. Samalin\(^{35}\) et al. found that sleep disturbances were indirectly associated with cognitive function potentially mediated via residual depressive symptoms and perceived cognitive performance \((p = 0.001)\). Another study by Samalin et al.\(^{46}\) reported that participants with impaired cognitive functioning had significantly higher scores \((p<0.02)\), and thus more severe sleep disruptions, on PSQI than participants with satisfactory cognitive functioning. Volkert et al.\(^{37}\) reported that people with BD experiencing persistent sleep disturbances show more severe cognitive dysfunctions \((p < 0.05)\). Bradley et al.\(^{27}\) found that people with BD with normal sleep patterns were not significantly different to healthy participants in cognitive functions, but people with BD and sleep disturbance (including objective measures) performed significantly worse in cognitive tests than healthy participants \((p < 0.001)\). Russo et al.\(^{44}\) found that sleep disturbance was significantly negatively associated with social cognition \((r\)
but only associated at a trend level with working memory (r = −0.179, p = 0.061) and visual learning (r = −0.161, p = 0.094). Boland et al.32 reported no significant associations between sleep disturbance (including objective measures) and cognition, except for a significant negative correlation between daytime dysfunction due to sleep disturbance and working memory (r = −0.57, p = 0.03).

MDD results

In MDD, Cabanel et al.38 reported that patients with severely impaired sleep quality (PSQI > 10) had significantly poorer performance on the TMT-A (visuomotor processing speed; p = 0.011) and the TMT-B (executive function; p = 0.015) than people with MDD with normal or moderately impaired sleep quality (PSQI < 10). Cha et al.41 found that sleep quality predicted impairments in subjective cognitive performance (p < 0.001) and objective cognitive impairments (p = 0.017). Depression severity was a partial mediator of the relationship between subjective cognitive function and sleep quality (B = -0.43; 95% CI, -0.56, -0.33; B = -0.18; 95% CI, -0.30, -0.07 after controlling for depression severity). Wilckens et al.42 reported that higher wake after sleep onset (i.e., longer periods of wakefulness occurring after defined sleep onset), and shorter total sleep time, were linearly associated with slower response time across single-task (p = 0.10) and switching blocks (p = 0.005) considered a proxy for condition-independent psychomotor slowing47; however, these associations were also observed in healthy controls and therefore not specific to MDD. Müller et al.39 found that 25-40% of participants with MDD reported ‘almost always’ daytime sleepiness, non-restorative sleep, attention deficits or memory complaints, with significant correlations between these variables (p < 0.05), as well as curvilinear associations between sleep duration and sleep quality (quadratic contrast, p < 0.05). However, Peng et al.40 reported no significant association between cognition and sleep disturbance (r = 0.029, p = 0.219) in adolescents with first episode MDD.

Results in mixed MDD & BD groups

Soehner and Harvey43 (N = 639 MDD participants; N = 138 BD participants) reported that participants with a mood disorder and insomnia in the past year experienced
significantly greater cognitive impairment in the past 30 days than participants with a mood disorder and no insomnia symptoms in the past year (p = 0.004).

Methodological quality assessment
Methodological quality assessment of studies using the EPHPP Quality Assessment Tool for Quantitative Studies31 are displayed in Supplementary Table 1. Selection bias was generally rated as moderate because in most studies participants were sampled from either outpatient clinics or inpatient settings. Study design was generally rated as weak because most were cross-sectional. Most studies controlled for at least 80% of relevant confounding variables, such as age, coffee consumption etc. Blinding was rated as moderate if it was not described, as was the case in almost all studies. Most studies used validated and reliable measures for sleep disturbance (e.g. Pittsburgh Sleep Quality Index, PSQI48) and cognition (e.g. MATRICS Consensus Cognitive Battery, MCCB49), and were therefore rated strong. Where applicable, withdrawals were reported satisfactorily by most studies. There was no association between global rating and positivity of findings.

Discussion
The purpose of this systematic review was to critically analyse the published literature on the relationship between sleep disturbance and cognitive impairment in BD and MDD. Fourteen studies were included in this review, for which quality assessment ranged from weak to strong.

Kanady et al.33 was the only RCT included in this review. This study, in which CBTI-BD45 was administered to participants with BD, found that a reduction in total wake time predicted improved working memory. The study also found that a reduction in sleep time variability predicted improved verbal learning. These findings suggest that sleep disturbance may contribute to cognitive impairment in BD, and that CBTI-BD may be an effective treatment. The remaining studies included in our review used either a longitudinal or cross-sectional design, and therefore did not allow for causal inferences to be made.
Ten of the twelve studies that measured sleep disturbance using subjective measures in participants with either MDD or BD found a significant association between sleep disturbance and cognitive impairment when adjusting for demographic and clinical covariates. In contrast, no significant association was reported in healthy participants, which suggests that this relationship may be specific to mood disorders. Given the strong evidence on the effect of objective sleep disturbance on cognitive impairment in healthy individuals, this may indicate that subjective experience of sleep impairment may also increase risks for cognitive impairment in people with mood disorders. Some studies also found a curvilinear association, indicating that both extremely low (<5 hours) and extremely high (>11 hours) self-reported sleep durations were associated with cognitive impairment; this was observed in participants with MDD (e.g. Müller et al.39) and in BD (e.g. Laskemoen et al.34). However, there was also evidence to suggest that insomnia may have more deleterious effects on cognitive impairment than hypersomnia. For example, Laskemoen et al.34 found a larger effect size between insomnia and processing speed (F = 15.43, p < 0.001, η² = 0.019) than hypersomnia (F = 6.87, p < 0.01, η² = 0.009) in people with BD.

The main disadvantage of using subjective measures to assess sleep disturbance in people with mood disorders is that there is a considerable risk of bias. Euthymic people with either BD or MDD tend to significantly underestimate sleep duration and quality. Indeed, Boland et al.32 found that people with BD had significantly higher insomnia severity index (ISI) scores than healthy participants (indicating worse sleep quality), yet found no significant difference between BD and healthy participants in objective sleep parameters, as measured by actigraphy. This effect may be due to maladaptive sleep-related beliefs developed during mood episodes, in which sleep disturbance is particularly severe, which are then carried over into euthymia. Nevertheless, subjective measures provide valuable information about the perception of sleep disturbance and sleep-related cognitions, and interventions of maladaptive sleep beliefs may be a useful way of treating sleep disturbance in mood disorders. Although antidepressant treatment produces no change in maladaptive sleep beliefs in MDD, Cognitive Behavioural Treatment for Insomnia (CBT-I) has been shown to significantly improve maladaptive sleep beliefs in people with insomnia. CBT-I has been found to significantly improve both subjective sleep
measures, measured by sleep diaries, and objective sleep measures, measured by polysomnography (PSG). Therefore, sleep-related cognitions may be an important target for treating sleep disturbance and potentially cognitive impairment in people with mood disorders.

Only three studies included in this review measured sleep disturbance using objective measures: two examined sleep disturbance in participants with BD using actigraphy27,32 and one investigated sleep disturbance in participants with MDD using polysomnography42. The MDD study that used polysomnography found that longer periods of wakefulness occurring after defined sleep onset were associated with psychomotor slowing, however these associations were not specific to MDD42. One advantage of polysomnography is that it is more accurate than actigraphy in recognising sleep and wake times, and is therefore the ‘gold standard’ of objective sleep measurement. Another key advantage of polysomnography is the ability to measure sleep architecture, however, the Wilckens et al MDD study did not report sleep architecture measurements.

Mood disorders are associated with several sleep architecture abnormalities, particularly altered distribution of rapid eye movement (REM) sleep in MDD52 and BD53. Components of sleep architecture have been linked to aspects of cognitive impairment in healthy individuals. For example, time in slow wave sleep contributes to processing speed in healthy individuals. Abnormal sleep architecture may be associated with cognitive impairment in mood disorders, so sleep architecture may be a highly relevant variable to measure. Moreover, knowledge of the specific components of sleep architecture associated with improvements in mental health or cognition could be targeted in interventions for treatment or prevention. For example, enhancing slow oscillation activity via non-invasive auditory stimulation has been shown to improve memory in healthy individuals55. Thus, we suggest that future studies of the role of sleep in cognition in mood disorders use polysomnography where possible.

Interestingly, the two BD studies which used actigraphy had opposite findings. Bradley et al.27 found a significant association between objective sleep disturbance and cognitive impairment in participants with BD (p < 0.001). Specifically,
participants with BD and abnormal sleep patterns were found to experience deficits in attention and executive function but normal verbal memory. In contrast, Boland et al. found no significant association between objective sleep disturbance and cognitive impairment in participants with BD. However, this study included a relatively small sample size of participants with BD (n=24) which implies low statistical power and risk of type-II error. Nevertheless, taken together, these two BD studies are inconclusive as to the association between objective sleep disturbance and cognitive impairment in people with BD and highlights the need for future research using larger sample sizes and PSG.

Limitations
This review reflects the limited number of studies in the field and so the relatively small number of participants in which the associations between sleep disturbance and cognitive impairment have been investigated, particularly regarding MDD, limits our power to draw wider conclusions. The studies included in our review generally had small sample sizes (N = 48 - 4555), which limited statistical power and increased risks of type-II error. A meta-analysis was not performed because there was significant heterogeneity between studies in the age and mood state of participants, as well as the measures of sleep and cognition used.

In studies examining sleep disturbance and cognitive impairment in mood disorders, it is normally best practice to include only euthymic participants because mood state may affect both sleep disturbance and cognitive impairment, and therefore may be a confound. The MDD studies were particularly weak in this regard, as four of the five MDD studies only included people currently experiencing a depressive episode. The BD studies were stronger, but still varied: six studies only included participants that were euthymic, and two included participants in any mood state.

With the exception of Wilckens et al., none of the included studies adjusted for the use of psychotropic medications in the relationship between sleep disturbance and cognitive impairment. Psychotropic medication may be a confounding variable, as they can affect both sleep and cognition in people with mood disorders. Indeed, Volkert et al. reported that antipsychotic treatment and polypharmacy were related to cognitive impairment. Furthermore, many antipsychotics affect REM sleep, which
has been linked to emotional memory processing58. Without adjusting for the use of psychotropic medications, it is unclear which medications alter the relationship between sleep disturbance and cognitive impairment in mood disorders, and to what extent.

Suggestions for future research

Theoretically, sleep disturbance may cause, predispose or exacerbate cognitive impairment in mood disorders but this link has yet to be adequately evaluated. Further research is clearly needed in this area in participants with mood disorders. Based on the evaluation of current evidence, we would suggest that future studies follow five recommendations. First, studies should include only euthymic participants, to remove the confounding effect of mood state. Second, they should use objective measures of sleep, ideally polysomnography, to evaluate the role of sleep disturbance in mediating cognitive impairment, and to determine which aspects of sleep architecture are linked to cognition in these individuals. Third, all studies should use a comprehensive cognitive battery such as the BACS-A59 or ideally the ISBD-BANC60. Fourth, analyses should adjust for the use of psychotropic medications, as these may also have a confounding effect. Finally, we would suggest that studies use a prospective longitudinal design, and, if possible, use a randomised clinical trial design for intervention studies.

Conclusion

In conclusion, our systematic review provides preliminary evidence for an association between sleep disturbance and cognitive impairment in mood disorders. The studies identified by this systematic review found increased rates of both subjective sleep disturbances and cognitive impairment in people with MDD and BD, compared to healthy participants. Ten of the twelve studies that measured sleep disturbance using *subjective* measures of sleep found a significant association between sleep disturbance and cognitive impairment across both diagnoses when adjusting for demographic and clinical covariates, whereas no significant association was found in healthy participants. In contrast, the evidence was scarcer and more conflicting with regards to whether *objectively* measured sleep abnormalities are associated with cognitive impairment in people with mood disorders: two out of three studies reported significant associations. Only one study33 conducted an
intervention, and reported that improved sleep predicted an improvement in cognition in BD. As cognitive impairment has significant implications for psychosocial functioning in people with mood disorders, these findings highlight the importance of effectively identifying and treating sleep disturbances in people with MDD and BD.
Contributors
OP wrote the report with input from NUM, KWM, SAC, IR, AHY and PRAS. OP and NUM independently performed the literature search and quality assessment. All authors had full access to all the papers in the study and had final responsibility for the decision to submit for publication.

Declaration of interests
OP, NUM, SAC and IR declare no competing interests.
KWM has received consultancy fees from Lundbeck and Janssen-Cilag in the past three years.
PRAS reports non-financial support from Janssen Research and Development LLC, personal fees and non-financial support from Frontiers in Psychiatry, personal fees from Allergan, a grant from H Lundbeck, grants and non-financial support from Corcept Therapeutics, outside the submitted work.
AHY declares:
Employed by King's College London; Honorary Consultant SLaM (NHS UK)
Deputy Editor, BJPsych Open
Paid lectures and advisory boards for the following companies with drugs used in affective and related disorders:
Astrazenaca, Eli Lilly, Lundbeck, Sunovion, Servier, Livanova, Janssen, Allegan, Bionomics, Sumitomo Dainippon Pharma, COMPASS
Consultant to Johnson & Johnson
Consultant to Livanova
Received honoraria for attending advisory boards and presenting talks at meetings organised by LivaNova. Principal Investigator in the Restore-Life VNS registry study funded by LivaNova.
Principal Investigator on ESKETINTRD3004: “An Open-label, Long-term, Safety and Efficacy Study of Intranasal Esketamine in Treatment-resistant Depression.”
Principal Investigator on “The Effects of Psilocybin on Cognitive Function in Healthy Participants”
Principal Investigator on “The Safety and Efficacy of Psilocybin in Participants with Treatment-Resistant Depression (P-TRD)”
UK Chief Investigator for Novartis MDD study MIJ821A12201
Grant funding (past and present): NIMH (USA); CIHR (Canada); NARSAD (USA); Stanley Medical Research Institute (USA); MRC (UK); Wellcome Trust (UK); Royal
College of Physicians (Edin); BMA (UK); UBC-VGH Foundation (Canada); WEDC (Canada); CCS Depression Research Fund (Canada); MSFHR (Canada); NIHR (UK). Janssen (UK)
No shareholdings in pharmaceutical companies
References

36. Ullah MH. Effects of sleep disturbance on cognitive functioning in bipolar disorder type 1: a correlational study design. *ProQuest Diss Publ.* Published online 2017.

Table 1. Characteristics and findings of studies examining sleep disturbance and cognitive impairment in MDD

<table>
<thead>
<tr>
<th>Study</th>
<th>Mood disorder(s) studied</th>
<th>Participants</th>
<th>Measures</th>
<th>Main findings</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabanel et al.</td>
<td>MDD</td>
<td>Total N = 63 N = 34 MDD participants (27 with single and 7 with recurrent depression; 9 with comorbid anxiety disorders), mean age 33.0 ± 8.9 N = 29 healthy participants, mean age 31.5 ± 7.8</td>
<td>Sleep: PSQI Cognition: TMT-A, TMT-B</td>
<td>Patients with severely impaired sleep quality (PSQI > 10) had significantly poorer performance on the TMT-A (visuomotor processing speed; (p = 0.011)) and the TMT-B (executive function; (p = 0.015)), and remained significant after Bonferroni correction ((\alpha = 0.025) per tests), than patients with no or moderately impaired sleep quality (PSQI > 10).</td>
<td>The use of subjective measure of sleep instead of objective sleep battery. Neuropsychological assessment only evaluated a subdomain of executive functions. Particularly small sample size.</td>
</tr>
</tbody>
</table>
Cha et al.

MDD

Total N = 200, aged 18 to 65

N = 100 participants

with recurrent MDD

N = 100 sex-, age-, education-matched healthy participants

Sleep: PSQI

Cognition: computerised
cognitive assessment tool

THINC-integrated tool that included CRT, the One Back Memory task, DSST, TMT-B, PDQ-5.

Sleep quality predicted impairments in subjective cognitive performance ($p < 0.001$) and objective cognitive impairments ($p = 0.017$). Depression severity was a partial mediator of the relationship between subjective cognitive function and sleep quality ($B = -0.43; 95\% CI, -0.56, -0.33$). After controlling for the depression severity, the direct effect of sleep quality on subjective cognition performance remained significant ($B = -0.18; 95\% CI, -0.30, -0.07$).

The use of subjective measure of sleep instead of objective measure of sleep was a partial mediator of the relationship between subjective cognitive function and sleep quality ($B = 0.23; 95\% CI, 0.09, 0.37$).

The use of subjective measure of sleep instead of objective measure of sleep was a partial mediator of the relationship between subjective cognitive function and sleep quality ($B = 0.23; 95\% CI, 0.09, 0.37$).

Wilckens et al.

MDD

Total N=53, aged 48 to 79 years of age

N=17 participants

with recurrent MDD

Sleep: two nights of PSG

Cognition: computer-based
task-switching paradigm

Higher wake after sleep onset and shorter total sleep time were linearly associated with slower response time across single-task ($p = 0.003$); however, these associations were not specific to MDD.

Participants with history of MDD were more likely to take antidepressants at the time of the study.

Sleep quality predicted impairments in subjective cognitive performance ($p < 0.001$) and objective cognitive impairments ($p = 0.017$). Depression severity was a partial mediator of the relationship between subjective cognitive function and sleep quality ($B = -0.43; 95\% CI, -0.56, -0.33$). After controlling for the depression severity, the direct effect of sleep quality on subjective cognition performance remained significant ($B = -0.18; 95\% CI, -0.30, -0.07$).

The use of subjective measure of sleep instead of objective measure of sleep was a partial mediator of the relationship between subjective cognitive function and sleep quality ($B = 0.23; 95\% CI, 0.09, 0.37$).
<table>
<thead>
<tr>
<th>Study</th>
<th>MDD</th>
<th>Total N = 154, aged 19-89</th>
<th>Sleep: SQH</th>
<th>25-40% of participants with MDD reported ‘almost always’ daytime sleepiness, non-restorative sleep, attention deficits or memory complaints, with significant correlations between these variables ($p < 0.05$), as well as curvilinear associations between sleep duration and memory and sleep quality (quadratic contrast, $p < 0.05$).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Müller et al.</td>
<td>MDD</td>
<td>N = 154 MDD participants</td>
<td>Cognition: SQH</td>
<td>The use of a subjective measure of sleep instead of objective sleep battery. Did not use a validated measure of cognitive function.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The study, thus possibly affecting sleep and/or cognition. Did not exclude ages >65. Particularly small sample size.</td>
</tr>
</tbody>
</table>

N = 36 participants with no recurrent MDD

N = 28 participants with no lifetime MDD

N = 25 participants with lifetime MDD
<table>
<thead>
<tr>
<th>Study</th>
<th>Disorder</th>
<th>N/A</th>
<th>Participants</th>
<th>Sleep Measures</th>
<th>Cognition Measures</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peng et al.</td>
<td>MDD</td>
<td>Total N = 178, aged 15–30</td>
<td>N = 128 first-episode MDD participants, N = 50 healthy participants</td>
<td>Sleep: PSQI, Cognition: MCCB</td>
<td>No significant association between cognition and sleep disturbance ((r = 0.029, p = 0.219)) in adolescents with first episode MDD.</td>
<td>The use of subjective measure of sleep instead of objective sleep battery. Included participants aged <18.</td>
</tr>
<tr>
<td>Boland et al.</td>
<td>BD</td>
<td>Total N = 48, aged 18-65</td>
<td>N = 24 euthymic BD participants, N = 24 healthy participants</td>
<td>Sleep: ISI, UCII, PSQI, wrist actigraphy, DKEFS (Stroop subtest only), Tower of London, CVLT-II, WMS-III (digit span subtest only)</td>
<td>No significant associations between sleep disturbance (including objective measures) and cognition, except for a significant negative correlation between daytime dysfunction due to sleep disturbance and working memory ((r = -0.57, p = 0.03)).</td>
<td>Particularly small sample size.</td>
</tr>
<tr>
<td>Study</td>
<td>N</td>
<td>Aged</td>
<td>Sleep Measures</td>
<td>Cognitive Measures</td>
<td>Findings</td>
<td>Limitations</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Bradley et al.²⁴</td>
<td>88</td>
<td>18-65</td>
<td>Wrist actigraphy</td>
<td>NART, PVT, ANT, DSST, NSMT</td>
<td>People with BD with normal sleep patterns were not significantly different to healthy participants in cognitive functions, but people with BD and sleep disturbance (including objective and subjective measures) performed significantly worse in cognitive tests than healthy participants (p < 0.001).</td>
<td>Did not adjust for the mood state of participants. Particularly small sample size.</td>
</tr>
<tr>
<td>Kanady et al.³³</td>
<td>66</td>
<td>18-65</td>
<td>ISI, PSQI, DSISD, sleep diary</td>
<td>N-Back Task and WMS-III (digit span subtest only)</td>
<td>Greater sleep time variability predicted poorer working memory (p < 0.01) and verbal learning performance (p < 0.01) in BD. Furthermore, following treatment of cognitive behaviour therapy for insomnia modified for bipolar disorder (CBTI-BD³⁸), a reduction in total wake time predicted improved working memory (p < 0.05) and a reduction in sleep time variability predicted improved verbal learning (p < 0.05).</td>
<td>No healthy control group. Particularly small sample size.</td>
</tr>
<tr>
<td>Study</td>
<td>Group</td>
<td>N</td>
<td>Aged</td>
<td>Sleep Measures</td>
<td>Cognition Measures</td>
<td>Results</td>
</tr>
<tr>
<td>---------------</td>
<td>-------</td>
<td>-------</td>
<td>--------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td>Laskemoen et al. 34</td>
<td>BD</td>
<td>979</td>
<td>18-65</td>
<td>Total N = 979, N = 340 BD participants, in any mood state</td>
<td>Total N = 457 schizophrenia participants, N = 182 healthy control participants</td>
<td>Significant associations between insomnia and processing speed (p < 0.001), insomnia and inhibition (p < 0.01), hypersomnia and processing speed (p < 0.01), objective sleep and hypersomnia and inhibition (p < 0.05) in people with BD, whereas no association between sleep disturbances and cognition was found in healthy participants.</td>
</tr>
<tr>
<td>Russo et al.</td>
<td>BD</td>
<td>117</td>
<td>18-65</td>
<td>Total N = 117, N = 117 euthymic BD participants</td>
<td>N = 117 euthymic BD participants</td>
<td>Sleep disturbance was significantly negatively associated with social cognition (r = −0.273, p = 0.004), and approached significance with working memory (r = −0.179, p = 0.061) and visual learning (r = −0.161, p = 0.094). Path analyses indicated that social cognition and working memory were directly (negatively) predicted by sleep disruptions.</td>
</tr>
<tr>
<td>Samalin et al.</td>
<td>BD</td>
<td>Total N = 468, aged >18 N = 468 euthymic BD participants</td>
<td>Sleep: PSQI Cognition: VAS and FAST</td>
<td>Sleep disturbances were indirectly associated with functioning (including cognition) via residual depressive symptoms and perceived cognitive performance ((p = 0.001)).</td>
<td>The use of subjective measures of cognitive functioning and sleep instead of objective neuropsychological and sleep batteries. Did not exclude ages >65. No control group.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Samalin et al.</td>
<td>BD</td>
<td>Total N = 468, mean age 47.7 ± 12.5 N=468 adult outpatients with bipolar I disorder or bipolar II disorder</td>
<td>Sleep: PSQI Cognition: VAS and FAST</td>
<td>Participants with impaired cognitive functioning had significantly higher scores ((p<0.02)), and thus more severe sleep disruptions, on PSQI than participants with satisfactory cognitive functioning.</td>
<td>The use of subjective measures of cognitive functioning and sleep instead of objective neuropsychological and sleep batteries. Did not exclude ages >65. No control group.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Diagnosis</td>
<td>Population</td>
<td>Sleep Measures</td>
<td>Cognition Measures</td>
<td>Results</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Volkert et al. (^{37})</td>
<td>BD</td>
<td>Total N = 140, aged 18–65, N = 70 euthymic BD participants, N = 70 healthy participants</td>
<td>Sleep: MADRS (item pertaining to sleep disturbance)</td>
<td>Cognition: TAP, CVLT, TOL, RWT</td>
<td>People with BD suffering from persistent sleep disturbances show more severe cognitive dysfunctions (p < 0.05).</td>
<td></td>
</tr>
<tr>
<td>Soehner and Harvey (^{43})</td>
<td>BD & MDD</td>
<td>Total N = 5,692, aged >18, N = 3,711 participants with no mood or anxiety disorder</td>
<td>Sleep: series of self-report questions</td>
<td>Cognition: items from WHO-DAS pertaining to cognition</td>
<td>Participants with a mood disorder and any insomnia symptom in the past year had significantly greater 30-day cognitive impairment than participants with a mood disorder and no insomnia symptoms in the past year (p = 0.004).</td>
<td></td>
</tr>
</tbody>
</table>

Did not use a validated measure of sleep disturbance.

Subjective measures of sleep and cognition.

Did not exclude ages >65. No control group.

Did not use a validated measure of sleep disturbance.
<table>
<thead>
<tr>
<th>N with mood disorders only</th>
<th>N with anxiety disorders only</th>
<th>N with comorbid mood and anxiety disorders</th>
</tr>
</thead>
<tbody>
<tr>
<td>327 participants</td>
<td>1,137 participants</td>
<td>517 participants</td>
</tr>
</tbody>
</table>

Abbreviations: TMT, Trail Making Test part A and B; CRT: Choice Reaction Time; DSST, Digit Symbol Substitution Test; PDQ-5-D, Perceived Deficits Questionnaire-5-item for Depression; PSI, polyomnography; MCI, mild cognitive impairment; Quality in Hospital settings in German language; R2; PSQI, Pittsburgh Sleep Quality Index; R3; WMS-III, Wechsler Memory Scale-III; R4; MCB, MCCB, MATRICS Consensus Cognitive Battery; R5; ISI, Insomnia Severity Index; R6; DSISD, Duke Structured Interview for Sleep Disorder; R7; IDS-C, Inventory of Depressive Symptoms — Clinician rated scale; R8; SADS-C, Schedule for Affective Disorders and Schizophrenia-Change; R9; MADRS, Montgomery-Asberg Depression Rating Scale; R10; KBIT-II, Kaufman Brief Intelligence Test Second Edition; R11.
DKEFS, Delis-Kaplan Executive Functioning System69; TOL, Tower of London70; CVLT, California Verbal Learning Test71; CVLT-II, California Verbal Learning Test Second Edition72; NART, National Adult Reading Test73; PVT, Psychomotor vigilance Test74; ANT, Attention Network Test75; DSST, Digit Symbol Substitution Test76; NSMT, Newcastle Spatial Memory Task77; VAS, visual analogic scale78; FAST, Functioning Assessment Short Test80; STAN, South Texas Assessment of Neurocognition79; TAP, Test battery of Attentional Performance80; RWT, Regensburger Wortflüssigkeits Test81; ESS, Epworth Sleepiness Scale82; WHO-DAS, World Health Organization Disability Assessment Schedule-II.
Supplementary Tables

Supplementary Table 1: Methodological evaluation of studies using the EPHPP Quality Assessment Tool for Quantitative Studies

<table>
<thead>
<tr>
<th>Author and year</th>
<th>Mood disorder(s) studied</th>
<th>Selection bias</th>
<th>Study design</th>
<th>Confounders</th>
<th>Blinding</th>
<th>Data collection method</th>
<th>Withdrawals and dropouts</th>
<th>Global rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soehner and Harvey, 2012</td>
<td>MDD and BD</td>
<td>Moderate</td>
<td>Weak</td>
<td>Strong</td>
<td>Moderate</td>
<td>Moderate</td>
<td>N/A</td>
<td>Moderate</td>
</tr>
<tr>
<td>Cabanel et al., 2019</td>
<td>MDD</td>
<td>Moderate</td>
<td>Weak</td>
<td>Strong</td>
<td>Moderate</td>
<td>Strong</td>
<td>N/A</td>
<td>Moderate</td>
</tr>
<tr>
<td>Cha et al., 2019</td>
<td>MDD</td>
<td>Moderate</td>
<td>Weak</td>
<td>Strong</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>Muller et al., 2017</td>
<td>MDD</td>
<td>Moderate</td>
<td>Weak</td>
<td>Strong</td>
<td>Moderate</td>
<td>Weak</td>
<td>N/A</td>
<td>Weak</td>
</tr>
<tr>
<td>Peng et al., 2018</td>
<td>MDD</td>
<td>Moderate</td>
<td>Weak</td>
<td>Strong</td>
<td>Moderate</td>
<td>Strong</td>
<td>N/A</td>
<td>Moderate</td>
</tr>
<tr>
<td>Wilckens et al., 2020</td>
<td>MDD</td>
<td>Moderate</td>
<td>Weak</td>
<td>Strong</td>
<td>Moderate</td>
<td>Strong</td>
<td>N/A</td>
<td>Moderate</td>
</tr>
<tr>
<td>Boland et al., 2015</td>
<td>BD</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>Bradley et al., 2020</td>
<td>BD</td>
<td>Strong</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
</tr>
<tr>
<td>Kanady et al., 2017</td>
<td>BD</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>Strong</td>
</tr>
<tr>
<td>Laskemoen et al., 2020</td>
<td>BD</td>
<td>Strong</td>
<td>Weak</td>
<td>Strong</td>
<td>Moderate</td>
<td>Moderate</td>
<td>N/A</td>
<td>Moderate</td>
</tr>
<tr>
<td>Russo et al., 2015</td>
<td>BD</td>
<td>Moderate</td>
<td>Weak</td>
<td>Moderate</td>
<td>Strong</td>
<td>Strong</td>
<td>N/A</td>
<td>Moderate</td>
</tr>
<tr>
<td>Samalin et al., 2017</td>
<td>BD</td>
<td>Strong</td>
<td>Weak</td>
<td>Weak</td>
<td>Moderate</td>
<td>Strong</td>
<td>N/A</td>
<td>Weak</td>
</tr>
<tr>
<td>Samalin et al., 2016</td>
<td>BD</td>
<td>Strong</td>
<td>Weak</td>
<td>Weak</td>
<td>Moderate</td>
<td>Strong</td>
<td>N/A</td>
<td>Weak</td>
</tr>
</tbody>
</table>
Figure 1. PRISMA 2020 Flow Diagram of study selection process