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Figure S1: Basic assumptions of Mendelian randomisation. (1) Relevance – genetic data,

denoted by G, is robustly associated with the exposure. (2) Exchangeability – G is not associated with

any confounder of the exposure-outcome relationship. (3) Exclusion restriction – G is independent of the

outcome conditional on the exposure and all confounders of the exposure-outcome relationship (i.e. the

only path between the instrument and the outcome is via the exposure).
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1.1 Likelihood function identifiability1009

The likelihood function is symmetric around U , but for simplicity we will consider the general1010

case where the variables of U and X are flipped, although the same can be said for the variables1011

of U and Y . The likelihood function is partially identifiable such that there exists for any given1012

model parameters, another model with di↵erent parameters but with the exact same likelihood1013

function.1014

Proof: given that the SNPs e↵ects between trait X and the confounder U are flipped, the new1015

parameters follow the following structure:1016

h0
x = tx + ty · ↵y!x

h0
y = hy

↵0
y!x = ↵y!x

↵0
x!y =

qx · ↵x!y + qy
qx + qy · ↵y!x

=
qx(↵x!y + qy

qx
)

qx(1 + qy
qx

· ↵y!x)

=
↵x!y + qy

qx

1 + qy
qx

· ↵y!x

through inverse transformation,1017

↵x!y =
↵0
x!y +

q0y
q0x

1 +
q0y
q0x

· ↵y!x

Plugging in ↵0
x!y in the above equation, and simplifying ty

tx by w and ty0

tx0 by w0 to get the1018

confounding ratio:1019

↵x!y =
↵0
x!y + w0

1 + w0 · ↵y!x

↵x!y + ↵x!y · w0 · ↵y!x = ↵0
x!y + w0

↵x!y � ↵0
x!y = w0 � ↵x!y · w0 · ↵y!x

↵x!y � ↵0
x!y = w0(1 � ↵x!y · ↵y!x)

w0 =
↵x!y � ↵0

x!y

1 � ↵x!y · ↵y!x
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inserting the complete form of ↵0
x!y,1020

w0 =
↵x!y �

↵x!y+
qy
qx

1+
qy
qx

·↵y!x

1 � ↵x!y · ↵y!x

=
↵x!y(1 + w · ↵y!x) � w � ↵x!y

(1 � ↵x!y · ↵y!x)(1 + w · ↵y!x)

=
↵x!y · w · ↵y!x � w

(1 � ↵x!y · ↵y!x)(1 + w · ↵y!x)

=
w(↵x!y · ↵y!x � 1)

(1 � ↵x!y · ↵y!x)(1 + w · ↵y!x)

=
�w

1 + w · ↵y!x

In order to obtain t0y and t0x, we use the equations of h0
x, ↵0

x!y and by using the inverse trans-1021

formation of ↵0
y!x = ↵y!x, ↵x!y as well as w0 as follows:1022

t0y =
�t0x · w

1 + w · ↵y!x

hx = t0x + t0y · ↵y!x

= t0x +
�t0x · w

1 + w · ↵y!x
· ↵y!x

=
t0x + t0x · w · ↵y!x � t0x · w · ↵y!x

1 + w · ↵y!x

=
t0x

1 + w · ↵y!x

t0x = hx(1 + w · ↵y!x)

Replacing t0x in hx to get t0y:1023

t0y = hx · w

Under these two models with equal likelihood, there are three slopes obtained from the ob-1024

served data: two are the correlation of e↵ect sizes (↵x!y and 1/↵y!x), where one of them is1025

greater than, and the other is within the parameter bounds. The third is the correlation of the1026

confounder
↵x!y+

qy
qx

1+
qy
qx

·↵y!x
.1027

More often than not, only one slope is recovered within the boundaries of the parameters set1028

for LHC-MR. However, given the now known re-parameterisation, the second (and if found,1029

third) slope can be simply calculated if not found by the likelihood function minimisation. It1030

is reasonable to assume that the direct heritability of each trait is larger than the indirect1031

heritability, hence we report parameter sets where h2
x > t2x or h2

y > t2y.1032
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Figure S2: An illustration of a scatter plot showing simulated observed SNP e↵ects on
traits X and Y , coloured by the strongest e↵ect between the three vectors �x, �y, �u. SNPs in
grey are those with no e↵ect on any of the traits. This illustration shows the distinct clusters that could
arise in the presence of a confounder. The dark blue cluster of SNPs represents those that are not in
violation of any of the MR assumption, and hence its slope reflects the true causal e↵ect of X on Y , while
the red cluster of SNPs are those associated with the confounder. The steeper slope of the red cluster of
SNPs causes a typical regression line - shown in grey - that represents the causal e↵ect (estimated using
conventional MR methods) to be overestimated.
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Figure S3: A schema showing the workflow of the simulation results. For a single set of
parameter settings, 50 di↵erent data generations of GWAS summary statistics are created for trait X
and Y . The summary statistics of a single data generation, as well as the sample size, SNP number and
SNP-based LD structure are used in the likelihood optimisation function that is run with 100 di↵erent
random starting points in order to explore the likelihood surface. A single maximum likelihood and its
corresponding estimated parameters are selected to represent the estimates of that data generation. And
this is repeated for the other generations. The results for several data generation are often represented
in boxplots throughout the paper.
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Figure S4: Simulation results under various scenarios. These Raincloud boxplots[28] represent
the distribution of parameter estimates from 50 di↵erent data generations under various conditions. For
each generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect.
The true values of the parameters used in the data generations are represented by the blue dots/lines.
a Estimation under standard settings (⇡x = 5 ⇥ 10�3, ⇡y = 1 ⇥ 10�2, ⇡u = 5 ⇥ 10�2, h2

x = 0.25, h2
y =

0.2, h2
u = 0.3, tx = 0.16, ty = 0.11). b Addition of a reverse causal e↵ect ↵y!x = �0.2. c Confounder

with opposite causal e↵ects on X and Y (tx = 0.16, ty = �0.11).6



Figure S5: Simulation results showing varying sample sizes for the two exposure and
outcome samples. Raincloud boxplots representing the distribution of parameter estimates from 50
di↵erent data generations. For each generation, standard MR methods as well as our LHC-MR were used
to estimate a causal e↵ect. The true values of the parameters used in the data generations are represented
by the blue dots/lines. In this figure, samples sizes for the two traits di↵er as such nx = 500,000 and
ny = 50,000 for a, and nx = 50,000 and ny = 500,000 for b.
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Figure S6: Simulation results under various scenarios. These Raincloud boxplots[28] represent
the distribution of parameter estimates from 50 di↵erent data generations under various conditions. For
each generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect.
The true values of the parameters used in the data generations are represented by the blue dots/lines.
a The data simulated had no causal e↵ect in either direction. b The data simulated had no confounder
e↵ect with ⇡u, tx, and ty = 0. c This model had a small causal e↵ect of ↵x!y = 0.1.
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Figure S7: Simulation results under various scenarios. These Raincloud boxplots[28] represent
the distribution of parameter estimates from 50 di↵erent data generations under various conditions. For
each generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect.
The true values of the parameters used in the data generations are represented by the blue dots/lines.
a The data simulated had no causal e↵ect in either direction. b The data simulated had no confounder
e↵ect with ⇡u, tx, and ty = 0. c This model had a small causal e↵ect of ↵x!y = 0.1.

9



Figure S8: Simulation results under various scenarios. These Raincloud boxplots[28] represent
the distribution of parameter estimates from 50 di↵erent data generations under various conditions. For
each generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect.
The true values of the parameters used in the data generations are represented by the blue dots/lines.
a The data simulated shows the increased e↵ect of U on X and Y through tx = 0.41, ty = 0.27 instead
of the standard setting tx = 0.16, ty = 0.11. b This panel show the same thing but with a larger sample
size of nx = ny = 500, 000
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Figure S9: Simulation results where there is an increased polygenicity for all traits. Box-
plots representing the distribution of parameter estimates from 100 di↵erent data generations. For each
generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. The
true values of the parameters used in the data generations are represented by the blue dots/lines. The
proportion of e↵ective SNPs that make up the spike-and-slab distributions of the � vectors in this
setting is 10%, 15%, and20% for traits X, Y and U respectively. a Results for smaller sample size of
nx = ny = 50, 000. b Results for larger sample size of nx = ny = 500, 000.
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Figure S10: Simulation results where the polygenicity of the confounder is reduced. Box-
plots representing the distribution of parameter estimates from 100 di↵erent data generations. For each
generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. The
true values of the parameters used in the data generations are represented by the blue dots/lines. In this
figure, the polygenicity for U is decreased in the form of lower ⇡u = 0.01. a Results for smaller sample
size of nx = ny = 50, 000. b Results for larger sample size of nx = ny = 500, 000.
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Figure S11: Simulation results where there are two underlying confounders, once with
concordant and another with discordant e↵ects on the exposure-outcome pair. Boxplots rep-
resenting the distribution of parameter estimates from 100 di↵erent data generations. For each generation,
standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. The true values of
the parameters used in the data generations are represented by the blue dots/lines. a The underlying
data generations have two concordant heritable confounders U1 and U2 with positive e↵ects on traits X

and Y . b The data generations have two discordant heritable confounders with t(1)x = 0.16, t(1)y = 0.11

shown as blue dots and t(2)x = 0.22, t(2)y = �0.16 shown as red dots.
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Figure S12: Simulation results where there are two underlying confounders, once with
concordant and another with discordant e↵ects on the exposure-outcome pair. Boxplots rep-
resenting the distribution of parameter estimates from 100 di↵erent data generations. For each generation,
standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect. The true values of
the parameters used in the data generations are represented by the blue dots/lines. a The underlying
data generations have two concordant heritable confounders U1 and U2 with positive e↵ects on traits X

and Y . b The data generations have two discordant heritable confounders with t(1)x = 0.16, t(1)y = 0.11

shown as blue dots and t(2)x = 0.22, t(2)y = �0.16 shown as red dots.

14



Figure S13: Simulation results under various scenarios. These Raincloud boxplots[28] represent
the distribution of parameter estimates from 50 di↵erent data generations under various conditions. For
each generation, standard MR methods as well as our LHC-MR were used to estimate a causal e↵ect.
The true values of the parameters used in the data generations are represented by the blue dots/lines. a
The di↵erent coloured boxplots represent the underlying non-normal distribution used in the simulation
of the three �x, �x, �u vectors associated to their respective traits. The Pearson distributions had the
same 0 mean and skewness, however their kurtosis ranged between 2 and 10, including the kurtosis of 3,
which corresponds to a normal distribution assumed by our model. The standard MR results reported
had IVs selected with a p-value threshold of 5⇥ 10�6. b Addition of a third component for exposure X,
while decreasing the strength of U . True parameter values are in colour, blue and red for each component
(⇡x1 = 1 ⇥ 10�4, ⇡x2 = 1 ⇥ 10�2, h2

x1 = 0.15, h2
x2 = 0.1).
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Figure S14: Running CAUSE on LHC-MR simulated data under the standard settings.
Boxplots of the parameter estimation of CAUSE on LHC-simulated data (nx = ny = 50, 000) under three
di↵erent scenarios: presence of a shared factor only, presence of a causal e↵ect only, presence of both.
CAUSE returns two possible models with a respective p-value, the sharing and the causal model, where
the causal mode is the significant of the two. When only an underlying shared factor was present in the
simulated data, CAUSE had no significant causal estimates. With a true underlying causal e↵ect, or
when both an underlying causal e↵ect and a shared factor was present, the causal model was significant
only 4% of the simulations.
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Figure S15: Running CAUSE on LHC-MR simulated data under the standard settings.
Boxplots of the parameter estimation of CAUSE on LHC-simulated data (nx = ny = 500, 000) under
three di↵erent scenarios: presence of a shared factor only, presence of a causal e↵ect only, presence of
both. CAUSE returns two possible models with a respective p-value, the sharing and the causal model,
where the causal mode is the significant of the two. When only an underlying shared factor was present in
the simulated data, CAUSE had no significant causal estimates. With a true underlying causal e↵ect, or
when both an underlying causal e↵ect and a shared factor was present, the causal model was significant
100% of the simulations.
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Figure S16: Running LHC-MR on CAUSE simulated data under various scenarios. Rain-
cloud boxplots representing the distribution of parameter estimates from LHC-MR of 50 di↵erent data
generations using the CAUSE framework. For each generation, standard MR methods, CAUSE as well
as our LHC-MR were used to estimate a causal e↵ect. The true values of the parameters used in the data
generations are represented by the blue dots/lines. a CAUSE data was generated with no causal e↵ect
but with a shared factor with an ⌘ value of ⇠ 0.22. CAUSE chooses a sharing model 100% of the time
with no estimate for a causal e↵ect. b CAUSE is simulated with causal e↵ect but with no shared factor.
c CAUSE is simulated with both a causal e↵ect and a shared factor.
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Figure S17: Running LHC-MR on CAUSE simulated data under various scenarios. Rain-
cloud boxplots representing the distribution of parameter estimates from LHC-MR of 50 di↵erent data
generations using the CAUSE framework. For each generation, standard MR methods, CAUSE as well
as our LHC-MR were used to estimate a causal e↵ect. The true values of the parameters used in the data
generations are represented by the blue dots/lines. a CAUSE data was generated with no causal e↵ect
but with a shared factor with an ⌘ value of ⇠ 0.22. b CAUSE is simulated with causal e↵ect but with
no shared factor. c CAUSE is simulated with both a causal e↵ect and a shared factor. LHC-MR seems
to exhibit a bimodal e↵ect at first glance, but the two peaks are not connected.
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Figure S19: A scatter plot of the causal e↵ect estimates between LHC-MR and CAUSE.
To improve visibility, non-significant estimates by both methods are placed at the origin, while significant
estimates by both methods appear on the diagonal with 95% CI error bars for LHC-MR estimates, and
95% credible interval error bars for CAUSE estimates. Labelled pairs are those with an estimate di↵erence
greater than 0.1.
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Supplementary Tables1033

UKBB ID / Data Origin Trait Name Abbreviation Sample Size PMID

845 Age completed full time education Edu 240,547 25826379
21001 irnt Body mass index (BMI) BMI 359,983 25826379

2443 Diabetes diagnosed by doctor DM 360,192 25826379
20002 1075 Non-cancer illness code, self-reported: heart attack/myocardial infarction MI 361,141 25826379
20002 1111 Non-cancer illness code, self-reported: asthma Asthma 361,141 25826379

2887 Number of cigarettes previously smoked daily PSmoke 84,456 25826379
20022 irnt Birth weight BWeight 205,475 25826379
50 irnt Standing height SHeight 360,388 25826379
4080 Systolic blood pressure, automated reading SBP 340,159 25826379

20003 1140861958 Treatment/medication code: simvastatin SVstat 361,141 25826379
30780 irnt LDL Cholesterol LDL 343,621 25826379
30760 irnt HDL Cholesterol HDL 315,133 25826379

UKBB + CARDIoGRAMplusC4D Coronary Artery Disease CAD 380,831 29212778

Table S1: Details of the origin study of each trait, its abbreviation used in this paper, the
sample size of the study for that trait, as well as the PubMed article ID.
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Table S7: Cross tables between LHC-MR and various standard MR methods comparing
the significance and sign of each respective causal estimate. f shows a cross table between the
two-least correlated MR methods in terms of their estimates.
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Pair ↵x!y p-value � IVW ↵x!y p-value

BMI-Asthma 0.1290 4.99E-14 0.02 (0.01, 0.02) 0.0593 1.00E-08
BMI-DM 0.2958 1.07E-99 0.04 (0.03, 0.04) 0.2447 2.25E-140
BMI-SBP 0.1878 5.55E-09 0.13 (0.11, 0.14) 0.1547 1.11E-24
BMI-SVstat 0.1670 2.08E-91 0.03 (0.03, 0.03) 0.1570 4.26E-63
BMI-MI 0.1396 1.67E-41 0.01 (0.01, 0.01) 0.1027 9.16E-32
BWeight-SHeight 0.4748 9.60E-18 0.34 (0.29, 0.39) 0.2959 8.01E-10
SHeight-BWeight 0.1806 1.93E-53 0.24 (0.22, 0.25) 0.1803 7.21E-86
SBP-DM 0.1437 3.17E-07 0.02 (0.01, 0.02) 0.0697 3.69E-07
DM-SVstat 0.3147 4.11E-12 0.39 (0.33, 0.46) 0.2524 1.28E-16
SHeight-Edu 0.0715 8.42E-09 0.08 (0.07, 0.09) 0.0643 2.28E-21
SBP-SVstat 0.2089 4.84E-26 0.04 (0.04, 0.05) 0.1853 1.46E-52
Edu-HDL 0.4037 5.25E-12 0.22 (0.17, 0.27) 0.2848 4.06E-08
BMI-CAD 0.2373 2.37E-64 0.28 (0.25, 0.32) 0.1800 2.42E-53
CAD-DM 0.1920 5.92E-13 0.01 (0.01, 0.01) 0.0659 0.002455431
DM-CAD 0.4283 5.60E-19 1.95 (1.26, 2.64) 0.1796 4.15E-05
SBP-CAD 0.2807 2.86E-46 0.45 (0.39, 0.51) 0.2500 9.77E-24
CAD-SVstat 0.2491 8.82E-44 0.03 (0.03, 0.04) 0.3077 1.15E-25
CAD-MI 0.4634 0 0.02 (0.02, 0.02) 0.4191 3.07E-285
LDL-CAD 0.3402 1.17E-45 0.31 (0.24, 0.38) 0.2014 8.56E-27
BMI-Edu -0.2241 3.74E-14 -0.12 (-0.14, -0.11) -0.1892 6.15E-35
SHeight-BMI -0.1278 1.40E-22 -0.13 (-0.14, -0.11) -0.0854 9.01E-23
SBP-BWeight -0.2565 9.85E-08 -0.13 (-0.16, -0.1) -0.1646 1.20E-11
SBP-SHeight -0.3657 4.81E-08 -0.12 (-0.15, -0.1) -0.0967 0.004422636
SHeight-SBP -0.0759 5.74E-05 -0.08 (-0.09, -0.07) -0.0652 1.25E-15
SHeight-SVstat -0.0465 4.76E-09 -0.01 (-0.02, -0.01) -0.0328 6.78E-12
BMI-HDL -0.3760 3.54E-56 -0.28 (-0.29, -0.26) -0.3630 3.17E-111
SHeight-LDL -0.0716 4.26E-09 -0.04 (-0.05, -0.02) -0.0298 5.07E-06
BWeight-CAD -0.1745 2.05E-06 -0.21 (-0.28, -0.14) -0.0978 2.83E-05
SHeight-CAD -0.0802 3.72E-20 -0.15 (-0.18, -0.12) -0.0482 2.18E-12
HDL-CAD -0.1729 7.00E-31 -0.26 (-0.3, -0.21) -0.0778 5.45E-10

Table S8: Table comparing the causal estimates of LHC-MR, CAUSE, and IVW for trait
pairs that had a significant causal e↵ect in LHC-MR and CAUSE. The column showing the
gamma (causal e↵ect) estimate of the CAUSE method also reports its 95% credible intervals. A complete
table for all the studied pairs is found in the Supplementary Table S5.
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