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Highlights 23 

 24 

• The post-COVID19 airway is characterized by increased cytotoxic lymphocytes. 25 

 26 

• Distinct airway proteomes are associated with the airway immune cell landscape.  27 

 28 
• The peripheral blood does not predict immune-proteome alterations in the airway 29 

post-COVID19. 30 

 31 
• Persistent abnormalities in the airway immune-proteome post-COVID19 airways 32 

correlate with ongoing epithelial damage. 33 

  34 
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Summary 35 

Some patients hospitalized with acute COVID19 suffer respiratory symptoms that 36 

persist for many months. To characterize the local and systemic immune responses 37 

associated with this form of ‘Long COVID’, we delineated the immune and proteomic 38 

landscape in the airway and peripheral blood of normal volunteers and patients from 39 

3 to 6 months after hospital discharge. The bronchoalveolar lavage (but not 40 

peripheral blood) proteome was abnormal in patients with post-COVID19 lung 41 

disease with significantly elevated concentration of proteins associated with 42 

apoptosis, tissue repair and epithelial injury. This correlated with an increase in 43 

cytotoxic lymphocytes (especially tissue resident CD8+ T cells), lactate 44 

dehydrogenase and albumin (biomarkers of cell death and barrier integrity). Follow-45 

up of a subset of these patients greater than 1-year post-COVID19 indicated these 46 

abnormalities resolved over time. Collectively, these data indicate that COVID-19 47 

results in a prolonged change to the airway immune landscape in those with 48 

persistent lung disease, with evidence of cell death and tissue repair linked to 49 

ongoing activation of cytotoxic T cells.  50 

 51 

 52 

Key words: respiratory viral infection, tissue resident memory, COVID19, SARS-53 

CoV-2, airways  54 
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Introduction  55 

 56 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) related coronavirus 57 

disease (COVID19) manifests as a spectrum of acute illnesses ranging from mild 58 

respiratory symptoms to severe, sometimes fatal, respiratory failure (Docherty et al., 59 

2020). While the acute impact of COVID19 on morbidity and mortality is well-60 

documented, we are still in the infancy of understanding the longer-term 61 

consequences. Morbidity from a range of persistent symptoms, including 62 

breathlessness, fatigue and memory impairment have been noted in patients 63 

recovering after the acute illness and described under the umbrella term of “long 64 

COVID” (Nalbandian et al., 2021; Sigfrid et al., 2021). Complex respiratory 65 

complications have been found in up to 18.4% of inpatients (Drake et al., 2021), and 66 

persistent breathlessness reported in more than 50% of patients recovering from 67 

COVID19 (Mandal et al., 2021). The underlying aetiology for persistent respiratory 68 

morbidity is likely to be multifactorial but may be due to persistent parenchymal 69 

abnormalities and resultant ineffective gaseous exchange. Persistent radiological 70 

abnormalities post-COVID19 are common and may be present even up to 6 months 71 

post hospital discharge (Fabbri et al., 2021; Guler et al., 2021; Han et al., 2021; Myall 72 

et al., 2021). There is, therefore, a pressing need to understand the molecular and 73 

cellular basis of post-COVID19 pulmonary syndromes.  74 

 75 

The acute immunological and inflammatory events that occur during human 76 

respiratory virus infections, including SARS-CoV-2, are relatively well described 77 

(Harker and Lloyd, 2021). In contrast, the immunological landscape of the human 78 

respiratory tract after recovery from acute viral infection is poorly understood. SARS-79 

CoV-2 infection results in formation of long-lasting systemic immunological memory, 80 

with virus-specific antibodies and T cell responses still detectable in the majority of 81 

those infected at least 8 months post infection and higher titers seen in previously 82 

hospitalized individuals (Dan et al., 2021). Circulating lymphocyte counts and the 83 

function and frequency of monocytes are also reduced during acute disease, but they 84 

appear to return to normal shortly after resolution of acute disease (Mann et al., 85 

2020; Scott et al., 2020). Likewise, plasma concentrations of inflammatory mediators 86 

such as IL-6 and CXCL10, that are highly elevated in acute disease, reduce as 87 

individuals recover (Rodriguez et al., 2020). Together, this suggests that systemic 88 

inflammatory and immune responses associated with acute disease severity resolve 89 

in line with recovery from the acute symptoms. It therefore remains unclear if the 90 

severity of inflammation during acute disease is associated with the persistent 91 
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respiratory pathology seen in some SARS-CoV-2 infected individuals months after 92 

infection, or if there is ongoing inflammation in these individuals.   93 

 94 

This study sought to examine the relationship between the immune system and 95 

respiratory pathology post-COVID19. The immune cell and proteomic composition of 96 

the airways and peripheral blood were analyzed in a group of previously hospitalized 97 

COVID19 patients with persistent radiological abnormalities in their lungs over 3 98 

months post discharge. In comparison to healthy individuals, the post-COVID19 99 

airway showed substantial increases in activated tissue resident memory CD8+ and 100 

CD4+ TRM, and an altered monocyte pool. The airway proteome was also distinct 101 

from that observed in healthy individuals, with elevation in proteins associated with 102 

ongoing cell death, loss of barrier integrity and immune cell recruitment. Importantly, 103 

none of these alterations were predicted by changes in the proteome or immune cells 104 

of the matched peripheral blood. Moreover, the scale of these alterations was not 105 

linked to the initial severity of disease while in hospital but instead was heterogenous. 106 

Some individuals displaying heightened T cell responses associated with significant 107 

increases in CXCR3 chemokines in the airways and linked to prolonged epithelial 108 

damage and extracellular matrix (ECM) dysregulation, while other individuals 109 

exhibited a return to relative airway homeostasis. Subsequent long-term follow-up 110 

also suggested that these ongoing changes to the airway landscape progressively 111 

return to normal.   112 
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Results  113 

 114 

Increased airway lymphocyte numbers characterize patients recovering from 115 

hospitalization with SARS-CoV-2 116 

 117 

We recruited 38 patients undergoing bronchoscopy for investigation of persistent 118 

respiratory abnormalities 3-6 months following infection after acute SARS-CoV-2 119 

infection (post-COVID19) (Figure 1A). All patients had both ongoing respiratory 120 

symptoms and radiological pulmonary abnormalities on computed tomography (CT) 121 

scanning. We obtained plasma samples from peripheral blood and bronchoalveolar 122 

lavage (BAL) fluid from their airways. We stratified the post-COVID19 cohort based 123 

on the level of respiratory support used during their initial hospitalization with acute 124 

COVID19, into moderate (no or minimal oxygen administered), severe (non-invasive 125 

ventilation) and very severe (invasive ventilation). To provide a control group, we 126 

used BAL and plasma samples obtained from 10 healthy volunteers recruited prior to 127 

the COVID19 pandemic (demographic information in Table S1).  128 

 129 

We first compared the cellular composition of BAL fluid in post-COVID19 patients to 130 

healthy controls (HC) by flow cytometry. Post-COVID19 patients had a significantly 131 

higher numbers of cells in their airways compared to the healthy volunteers (Figure 132 

1B). This increased cellularity was due to significantly elevated numbers of airway T 133 

and B cells, and a trend towards increased airway macrophages (AM), CD56+CD3- 134 

(natural killer, NK) cell and CD56+CD3+ (NKT) cell numbers, while CD14+ monocyte, 135 

eosinophil and neutrophil numbers were similar to those found in healthy controls 136 

(Figure 1C). As a proportion of airway leukocytes, CD14+ monocytes and neutrophils 137 

were decreased in patients recovering from COVID19 compared to healthy controls 138 

(Figure S1A). There was no association between the severity of acute COVID19 in 139 

hospital and the immune cell composition of the post-COVID19 airways (Figure 1C). 140 

In contrast to the peripheral lymphopenia that is associated with acute COVID19 141 

(Chen and Wherry, 2020), we found that in this post-COVID19 patient cohort the 142 

frequency of T cells, B cells and CD14+ monocytes in the peripheral blood was 143 

broadly similar to healthy controls (Figure S1B), although the proportion of NK and 144 

NKT cells was significantly decreased (Figure S1B). Collectively, these data indicate 145 

that after recovery from severe SARS-CoV-2 infection, immune cell frequencies in 146 

the peripheral blood are comparable to those in a group of age-matched controls. In 147 

contrast, the immune landscape of the airways remains altered, being marked by 148 

residual lymphocytes.   149 
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 150 

The post-COVID19 airway immune landscape displays a limited relationship to 151 

inflammatory biomarkers found during acute disease 152 

 153 

Severe COVID19 has a distinctive clinical biomarker blood profile, characterized by 154 

elevated inflammatory markers (including C-reactive protein (CRP) and ferritin), 155 

elevated coagulation markers (D-dimer and fibrinogen), and lymphopenia (Guan et 156 

al., 2020). At the time of hospitalization, our patients displayed a similar pattern of 157 

clinical laboratory test abnormalities (Table S1). We therefore examined whether 158 

there was any association between the peak levels (or nadir in the case of 159 

lymphocyte count) of these clinical biomarkers measured during acute hospitalization 160 

and the immune cell composition of the airways at 3 months following discharge. Of 161 

the 5 biomarkers measured, ferritin correlated (Spearman rho > 0.4) with total airway 162 

monocytes, specifically classical and intermediate monocytes, and eosinophils, and 163 

inversely correlated with AM (Table S2). Total airway B cells correlated with peak D-164 

dimer, while airway eosinophils correlated with lowest lymphocytes. None of the 165 

biomarkers correlated with follow up airway T cell, NK cell or neutrophil numbers, and 166 

fibrinogen and WCC showed no substantial correlation with any airway immune cell 167 

analyzed. Taken together these data suggest that the post-COVID19 airway immune 168 

cell composition shows a limited relationship with the severity of initial acute disease. 169 

This observation is supported by the lack of differences in immune cell composition 170 

when segregating between moderate, severe and very severe patients (Figure 1).  171 

 172 

The post-COVID19 airway displays a proteome profile distinct from that found in the 173 

circulation.  174 

 175 

Since clinical biomarkers did not reveal a relationship between acute disease and 176 

prolonged pathology and immune responses in the lungs post discharge, we next 177 

evaluated the airway and blood (plasma) proteomes at follow-up. We used the Olink 178 

proteomics platform to measure 435 unique proteins (Supplementary File 1A) in 19 179 

post-COVID19 patients and 9 healthy volunteers. The proteins measured were highly 180 

enriched for those involved in immuno-inflammatory processes (Supplementary File 181 

1B-C). 182 

 183 

Principal components analysis (PCA) of BAL fluid proteomes revealed differences 184 

between post-COVID19 patient and healthy control samples (Figure 2A), with 185 

separation of case and controls most evident along PC1. In plasma, PCA also 186 
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revealed differences in post-COVID19 patients and healthy controls, most evident 187 

along PC2, although the differences appeared less marked than for BAL. However, in 188 

both BAL and plasma there was considerable overlap in the spatial location of post-189 

COVID19 and healthy control samples in the PCA plots. Unsupervised hierarchical 190 

clustering revealed two major clusters of samples in BAL, one consisting 191 

predominantly of post-COVID19 samples and the other predominantly healthy 192 

controls (Figure S2A), although, as with the PCA, some patient and control samples 193 

were grouped together. In contrast, in plasma, there was no visible structure to the 194 

clustering and lack of clear separation of cases and control samples (Figure S2B). 195 

These analyses indicate that post-COVID19 syndromes are reflected to a much 196 

greater extent in the airway proteome than the peripheral blood. They also suggest 197 

that there is considerable heterogeneity in the BAL and blood proteomes of post-198 

COVID19 patients, with some patients displaying similar profiles to that of healthy 199 

controls, despite persistent symptoms and radiological findings. 200 

We next performed differential protein abundance analysis comparing post-COVID19 201 

cases with healthy controls. In BAL fluid, we identified 22 proteins with significantly 202 

altered concentration (5% false discovery rate, FDR) (Figure 2B-C, Supplemental 203 

File 1D). These were all upregulated in post-COVID19 patients compared to healthy 204 

controls (Figure 2C). In order to provide a succinct and standardised nomenclature, 205 

we report proteins by the symbols of the genes encoding them (see Supplementary 206 

File 1A for a mapping of symbols to full protein names). The proteins that were most 207 

significantly differentially abundant between post-COVID19 patients and healthy 208 

controls were: SERPINA7 (thyroxine binding globulin), DPP4 (dipeptidyl peptidase 4), 209 

SERPINA5 (plasma serine protease inhibitor), KLK6 (kallikrein related peptidase-6), 210 

LYVE1 (Lymphatic vessel endothelial hyaluronic acid receptor 1), AREG 211 

(amphiregulin), F3 (factor 3), FLT3LG (Fms-related tyrosine kinase 3 ligand), QPCT 212 

(glutaminyl-peptide cyclotransferase), and SRC (Proto-oncogene tyrosine-protein 213 

kinase Src) (Figure 2C-D). Pathway annotation of the 22 upregulated proteins using 214 

String-DB highlighted “leucocyte activation”, “regulation of cell death”, “response to 215 

injury” and “response to wounding” (Supplemental File 1E). Next, we analyzed the 216 

relationship between the 22 differentially abundant proteins and the airway immune 217 

cell proportions. Neutrophils most strongly correlated with AREG and LDLR (low 218 

density lipoprotein receptor), while monocyte proportions correlated with F3, 219 

FLT3LG, MB (myoglobin) and IL1RN (IL-1 receptor antagonist protein) (Figure 2E). 220 

T cells, despite being significantly elevated in the airways of post-COVID19 patients, 221 

displayed only weak correlations with the differentially abundant proteins. 222 
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 223 

In contrast to BAL, no significant differences between protein levels were detected in 224 

plasma in post-COVID19 patients versus healthy controls (Supplemental File 1F). 225 

Comparison of the estimated log2 fold changes for the 22 proteins upregulated in 226 

post-COVID19 BAL fluid with the estimated log2 fold changes for these same 227 

proteins in plasma revealed no correlation (Figure S2C-D), indicating an absence of 228 

any relationship between airway and plasma proteome changes. 229 

 230 

The modest sample size and multiple testing burden of 435 proteins likely limited the 231 

statistical power to detect differentially abundant proteins. To examine whether there 232 

was evidence of signal in the proteomic data that was hidden by the hard-233 

thresholding in the differential abundance analysis, we examined quantile-quantile 234 

(QQ) plots of the distribution of expected p-values under the null hypothesis of no 235 

proteomic differences between cases and controls versus the observed p-values. For 236 

both BAL and plasma, the QQ plots revealed substantial deviation from the diagonal 237 

(albeit more so in BAL), indicating the presence of systematic differences between 238 

post-COVID19 and healthy controls for plasma proteins as well as BAL proteins 239 

(Figure S3A). Corroborating this, the distribution of p-values for the proteins was not 240 

uniformly distributed, with skewing towards zero (Figure S3B). This is consistent with 241 

the observation that there was separation of post-COVID19 and control samples on 242 

the PCA plots for both BAL and plasma. In summary, these data suggests that there 243 

are differences in both the BAL and plasma proteomes of post-COVID19 cases 244 

compared to healthy controls, but that the effects are much stronger in BAL and this 245 

study was underpowered to detect them in plasma. 246 

To increase power, and investigate potential protein-protein relationships, we utilized 247 

a network analysis method, Weighted Coexpression Network Analysis (WGCNA) 248 

(Langfelder and Horvath, 2008; Zhang and Horvath, 2005), that leverages the 249 

correlation between proteins to enable dimensionality reduction and thus reduce 250 

multiple testing burden. We used WGCNA to identify modules of correlated proteins, 251 

and then tested for association between these protein modules (represented 252 

quantitatively by an eigenprotein value) and case/control status. In BAL fluid, this 253 

revealed two modules (‘red’ and ‘blue’) associated with case/control status using a 254 

5% FDR significance cut-off (Figure 3A, Supplementary File 1G-I). Applying a more 255 

conservative Bonferroni corrected p-value threshold, only the red module remained 256 

significant (PBonferonni 0.03). 257 
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The red module consisted of 37 proteins (Figure 3B, Supplementary File 1H). 258 

Overall, the red module was characterized by proteins associated with chemotaxis, 259 

inflammation, cell death and repair. Examination of the levels of proteins in the red 260 

module across samples highlighted both upregulation of individual proteins in post-261 

COVID19 patients versus healthy controls, and the co-upregulation of groups of 262 

related proteins such as the CXCR3 chemokines (CXCL9, CXCL10 and CXCL11), 263 

and IL1A (interleukin-1A) and its antagonist IL1RN (Figure 3B). We used the 264 

STRING database to visualize known or predicted relationships between proteins in 265 

the module (Figure 3C, Methods). To highlight putative key proteins in the red and 266 

blue modules in a data-driven way, we identified hub proteins, defined as those that 267 

are highly interconnected in the proteomic network defined by WGCNA 268 

(Supplementary File 1J). This analysis identified CASP3 (caspase-3), EPCAM 269 

(epithelial cell adhesion molecule), F3 and MB as hub proteins in the red module. 270 

Notably, F3 and MB, an oxygen binding protein release of which is linked to muscle 271 

damage, were also identified as upregulated in the univariate differential abundance 272 

analysis (Figure 2B-C). CASP3 is a protein involved in cell death, EPCAM and 273 

KRT19 (Keratin-19) are indicative of epithelial cell debris within the BAL, and TGFA 274 

(transforming growth factor A) is an EGFR ligand involved in EC repair. The 275 

presence of CASP3, EPCAM, KRT19 and TGFA in the red eigenprotein module 276 

therefore suggests that one of the key features of the post-COVID19 airway is the 277 

presence of ongoing epithelial injury and repair.  278 

As with the red module, blue module proteins were predominantly upregulated in 279 

post-COVID19 versus healthy control BAL (Figure S4A). The blue module was 280 

larger than the red module, containing 108 proteins involved in a wide range of 281 

biological activities. Several members were involved in cell adhesion and immune 282 

cell signaling. The hub proteins in the blue module were CD93 (Complement 283 

component C1q receptor), COMP (Cartilage oligomeric matrix protein), IGFBP3 284 

(Insulin-like growth factor-binding protein 3), IL1R2 (Interleukin-1 receptor type 2), 285 

LYVE1, MMP2 (72 kDa type IV collagenase), NCAM1 (Neural cell adhesion molecule 286 

1), SELL (L-selectin), TIE1 (Tyrosine-protein kinase receptor Tie-1), TNXB 287 

(Tenascin-X) and VASN (Vasorin) (Figure S4B). Of these, LYVE1 and VASN were 288 

also identified in the differential abundance analysis. 289 

In contrast to the BAL network analysis, no protein modules in plasma were 290 

associated with case-control status. These results suggest that persistent post-291 

COVID19 respiratory abnormalities have a demonstrable proteomic signature in BAL 292 
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that is distinct compared to that of healthy control BAL. In contrast, we were unable 293 

to detect changes in the plasma proteome of post-COVID19 patients, even with the 294 

enhanced statistical power provided by the WGCNA method. 295 

 296 
CXCR3 ligands and signs of ongoing epithelial damage correlate with airway T cell 297 

and monocyte responses 298 

 299 

Given that the airways of post-COVID19 patients displayed a distinct proteome 300 

alongside elevated numbers of T cells, B cells and NK cells, we next sought to 301 

determine which specific proteins might be linked to distinct immune cell populations. 302 

Testing for associations between BAL fluid proteins and immune cell composition in 303 

post-COVID19 patients revealed several significant findings (Figure 4A and 304 

Supplemental file 1K). The proportion of monocytes in the airways was significantly 305 

associated with a range of airway proteins, including the CCR7 ligand CCL19, the 306 

CXCR3 ligands CXCL9 and 11, TRAIL (TNFSF10), and BAFF (TNFSF13B) (Figure 307 

4A). CXCL9 and 11 also positively correlated with lymphocyte and T cell frequencies 308 

and negatively correlated with airway macrophage frequencies in the BAL (Figure 309 

4A). T cell frequencies were also positively correlated with SH2D1A (otherwise 310 

known as SLAM associated protein or SAP).  311 

 312 

Analysis of combined data from healthy controls and post-COVID19 patients 313 

revealed a composite score reflecting CXCL9, CXCL10 and CXCL11 levels, CXCL9, 314 

CXCL10 and CXCL11, although no significant correlation was seen with CD3+CD56+ 315 

NKT cells (Figure 4B). Within the post-COVID19 data set (as CD16 was not present 316 

in historic flow data used for healthy controls), total monocyte frequencies also 317 

correlated with average CXCR3 ligand expression (Figure 4C). Analysis of 318 

subpopulations revealed the proportion that were intermediate (CD14+CD16+) 319 

monocytes positively correlated with CXCR3 ligands, while CD14+ monocytes 320 

displayed a negative correlation, and CD16+ monocytes displayed no correlation 321 

(Figure 4C). T cell proportions in the airways correlated tightly with the concentration 322 

of CD8a protein, but not CD4, in the BAL (Figure 4D), suggesting the increased 323 

airway T cells are most likely the result of increased CD8+ T cell frequencies. 324 

 325 

Given the robust correlation of the CXCR3 ligands, particularly with T cells, we next 326 

sought to determine the relationship between T cell frequencies and other members 327 

of the red module, specifically those indicative of ongoing epithelial damage in the 328 

post-COVID19 airways. CD8a correlated strongly with the concentrations of CASP3 329 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.21261834doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261834
http://creativecommons.org/licenses/by/4.0/


Immune-proteome landscape post-COVID19 

 12

and EPCAM, concomitant with two of the differentially expressed proteins: MB and 330 

DPP4 (Figure 4E). Collectively, these data suggest that proteins linked to the 331 

recruitment of T cells, especially cytotoxic T cells, are strongly associated with 332 

proteins that are both indicative of ongoing epithelial damage and upregulated in the 333 

airways post-COVID19. 334 

 335 

To further evaluate this and confirm the presence of increased damage in the post-336 

COVID19 airway, we measured DPP4, alongside 2 markers of damage not analyzed 337 

through Olink, albumin and lactate dehydrogenase (LDH) in an expanded cohort of 338 

healthy controls and post-COVID19 patients (Figure 4F). All 3 molecules were 339 

significantly upregulated in the airways of patients post-COVID19 compared to 340 

healthy controls, validating the observations made by Olink and confirming the 341 

presence of ongoing damage within the respiratory tract in patients previously 342 

hospitalized for COVID19. 343 

  344 

Distinct myeloid populations are present in the BAL compared to the peripheral blood 345 

but do not correlate with ongoing airway damage post-COVID19 346 

 347 

Dysfunction of circulating classical monocytes is a hallmark of the initial, acute phase 348 

of COVID19 infection (Mann et al., 2020). Given the correlations observed between 349 

different airway monocyte populations and specific proteins in the BAL identified by 350 

Olink, we further investigated the nature of airway and circulating myeloid cells in a 351 

subgroup (n = 21) of post-COVID19 patients using high-parameter spectral 352 

deconvolution cytometry. Unbiased FlowSOM analysis of the airway and circulating 353 

myeloid cells revealed 10 distinct cell populations (Figure 5A), with marker analysis 354 

suggesting these populations could be assigned to known subsets of monocytes or 355 

dendritic cells (DCs). The circulation was dominated by CD14+ classical monocytes 356 

(metacluster 1), which constituted most myeloid cells identified, while the airways 357 

were more heterogenous, with the presence of intermediate monocytes, non-358 

classical monocytes and DCs (Figure 5B). Conventional gating of these myeloid 359 

subsets (as shown in Methods Figure 2) confirmed these observations, with 360 

classical monocytes being most abundant in the circulation, while CD16+ monocytes 361 

were more frequent in the airways (Figure 5C). In comparison, DCs were identifiable 362 

in both sites as pDCs, cDC1s and cDC2s, although were infrequent (Figure 5D). 363 

Furthermore, airway monocyte activation status (as determined by CD86 and HLA-364 

DR expression) was not dependent on acute disease severity (Figure 5E). Likewise, 365 

correlation of airway LDH and albumin concentrations revealed no strong 366 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.21261834doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261834
http://creativecommons.org/licenses/by/4.0/


Immune-proteome landscape post-COVID19 

 13

associations between the relative abundance of different myeloid cells and ongoing 367 

damage in the respiratory tract after COVID19 (Figure 5F); nor was there any 368 

association between these cell types and DPP4 concentrations. Taken together this 369 

indicates that while myeloid cell frequencies in the airways are associated with a 370 

specific airway proteome landscape, this likely has limited association with ongoing 371 

tissue damage after SARS-CoV-2 infection.   372 

 373 

The post-COVID19 airway is enriched for activated, tissue resident T cells 374 

 375 

The post-COVID19 airway showed significantly increased T cell numbers (Figure 376 

1C), associated with a proteome linked to ongoing epithelial damage and repair 377 

(Figure 2). FlowSOM analysis of the airway and circulating lymphocytes indicated 378 

that 12 metaclusters with distinct protein expression profiles were present (Figure 379 

6A). Several metaclusters were unique to either the blood or the airways, with 380 

specifically clusters 1 and 10 only present in the airways, and cluster 5 only present 381 

in the blood (Figure 6B-C). Marker expression analysis identified these metaclusters 382 

(as described in Figure 6B), with the differential clusters being identified as tissue-383 

resident memory CD4 and CD8 T cells (metaclusters 1 and 10), and naïve CD4 T 384 

cells (metacluster 5). Manual gating of T cell populations showed that while the blood 385 

was enriched for naïve CD4 and CD8 T cells, the airways contained populations of 386 

antigen-experienced CD4 and CD8 T cells (Figure 6D). Additionally, the airways 387 

contained increased proportions of activated and tissue-resident memory (TRM) CD4 388 

and CD8 T cells compared to blood (Figure 6D). Proportions of γδ T cells and NK 389 

cells in the airways and blood were comparable however there was a significant 390 

increase in NKT cell proportions compared to blood (Figure 6E). Comparison of the 391 

T cell dynamics in the post-COVID19 airways showed that airway CD4 T cells retain 392 

a highly tissue resident phenotype (CD69+CD45RA-), with few naïve (CD45RA+) CD4 393 

T cells observed, and the frequency of these 2 cell populations remains relatively 394 

static, irrespective of the total number of CD4 T cells found in the airways (Figure 395 

6F). In comparison, as CD8 T cell numbers increased in the airways, the proportion 396 

displaying a CD45RA-CD69+ phenotype significantly increased, while those with a 397 

CD45RA+ phenotype declined (Figure 6F).  398 

 399 

In line with activated CD8 T cells, rather than activated CD4 T cells, being linked to 400 

ongoing epithelial damage in the post-COVID19 airway there was a correlation (r > 401 

0.4) between CD8, but not CD4, T cell proportions in the airways and the 402 

concentrations of airway albumin and LDH (Figure 6G); this correlation was stronger 403 
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when only CD69+ CD8 T cells were analyzed (r = 0.5, p < 0.05 for both Albumin and 404 

LDH). LDH most significantly correlated with the proportion of CD69+ CD103- CD8 T 405 

cells in the airways (r = 0.7, p < 0.001), while albumin most significantly correlated 406 

with the proportion of CD69+ CD103+ CD8 T cells in the airways (r = 0.6, p < 0.001), 407 

highlighting distinct markers of damage were linked to different phenotypes of CD8 T 408 

cells in the airway. Of note however, the CD8 T cell frequency did not correlate with 409 

the concentration of DPP4 in the airways (Figure 6G). Deeper analysis revealed that 410 

albumin concentrations were associated with reduced expression of molecules 411 

associated with T cell activation on both CD103+ and CD103- CD69+ CD8 T cells, 412 

most notable CD28 and CD38 (Figure 6H). LDH concentrations meanwhile were 413 

linked to downregulation of CD127 and, especially on CD103+ CD69+ CD8 T cells, 414 

but upregulation of CD69 and CD27 (CD69: r = 0.5, p < 0.05; CD27: r = 0.6, p < 0.05, 415 

Figure 6H). In contrast individuals with higher concentrations of DPP4 in the airways 416 

appeared to possess CD8 TRM with higher expression of CRTH2 and CD38 (Figure 417 

6H). No relationship was seen between the expression of activation markers on the 418 

surface of CD8 TRM and the severity of disease in hospital (Figure S5). Taken 419 

together, these results highlight the connection between T cells in the airways, 420 

specifically CD8 TRM, and ongoing epithelial damage after recovery from COVID19, 421 

and indicate differential CD8 T cell activation status may be associated with types of 422 

damage within the airways. 423 

 424 

The enhanced airway immune cell frequencies seen post-COVID19 decline over time 425 

 426 

Acute COVID19 can result in persistent respiratory symptoms, and the data here 427 

highlight the presence of substantial immunological and proteome alterations in the 428 

airways of patients hospitalized with COVID19 up to 6 months after discharge. To 429 

determine if these changes to the airways reduced over time, we examined 3 430 

patients with continued lung CT abnormalities greater than 1 year following discharge 431 

(Table S3). The total number of BAL cells recovered was greatly reduced in all 3 432 

patients between the initial bronchoscopy and the 1 year follow up bronchoscopy, 433 

down to comparable levels in healthy control airways (Figure 7A). Similarly, numbers 434 

of T cells, B cells, NK cells and NKT cells were reduced to nearly or within the normal 435 

range seen in the airways of healthy individuals (Figure 7B). In the 2 individuals with 436 

elevated lymphocytes the ratio of CD4 to CD8 T cells increased (Figure 7C). In 437 

accordance with this the proportion of CD8, but not CD4, T cells trended to decrease, 438 

although the proportion of each that were of a TRM or activated (CD69+) phenotype, 439 

remained similar between the 2 time points (Figure 7D). Fitting with progressive 440 
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recovery trajectory airway DPP4 concentrations declined in the 2 patients with 441 

elevated concentrations at the first bronchoscopy (Figure 7E), while CT abnormality 442 

was also reduced in all 3 patients between the first CT and the follow up (Figure 7F). 443 

Interestingly LDH was however increased between the first and second visit, while 444 

albumin concentrations were unchanged, but also within the range of healthy controls 445 

at both time points for all 3 patients analyzed (Figure 7G).  446 

 447 

Collectively, our findings show ongoing changes to the immune and proteome 448 

landscape of the airways, characterized by increased T cells and markers of 449 

epithelial damage, several months after recovery from the acute phase of COVID19. 450 

These changes, and lung pathology, do however appear to resolve over the longer (> 451 

1 year) term. 452 

  453 
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Discussion 454 

 455 

Recovery from acute SARS-CoV-2 infection is associated with a wide range of 456 

persistent symptoms including ongoing respiratory pathology. Here we examine the 457 

airway and circulating landscape of patients previously hospitalized with COVID19, 458 

finding they possess a distinct proteome and immunological profile in their airways, 459 

but not peripheral blood, 3 to 6 months post recovery from acute infection. While 460 

there is substantial heterogeneity between patients, common upregulated signals 461 

include proteins associated with ongoing cell death, epithelial damage and tissue 462 

repair; features that correlate with the presence of increased numbers of activated 463 

tissue resident CD8 T cells within the airways. Importantly, preliminary evidence 464 

suggests this altered airway landscape does improve over the long term, with 465 

reductions in airway immune cell numbers 1 year post discharge from hospital.  466 

 467 

The acute response to SARS-CoV-2 infection is characterized by upregulation of a 468 

wide diversity of plasma proteins including members of the IFN pathway and their 469 

interferon stimulated genes (ISGs), chemokines, cytotoxic proteins, and markers of 470 

epithelial damage  (Arunachalam et al., 2020; Filbin et al., 2021; Gisby et al., 2021). 471 

More severe disease is associated with increased concentrations of inflammatory 472 

proteins such as IL-6, TNF, GM-CSF, IL-1RN and IL-18 (Arunachalam et al., 2020; 473 

Filbin et al., 2021; Thwaites et al., 2021). A similar pattern of upregulated proteins, 474 

especially chemokines like CXCL10 and cytokines such as IL-6, is seen in the 475 

airways during acute COVID19 (Liao et al., 2020; Saris et al., 2021; Szabo et al., 476 

2021). Here, we show that 3 to 6 months after SARS-CoV-2 infection, despite the 477 

presence of ongoing respiratory morbidity, the majority of the plasma proteins 478 

differentially expressed during acute disease appear to have returned to similar 479 

concentrations to those seen in healthy controls, and even data dimension reduction 480 

approaches such as WGCNA fail to highlight any significant associations between 481 

COVID19 infection and the plasma proteome months later.  482 

 483 

In contrast, the post-COVID19 airways continue to display an abnormal proteome. 484 

This displayed both shared and distinct features to that seen in acute disease. 485 

Proteins linked to inflammation featured less prominently than in acute COVID19; 486 

instead, we observed airway upregulation of proteins involved in epithelial damage 487 

and repair (e.g. the EGFR ligand AREG and the epithelial marker KRT19). Matrix 488 

metalloproteinase-3 (MMP-3), which regulates the extracellular matrix (ECM), was 489 

also differentially upregulated in the post-COVID19 airway. MMP3 and AREG are 490 
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both upregulated after influenza A virus (IAV) infection in vivo in mice, and in vitro in 491 

human fibroblasts and epithelial cells (Boyd et al., 2020); and these proteins are both 492 

linked to epithelial repair and fibrosis in the lungs e.g. (Morimoto et al., 2018; 493 

Yamashita et al., 2011).  494 

 495 

The elevated concentrations of both lactate dehydrogenase and albumin in the 496 

airways provide further evidence of ongoing cell death and damage to the barrier 497 

integrity within the respiratory tract post-COVID19. This observation is reinforced by 498 

the upregulation of a module of proteins in the BAL of post-COVID19 patients whose 499 

individual members link epithelial damage (EPCAM, KRT19), cell death (CASP3) and 500 

epithelial repair (TGFA), but also suggest a connection between these processes and 501 

factors involved immune cell recruitment and survival (CXCL9, CXC10, CXCL11, IL-502 

7). These markers of ongoing damage and repair tightly correlate with the frequency 503 

of T cells, especially CD8 TRM in the airways. In mouse models of severe acute 504 

respiratory virus infection CD8 T cells have long been known to act as a double-505 

edged sword. Although the cytotoxic molecules and cytokines they release are 506 

essential for clearing virus, they can also cause tissue damage and immune 507 

pathology (reviewed in (Duan and Thomas, 2016; Schmidt and Varga, 2018)). While 508 

the presence of pre-existing virus specific CD8 TRM in the airways is thought to be 509 

highly protective against a re-encounter with the same virus in both mice and man 510 

(Jozwik et al., 2015; Wu et al., 2014) almost nothing is known regarding their role in  511 

long-term respiratory viral pathology, especially in humans. This is primarily due to 512 

the lack of relevant samples collected during the recovery period. However, the data 513 

shown here for SARS-CoV-2 may provide a potential insight, supporting the concept 514 

that sustained activation of CD8 TRM in the airways, long after recovery from acute 515 

disease, may contribute to ongoing immune pathology through sustained damage to 516 

the respiratory epithelium. 517 

 518 

The mechanism behind the increased number of CD8 TRM in the airways is unclear, 519 

although another study has also reported detecting virus specific CD8 T cells in lung 520 

tissue up to a year post-infection (Grau-Exposito et al., 2021). Both virus specific 521 

CD4 and CD8 T cells rapidly expand in the circulation and airways of patients 522 

following SARS-CoV-2 infection, leading to the formation of TRM (Szabo et al., 523 

2021). The majority of these activated effector T cells rapidly contract after resolution 524 

of acute disease. In mice Slutter et al have shown that lung CD8 TRM are more 525 

apoptotic than CD4 TRM after IAV infection, resulting in a more rapid decline in their 526 

number. They also observed that the lungs of a mouse that had previously 527 
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experienced IAV infection more robustly maintained CD8 TRM compared to an 528 

uninfected lung, showing that severe infection promotes a pro-TRM niche (Slutter et 529 

al., 2017). This fits with our observation that while CD8 TRM numbers dynamically 530 

change dependent on the concentration of damage and proteins in the airways, and 531 

indeed longitudinally in the same individuals, CD4 TRM remain relatively static. A 532 

number of factors likely contribute to the heterogeneity of the CD8 TRM niche in the 533 

post-COVID19 airway. Firstly, while all our post-COVID19 samples were taken from 534 

patients who tested negative for SARS-CoV-2 by qPCR immediately prior to 535 

bronchoscopy, persistent antigen has been observed months after other respiratory 536 

infections such as IAV (Kim et al., 2010), and antigen depots in SARS-CoV-2 could 537 

drive ongoing cytotoxic activity and maintenance of CD8 TRM. Secondly, the 538 

persistence of lung resident TRM is also reliant on the availability of local T cell 539 

survival signals such as IL-7 (Szabo et al., 2019) and the CXCR3 ligands, which are 540 

known to be involved in airway recruitment and retention of CD8 memory T cells in 541 

murine IAV infection (Slutter et al., 2013). We found that both IL-7 and the CXCR3 542 

ligands are part of the protein network that is maintained in the post-COVID19 543 

airway. These proteins display a heterogeneous pattern of upregulation across post-544 

COVID19 patient samples (Figure 3B) and correlate with airway T cells and CD8a 545 

concentrations. Lastly there is also some evidence of ongoing aberrant inflammation 546 

after acute infection and the development of autoantibodies in some patients recently 547 

recovered from COVID19 (Lucas et al., 2020; Wang et al., 2020). It is likely that 548 

these different mechanisms act in concert to shape the number and function of CD8 549 

TRM, and other immune cells, in the post-COVID19 airway, and the scale and 550 

duration of ongoing epithelial damage and respiratory pathology observed.  551 

 552 

One factor that does not appear to influence ongoing T cell recruitment and damage 553 

in the post-COVID19 airway is the activation status of the myeloid compartment, in 554 

particular monocytes. Functional impairment of monocytes and DCs in the peripheral 555 

blood of acutely infected patients (Arunachalam et al., 2020; Laing et al., 2020; Mann 556 

et al., 2020), and hyperactivation of airway monocyte populations, are canonical 557 

features of severe acute SARS-CoV-2 (Liao et al., 2020; Szabo et al., 2021). 558 

Moreover, early T cell phenotypes have been strongly linked to the status of these 559 

monocytes (Filbin et al., 2021; Laing et al., 2020; Szabo et al., 2021). In our post-560 

COVID19 patients, however, the monocyte and myeloid pools in both the airways 561 

and peripheral blood appear to have returned to relatively normal numbers and their 562 

frequency does not correlate with indicators of ongoing epithelial damage. Likewise, 563 

their activation status, as determined by HLA-DR and CD86 expression, is not 564 
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substantially different between individuals in line with other reports on circulating 565 

monocytes from earlier stages of convalescence (Scott et al., 2020).  566 

 567 

The airway monocyte frequency is, however, one of the few features to correlate with 568 

a clinical biomarker of severity in acute disease, serum ferritin. High serum ferritin is 569 

a prognostic marker used at presentation with acute COVID19 and linked to more 570 

severe acute radiological findings (Carubbi et al., 2021; Ruan et al., 2020). Ferritin, 571 

and transferrin, the protein responsible for transporting ferritin, are core components 572 

of iron metabolism, and their dysregulation is associated with a range of lung 573 

pathologies including decreased lung function and lung fibrosis (Ali et al., 2020; Lee 574 

et al., 2020). In the respiratory tract the expression of CD71, the receptor that 575 

scavenges transferrin from the environment, on alveolar macrophages is altered in 576 

chronic respiratory disease (Striz et al., 1993), and the presence of CD71- alveolar 577 

macrophages, possessing both an immature and pro-fibrotic transcriptional 578 

signature, has been linked to pulmonary fibrosis (Allden et al., 2019). In humans, 579 

monocytes are recruited to the airways to differentiate into new AMs (Byrne et al., 580 

2020), and acute ferritin could be acting as a biomarker of severity of disruption to 581 

AMs. This link is however challenging to elucidate, and it is possible that ferritin is 582 

simply a proxy for the strength of the acute inflammatory response. 583 

 584 

To our knowledge, this is the first study exploring the airway immune and proteomic 585 

profiles in COVID19 patients between 3 months and 1 year post discharge from 586 

hospital, and their links to ongoing respiratory pathology. Moreover, it is one of the 587 

first studies to explore the human airway immune-proteome landscape after a 588 

substantial period of time following any severe respiratory virus infection. Since all 589 

samples were obtained more than 3 months post hospital discharge, when one might 590 

expect normalization of the immune profile, the persistent immune abnormalities offer 591 

possible explanations into the longevity of persistent respiratory morbidity post 592 

SARS-CoV2 infection. In addition, these findings may be relevant to those suffering 593 

long-term sequalae during convalescence from other viral pneumonias where data 594 

are currently very limited. 595 

 596 

We highlight a number of potential limitations of our study. Firstly, our data showing 597 

immunological and proteomic changes in the BAL of post-COVID19 are generated on 598 

patients undergoing clinically indicated bronchoscopy because of persistent 599 

respiratory abnormalities. Whether our findings extend to individuals with no 600 

radiological abnormalities or respiratory symptoms post-COVID19 remains unknown. 601 
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This selection bias also affects longitudinal sampling greater than 12 months post-602 

COVID19, since the majority of patients initially sampled between 3-6 months post-603 

COVID19 had shown sufficient improvement in respiratory pathology such that a 604 

follow-up bronchoscopy was not indicated. The progressive resolution of radiological 605 

abnormalities in the majority of post-COVID19 patients has been observed by others 606 

(Han et al., 2021), and importantly within our study even the 3 patients with ongoing 607 

pathology have a significantly improved CT and reduced immune cell infiltration 608 

within their airways. This fits with the hypothesis that SARS-CoV2 infection can result 609 

in organizing pneumonia, with subsequent changes reflecting ongoing epithelial 610 

damage and healing parenchyma rather than established fibrosis (Kory and Kanne, 611 

2020). This is both compatible with autopsy findings during the acute disease 612 

(Wichmann et al., 2020) and the steroid-responsive nature of the acute pathology 613 

(Horby et al., 2021).  614 

 615 

Although we did not detect a plasma proteomic signature post-COVID19, this is likely 616 

due to our limited sample size not being powered to detect small differences in 617 

circulating proteins between post-COVID19 patients and healthy controls. 618 

Examination of the distributions of p-values suggests that such differences may exist 619 

(Figure S3) but will likely require future much larger cohort studies to reveal them. 620 

Regardless, the absence of any correlation between the differentially expressed 621 

proteins in the airways and their corresponding changes in the plasma points to the 622 

limited utility of peripheral blood as an indicator of the pathological processes 623 

ongoing in the lung. 624 

 625 

Finally, as with most studies, we were limited to sampling the airways post-infection 626 

and so did not have paired pre-infection samples for intra-individual comparisons. 627 

Therefore, it is possible that some differences observed between healthy controls 628 

and post-COVID19 patients could reflect a pre-infection phenotype that predisposed 629 

them to developing prolonged sequelae. Indeed, one of the most differentially 630 

expressed proteins in the airways, DPP4, is the binding receptor for another 631 

coronavirus MERS (Raj et al., 2013), and postulated to be capable of mediating 632 

some SARS-CoV-2 binding (Li et al., 2020). Thus, it is conceivable that pre-existing 633 

upregulation of DPP4 increased susceptibility to post-COVID19 syndrome via 634 

increased viral entry (i.e. reverse causation), rather than DPP4 upregulation 635 

occurring in response to COVID19. However, the longitudinal reduction of DPP4 636 

argues against this hypothesis. More generally, the majority of proteins and markers 637 

upregulated are associated with ongoing lung pathology in other contexts (e.g. LDH), 638 
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and are absent or only present at very low concentrations in the healthy airway, 639 

suggesting that their upregulation is more likely to be a consequence of COVID19 640 

than a pre-disposing risk factor.  641 

 642 

In summary,  our study offers unique and novel insights into ongoing 643 

immunopathology post-COVID19. In contrast to the inflammatory pathways observed 644 

during acute disease, we found proteins associated with ongoing epithelial damage, 645 

cell death, and repair were upregulated in conjunction with ongoing CD8 T cell 646 

activation. These data indicate that significant immune pathways operate within the 647 

tissue, presumably to facilitate repair and resolution, even in the absence of 648 

peripheral inflammation. In the future it will be important to determine how such a 649 

substantial shift in the immune landscape of the airways might affect the response to 650 

a subsequent respiratory infection such as seasonal influenza. The progressive 651 

improvement in respiratory pathology, even in this cohort with substantive 652 

radiological abnormalities should be seen as a positive indicator for the long-term 653 

prognosis for those with persistent morbidity. Moreover, the involvement of the 654 

immune response suggests this recovery could be accelerated using immuno-655 

modulatory treatments, especially those designed against TH1 immune responses. 656 

  657 
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Figure legends 701 

 702 

Figure 1: Increased airway lymphocytes in the 3 to 6 months post COVID-19  703 

(A) Schematic of study design. BAL and blood were sampled from healthy donors 704 

and at > 80 days after hospital discharge from post-COVID19 patients. Traditional 705 

and spectral flow cytometry and Olink proteomics was performed on BAL and plasma 706 

and correlated with clinical parameters. (B) Left: Total number of cells in BAL from 707 

healthy controls and post-COVID19 patients. Right: total number of cells in BAL from 708 

post-COVID19 patients, stratified according to severity of the acute illness. (C) Total 709 

cell numbers of immune populations (x10
6
/ml) in BAL from healthy controls and post-710 

COVID19 patients, based on gating shown in Methods Figure 1.  711 

Data are presented as mean ± SEM. Healthy controls n = 16, post-COVID19 patients 712 

n = 21, moderate n = 6, severe n = 8, very severe n = 7. Statistical significance was 713 

tested by Mann Whitney U test or Kruskal Wallis test + Dunn’s multiple comparison 714 

test. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001.  715 

 716 

Figure 2: A distinct proteome is present in the post COVID-19 airway 717 

436 proteins in BAL and plasma 435 proteins were measured using Olink 718 

immunoassays in post-COVID19 patients (n = 19) and healthy controls (n = 9). (A) 719 

Principal component analysis (PCA) of BAL and plasma proteomes: each point 720 

represents a sample. (B) Left: heatmap displaying Z-score normalised protein 721 

abundance for the 22 proteins that were significantly differentially abundant (5% 722 

FDR) between post-COVID19 and healthy controls in BAL. Samples have been 723 

ordered by case control status and then by peak severity during acute COVID-19 724 

infection. Proteins are ordered by hierarchical clustering. Right: heatmap for these 725 

same 22 proteins in plasma, presented in the same order as for BAL. (C) Volcano 726 

plot showing differentially protein abundance analysis between post-COVID19 727 

patients and healthy controls in BAL. Nominal –log
10

 P values are shown. 728 

Significantly differentially abundant proteins (5% FDR) are coloured in red and 729 

labelled. (D) BAL and plasma normalised protein abundance (NPX) expression for 730 

the 5 most significantly differentially abundance proteins between post-COVID19 731 

patients and healthy controls. P
BH

 = Benjamini-Hochberg adjusted p-values. (E) 732 

Correlation between the 22 differentially abundant proteins and immune cell 733 

frequency in BAL. 734 

 735 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.21261834doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261834
http://creativecommons.org/licenses/by/4.0/


Immune-proteome landscape post-COVID19 

 25

Figure 3: A network of proteins linked to immune cell chemotaxis and cell 736 

death is upregulated in the BAL post-COVID19 737 

WGCNA of BAL proteome of post-COVID19 patients and healthy controls. (A) 738 

Associations of protein modules identified by WGCNA with case-control status (post-739 

COVID19 or healthy). (B) Heatmap displaying Z-score normalised protein abundance 740 

for the 37 proteins that form the ‘red’ protein module. Samples are ordered according 741 

to clinical status. Severity refers to peak severity of the acute COVID19 episode. 742 

Proteins are ordered by hierarchical clustering. (C) Right: Network representation of 743 

proteins in the red module and their interconnections defined using String-db. An 744 

edge in the network represents a relationship between proteins, coloured according 745 

to the type of evidence for the connection (see Methods). Left: list of hub proteins 746 

within the network (with hub proteins that were also significantly differentially 747 

upregulated in post-COVID19 patient BAL highlighted in red).  748 

 749 

Figure 4. CXCR3 ligands and markers of epithelial damage correlate with CD8 T 750 

cells in the airways 751 

BAL immune cells and protein concentrations were analysed post-COVID19 752 

infection. (A) Linear regression analysis was conducted between n = 435 proteins 753 

measured in the BAL using the Olink platform and BAL immune cell frequencies 754 

identified by flow cytometry as shown in Figure 1. A heatmap showing proteins with 755 

the highest correlation versus 5 major immune cell frequencies is shown. (B-C) For 756 

each sample, protein levels for CXCL9, -10 and -11, were normalised to the median 757 

level in healthy controls. For each sample, the mean of the normalised values for the 758 

3 proteins was calculated to provide a summary metric for CXCR3 chemokines. This 759 

was then plotted against versus (B) T, NK and NKT proportions in post-COVID19 760 

patients and healthy controls and (C) monocyte frequencies and subsets in post-761 

COVID19 patients only. (D) BAL T cell frequency versus CD4 and CD8a 762 

concentrations as measured by Olink. (E) CD8a concentration versus CASP3, 763 

EPCAM, MB and DPP4 in the airways. (F) DPP4, albumin and LDH concentrations in 764 

the BAL determined by ELISA. Data are presented as median ± IQR. (A) Pearsons 765 

correlation of n = 19 post-COVID19 patients, the r value is shown. (B-E) Each point 766 

represents an individual patient, linear regression line +/- 95% confidence intervals 767 

are depicted, and r and p values from Pearsons correlation are stated. (F) represents 768 

n = 38 post-COVID19 and n = 20 healthy control individuals. Statistics were 769 

conducted using Mann-Whitney U test. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 770 

0.001. pCOVID = post-COVID19.  771 

 772 
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Figure 5. Myeloid cell frequencies are not linked to indications of ongoing 773 

damage in the post-COVID19 airway 774 

BAL and blood immune cells from post-COVID19 patients were analyzed by spectral 775 

deconvolution cytometry. (A) Heatmap of normalised median expression of myeloid 776 

cell modulatory and subset markers by clusters of myeloid cells in the airways 777 

identified by FlowSOM analysis. (B) Violin plot showing frequencies of each cluster in 778 

BAL and blood. (C) Violin plots showing classical, non-classical and intermediate 779 

monocyte subsets as proportions of live leukocytes in BAL and blood identified by 780 

manual gating. (D) Violin plots showing pDC, cDC1 and cDC2 cell proportions in BAL 781 

and blood. (E) Geometric mean fluorescence intensity of activation markers 782 

expressed by CD11c
+ 

monocytes. (F) Pearson’s correlation between BAL myeloid 783 

subsets (as a % of leukocytes) and airway LDH, albumin and DPP4. Data are 784 

presented as median ± IQR. Each point represents an individual patient. Statistical 785 

significance for (B), (C) and (D) was tested by Mann-Whitney U test. *P < 0.05, **P < 786 

0.01, ***P < 0.005, ****P < 0.001.  787 

 788 

Figure 6. The airways of post-COVID19 patients are enriched for activated CD8 789 

TRM cells 790 

BAL and blood immune cells from post-COVID19 patients were analyzed by spectral 791 

deconvolution cytometry.(A) Heatmap of normalised median expression of T cell 792 

modulatory and subset markers by clusters of T cells in the airways identified by 793 

FlowSOM analysis. (B) Violin plot showing frequencies of each cluster in BAL and 794 

blood. (C) tSNE projection of clusters identified by FlowSOM analysis in BAL and 795 

blood. (D) Violin plots showing CD4+ and CD8+ T cell subsets as proportions of all T 796 

cells in BAL and blood identified by manual gating. (E) Violin plots showing gd, NK, 797 

NKT and MAIT cell proportions in BAL and blood. (F) Pearson correlations between 798 

total airway CD4
+
 and CD8

+
 T cell numbers and subsets. (G) Heatmap depicting 799 

Pearson correlation between different T cell populations (as a % of BAL leukocytes) 800 

and the concentration of DPP4, LDH and Albumin in the airways. (F) Pearson 801 

correlations between the gMFI of LDH and albumin. Data are presented as median ± 802 

IQR. Each point represents an individual patient. (A, B, E and F) represent n = 20 803 

individuals. (C) represents an equal number of cells from n = 10 patients combined. 804 

(G & H) represents n = 18 individuals. Statistical significance for (B), (D), (E) and (G) 805 

was tested by Mann-Whitney U test. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 806 

0.001.  807 

 808 
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Figure 7. Reduced cellularity in the airways one year after initial bronchoscopy 809 

post-COVID19  810 

(A) Total cell counts (left) and proportions of lymphocytes (right) in the BAL following 811 

first bronchoscopy and one year follow-up bronchoscopy. (B) Cell counts of 812 

lymphocyte populations in the BAL following first bronchoscopy and one year follow-813 

up bronchoscopy. (C) Cell counts of myeloid populations in the BAL following first 814 

bronchoscopy and one year follow-up bronchoscopy. (D) Proportions of T cell 815 

subsets in the BAL following first bronchoscopy and one year follow-up 816 

bronchoscopy. (E) LDH (left) and albumin (right) measurements in BAL following first 817 

year bronchoscopy and one year follow-up bronchoscopy. (F) Percentage of 818 

abnormal CT following first year CT and one year follow-up CT. (G) BAL LDH and 819 

albumin quantification following first year bronchoscopy and one year follow-up 820 

bronchoscopy. Each point represents a single patient. Green shading indicates 821 

median+/-IQR for proportions of populations and mediator levels observed in healthy 822 

airways. 823 

 824 
  825 
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Methods 826 

Post-COVID-19 patient recruitment 827 

Post-COVID19 bronchoalveolar lavage fluid (BAL) was obtained from patients 828 

recruited to the PHENOTYPE study (NCT 04459351), an observational, longitudinal 829 

study recruiting patients at Chelsea and Westminster Hospital, London. 38 samples 830 

were collected from patients requiring sampling for clinical purposes. Ethical approval 831 

for the study was given by Yorkshire & The Humber - Sheffield Research Ethics 832 

Committee (IRAS 284497). 833 

 834 

Patients who met the inclusion and exclusion criteria were recruited to the 835 

PHENOTYPE study:  836 

Inclusion criteria for the study were: 837 

• Aged 18 years or older  838 

• Previous confirmed COVID-19 infection (positive PCR or antibody)  839 

• Attending a respiratory follow-up outpatient appointment for follow-up of 840 

persistent respiratory symptoms following visit post hospital attendance 841 

with COVID-19. infection or referred by the community for covid-related 842 

symptoms. 843 

 844 

Patients were seen at approximately 4-6 weeks (Visit 1) and 3 months (Visit 2) 845 

following discharge from hospital or referral (if referred from the community). Patients 846 

underwent clinical assessment at both visits, including collection of demographic 847 

data, clinical history and clinical examination and assessment of vital 848 

parameters (heart rate, peripheral oxygen saturations, blood pressure reading 849 

and temperature). They also underwent clinical blood tests (including full blood count, 850 

renal function, liver function, C-reactive protein (CRP), ferritin, fibrinogen, D-dimer 851 

and pro-calcitonin). Patients had a computed tomography (CT) scan of the lungs 852 

approximately 3 months post discharge from hospital. In patients with abnormal CT 853 

findings, or persistent respiratory symptoms, a bronchoscopy and lavage was 854 

performed as part of clinical work-up. Patients underwent formal lung function tests 855 

(including spirometry, lung volumes and gas transfer) near the time of the 856 

bronchoscopy (usually during the days immediately preceding the procedure). 857 

Further follow-up was determined on the basis of clinical need, with a maximum 858 

follow up period of up to 2 years post hospital discharge or referral. 859 

 860 

Post-COVID19 bronchoalveolar lavage (BAL) sampling  861 
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Bronchoscopy was performed under conscious or deep sedation.  150 ml of normal 862 

saline were instilled into the most affected segment (as determined by CT imaging), 863 

in 50 ml aliquots. 10 ml of fluid return was used for the scientific analysis described in 864 

this paper.  865 

  866 

Healthy volunteer recruitment and sampling 867 

Control, uninfected bronchoalveolar lavage was obtained from healthy donors 868 

(collected between April 2016 and December 2019). Ethical approval for the study 869 

was granted by the Research Ethics Committee (15/SC/0101) and all patients 870 

provided informed written consent as described previously (Allden et al., 2019; Byrne 871 

et al., 2020; Invernizzi et al., 2021). Briefly, 240 ml aliquots of warmed sterile saline 872 

were instilled in the right middle lung and aspirated by syringe. Lavage aliquots were 873 

pooled for each subject. All subjects provided written, informed consent to participate 874 

in the study. Healthy volunteers had no self-reported history of lung disease, an 875 

absence of infection within the last 6 months and normal spirometry.  876 

 877 

BAL processing 878 

BAL samples were processed and stained on the day of sample collection. BAL was 879 

strained through a 70μm filter and subsequently centrifuged (1800 rpm, 2 min, 4°C). 880 

Supernatant was snap-frozen and stored at -80°C. Pellets were incubated in red 881 

blood cell lysis buffer (155mM NH4Cl, 10mM KHCO3, 0.1mM 882 

ethylenediaminetetraacetic acid, pH 7.4) for 10 minutes before washing and 883 

resuspension in complete media (RPMI 1640 with 10% fetal calf serum, 2mM L-884 

glutamine, 100U/ml penicillin-streptomycin).  885 

 886 

Blood processing 887 

Peripheral blood was collected in EDTA coated vacutainers on the same day as 888 

bronchoscopy. 1ml blood was centrifuged at 100g for 10 minutes (4°C), followed by 889 

centrifugation at 20,000g for 20 minutes (4°C) to separate plasma, which was 890 

subsequently stored at -80°C. 2ml blood from post COVID-19 patients was incubated 891 

with red blood cell lysis buffer (155mM NH4Cl, 10mM KHCO3, 0.1mM 892 

ethylenediaminetetraacetic acid, pH 7.4) for 10 minutes before washing and 893 

resuspension in complete media (RPMI 1640 with 10% fetal calf serum, 2mM L-894 

glutamine, 100U/ml penicillin-streptomycin). 2.5 ml blood from healthy controls was 895 

used to isolate peripheral blood mononuclear cells (PBMC) by Percoll density 896 

centrifugation, as per manufacturer’s instructions.  897 
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 898 

Flow cytometry staining 899 

For traditional flow cytometry, 2 - 5 x105 cells were plated, while for high parameter 900 

analysis using the Cytek Aurora 1 x 106 cells from each site were used. Cells were 901 

washed with PBS and incubated with either near-infrared (traditional flow cytometry) 902 

or blue (Cytek Aurora) fixable live/dead stain (Life Technologies), as per the 903 

manufacturer’s instructions. Before incubation with human fc block (BD Pharmingen) 904 

cells were washed with FACS buffer (1% FCS, 2.5% HEPES, 1mM EDTA) and 905 

surface staining was performed at 4°C for 30 minutes using antibody panels as 906 

described in the Key Resources Table. Surface staining was followed by washing 907 

with FACS buffer and fixation with 1% paraformaldehyde for 10 minutes. Labelled 908 

cells were acquired on a 4-laser BD Fortessa (traditional flow cytometry; BD 909 

Bioscience) or 5-laser Cytek Aurora flow cytometer (Cytek Bio).  910 

 911 

Flow cytometry analysis 912 

Conventional flow cytometry data was analysed using FlowJo v 10.6 (Tree Star). 913 

Data was pre-gated to exclude doublets and dead cells. In BAL samples CD45+ cells 914 

were selected, and immune cell populations were identified using the gating strategy 915 

shown in Methods Figure 1. Percentages of the CD45+ gate were calculated. In 916 

blood samples, leukocytes were selected based on FSC and SSC and immune cell 917 

populations were identified using the gating strategy shown in Methods Figure 1. 918 

Percentages of total leukocytes were calculated. High-parameter spectral 919 

deconvolution flow cytometry data from the Cytek Aurora was analysed using 920 

Cytobank (Beckman). tSNE analysis was performed on 300,000 events from 11 files. 921 

Iteration number was set to 1500 with a perplexity of 30 and theta of 0.5. FlowSOM 922 

analysis was performed subsequently using hierarchical consensus clustering with 923 

12 metaclusters, 100 clusters and 10 iterations. Manual gating of high parameter 924 

cytometry data was carried out as shown in Methods Figure 2. Heatmaps were 925 

generated from median fluorescence values in Prism 9.0 (GraphPad).  926 

 927 

Quantification and statistical analysis for flow cytometry 928 

Differences in means between two sample groups were compared using two-tailed 929 

Mann-Whitney U tests. Multiple group comparisons were done using Kruskal Wallis 930 

ANOVA followed by Dunn’s post-test. Spearman-Rank correlations were used to 931 

correlate clinical blood parameters with immune cell populations. Analysis was 932 

performed in GraphPad Prism. For all figures, * denotes p value < 0.05, ** denotes p 933 

value < 0.01 and *** denotes p value < 0.001.   934 
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 935 

Proteomic assays 936 

Plasma and BAL proteomic measurement was performed using the Olink proximity 937 

extension immunoassay platform. Five 92-protein multiplex Olink panels were used 938 

(‘Inflammation’, ‘Immune Response’, ‘Cardiometabolic’, Cardiovascular 2’, 939 

‘Cardiovascular 3’), providing measurements of 460 protein targets per sample. 940 

Cryopreserved BAL and plasma samples were thawed on ice and mixed well by 941 

pipetting before plating 88 samples per plate ensuring case/control balance and 942 

random well ordering to prevent confounding of technical and biological effects. For 943 

BAL samples, a pilot study was performed using three control samples and three 944 

post-COVID19 samples (severe group) to determine optimal dilution parameters. 945 

Ultimately BAL was used neat. Since a small number of proteins were assayed on 946 

more than one panel, we measured a total of 435 unique proteins. We removed 947 

duplicate assays at random prior to subsequent analyses. 948 

 949 

Proteomics analyses 950 

Proteomic data was normalised using standard Olink workflows to produce relative 951 

protein abundance on a log2 scale (‘NPX’). BAL and plasma proteomic data were 952 

normalised separately. Quality assessment was performed by (1) examination of 953 

Olink internal controls and (2) inspection of boxplots, relative log expression plots, 954 

and PCA.  955 

PCA was performed using singular value decomposition. Following these steps, 2 956 

clear outlying samples were removed from the BAL dataset.  957 

 958 

To identify proteins that were differentially abundant between case and controls, for 959 

each protein we performed linear regression (lm function in R) with case/control 960 

status as the independent variable and protein level (NPX) as the dependent 961 

variable. P-values were adjusted for multiple testing using the Benjamini-Hochberg 962 

procedure (p.adjust function in R). A 5% false discovery rate was used to define 963 

statistical significance.  964 

 965 

We used the WGCNA R package (Langfelder and Horvath, 2008; Zhang and 966 

Horvath, 2005) to create a weighted protein correlation network. Prior to WGCNA 967 

analysis, protein data were scaled and centred, and missing data were imputed using 968 

the R caret package. We used the WCGNA adjacency function to produce a weighed 969 

network adjacency matrix, using parameters “type=signed” and “power=13”. This 970 

soft-thresholding power was selected as the lowest power to achieve approximate 971 
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scale-free topology. We next defined a topological overlap matrix of dissimilarity 972 

using the TOMdist function. Clusters (‘modules’) of interconnected proteins were 973 

identified using hierarchical clustering and the cutreeDynamic function with 974 

parameters: method=“hybrid”,  deepSplit=2, minClusterSize=15. We then tested 975 

association of these modules with case/control status. Multiple testing correction was 976 

performed to account for the number of modules. We report both Benjamini-977 

Hochberg and Bonferroni adjusted p-values to provide two levels of stringency. 978 

 979 

To assess the distribution of p-values from the differential protein abundance 980 

analyses, we plotted histograms and constructed QQ plots. QQ plots were made by 981 

comparing the expected distribution of -log10 P values under the null hypothesis of 982 

no proteomic differences between post-COVID19 patients and controls to the 983 

observed p-values for the 435 proteins. 984 

 985 

We performed pathway enrichment analysis for the 435 proteins measured. This was 986 

performed using terms from KEGG database (Supplementary File 1B) and the 987 

Reactome database (Supplementary File 1C). 988 

 989 

Protein modules were visualised using STRING (https://string-db.org/), with known or 990 

suspected interconnections between module members displayed as edges in a 991 

network diagram. An edge represents a protein-to-protein relationship defined as 992 

shared contributions to a particular function, and not necessarily implying physical 993 

binding. In Figure 3C, edge colour indicates the type of evidence for the relationship: 994 

turquoise represents known interactions from curated databases; magenta 995 

represents experimentally determined interactions; green represents predicted 996 

Interactions from gene neighbourhood analysis; red represent predicted interactions 997 

from gene fusions, blue represent predicted Interactions from gene co-occurrence; 998 

light green represents interaction from text-mining; black represents interaction from 999 

co-expression data, and violet represents information from protein homology. 1000 

 1001 

CXCR3 chemokine composite score 1002 

To create a composite score that reflected the CXCR3 chemokines (CXCL9, 1003 

CXCL10 and CXCL11), we used the following approach. For each sample, protein 1004 

levels for CXCL9, -10 and -11, were normalised to the median level in healthy 1005 

controls (to avoid unduly weighting the score towards chemokines with higher NPX 1006 

values). For each sample, the mean of the normalised values for the 3 proteins was 1007 

then calculated to provide a summary metric for CXCR3 chemokines.  1008 
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 1009 

 1010 

Quantification of mediators in BAL 1011 

DPP4 (R&D systems, DY1180) and albumin (Bethyl Laboratories, E80-129) 1012 

concentrations in the BAL were quantified by ELISA according to manufacturer’s 1013 

instructions. LDH concentrations were quantified using an in vitro toxicology assay 1014 

(Sigma, TOX7). Briefly, 25μl of BAL sample were incubated with 50μl of LDH assay 1015 

reaction mixture. After 30 minutes, the reaction was stopped with 7.5μl 1N HCL and 1016 

absorbance was measured at 490nm with background correction at 690nm. All 1017 

absorbances were measured using a SpectraMax i3x (Molecular Devices). 1018 

 1019 

Key Resources Table 1020 

Reagent or Resource Source Identifier Dilution 

Antibodies    

Anti-Human CD69, 

BUV395 

BD Biosciences 564364 1:20 

Anti-human CD8, 

BUV496 

BD Biosciences 612942 1:100 

Anti-Human CD45RA, 

BUV563 

BD Biosciences 612927 1:100 

Anti-Human CD11c, 

BUV661 

BD Biosciences 612968 1:100 

Anti-Human CD56, 

BUV737 

BD Biosciences 612767 1:100 

Anti-Human CD3, 

BUV805 

BD Biosciences 612896 1:100 

Anti-Human IgD, 

BV421 

Biolegend 348226 1:100 

Anti-Human CD16, 

SuperBright436 

ThermoFisher 62-0166-42 1:100 

Anti-Human CD25, 

eFluor450 

ThermoFisher 48-0257-42 1:100 

Anti-Human CD20, 

BV480 

BD Biosciences 566132 1:100 

Anti-Human CD127, 

BV510 

Biolegend 351332 1:50 
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Anti-Human HLA-DR, 

BV570 

Biolegend 307638 1:100 

Anti-Human CD28, 

BV605 

Biolegend 302968 1:100 

Anti-Human CD38, 

BV650 

Biolegend 356620 1:100 

Anti-Human CD15, 

BV711 

Biolgend 323050 1:100 

Anti-Human CD279, 

BV750 

Biolegend 329966 1:100 

Anti-Human CD206, 

BV785 

Biolegend 321142 1:20 

Anti-Human CD45, 
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Figure 1: Altered immune cell profile in post-COVID19 BAL over 80 days post discharge
(A) Schematic of study design. BAL and blood were sampled from healthy donors and at > 80 days after
hospital discharge from post-COVID19 patients. Traditional and spectral flow cytometry and Olink
proteomics was performed on BAL and plasma and correlated with clinical parameters. (B) Left: Total
number of cells in BAL from healthy controls and post-COVID19 patients. Right: total number of cells in
BAL from post-COVID19 patients, stratified according to severity of the acute illness. (C) Total cell
numbers of immune populations (x106/ml) in BAL from healthy controls and post-COVID19 patients,
based on gating shown in Methods Figure 1.
Data are presented as mean ± SEM. Healthy controls n = 16, post-COVID19 patients n = 21, moderate
n = 6, severe n = 8, very severe n = 7. Statistical significance was tested by Mann Whitney U test or
Kruskal Wallis test + Dunn’s multiple comparison test. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001.
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Figure 2: A distinct proteome is present in the post COVID-19 airway
436 proteins in BAL and plasma 435 proteins were measured using Olink immunoassays in post-
COVID19 patients (n = 19) and healthy controls (n = 9). (A) Principal component analysis (PCA) of
BAL and plasma proteomes: each point represents a sample. (B) Left: heatmap displaying Z-score
normalised protein abundance for the 22 proteins that were significantly differentially abundant (5%
FDR) between post-COVID19 and healthy controls in BAL. Samples have been ordered by case
control status and then by peak severity during acute COVID-19 infection. Proteins are ordered by
hierarchical clustering. Right: heatmap for these same 22 proteins in plasma, presented in the same
order as for BAL. (C) Volcano plot showing differentially protein abundance analysis between post-
COVID19 patients and healthy controls in BAL. Nominal –log10 P values are shown. Significantly
differentially abundant proteins (5% FDR) are coloured in red and labelled. (D) BAL and plasma
normalised protein abundance (NPX) expression for the 5 most significantly differentially abundance
proteins between post-COVID19 patients and healthy controls. PBH = Benjamini-Hochberg adjusted p-
values. (E) Correlation between the 22 differentially abundant proteins and immune cell frequency in
BAL.
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Figure 3: A network of proteins linked to immune cell chemotaxis and cell death is upregulated
in the BAL post-COVID19
WGCNA of BAL proteome of post-COVID19 patients and healthy controls. (A) Associations of protein
modules identified by WGCNA with case-control status (post-COVID19 or healthy). (B) Heatmap
displaying Z-score normalised protein abundance for the 37 proteins that form the ‘red’ protein
module. Samples are ordered according to clinical status. Severity refers to peak severity of the acute
COVID19 episode. Proteins are ordered by hierarchical clustering. (C) Right: Network representation
of proteins in the red module and their interconnections defined using String-db. An edge in the
network represents a relationship between proteins, coloured according to the type of evidence for the
connection (see Methods). Left: list of hub proteins within the network (with hub proteins that were
also significantly differentially upregulated in post-COVID19 patient BAL highlighted in red).
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Figure 4. CXCR3 ligands and markers of epithelial damage correlate with CD8 T cells in the
airways
BAL immune cells and protein concentrations were analysed post-COVID19 infection. (A) Linear
regression analysis was conducted between n = 435 proteins measured in the BAL using the Olink
platform and BAL immune cell frequencies identified by flow cytometry as shown in Figure 1. A heatmap
showing proteins with the highest correlation versus 5 major immune cell frequencies is shown. (B-C) For
each sample, protein levels for CXCL9, -10 and -11, were normalised to the median level in healthy
controls. For each sample, the mean of the normalised values for the 3 proteins was calculated to
provide a summary metric for CXCR3 chemokines. This was then plotted against versus (B) T, NK and
NKT proportions in post-COVID19 patients and healthy controls and (C) monocyte frequencies and
subsets in post-COVID19 patients only. (D) BAL T cell frequency versus CD4 and CD8a concentrations
as measured by Olink. (E) CD8a concentration versus CASP3, EPCAM, MB and DPP4 in the airways.
(F) DPP4, albumin and LDH concentrations in the BAL determined by ELISA. Data are presented as
median ± IQR. (A) Pearsons correlation of n = 19 post-COVID19 patients, the r value is shown. (B-E)
Each point represents an individual patient, linear regression line +/- 95% confidence intervals are
depicted, and r and p values from Pearsons correlation are stated. (F) represents n = 38 post-COVID19
and n = 20 healthy control individuals. Statistics were conducted using Mann-Whitney U test. *P < 0.05,
**P < 0.01, ***P < 0.005, ****P < 0.001. pCOVID = post-COVID19.
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Figure 5. Myeloid cell frequencies are not linked to indications of ongoing damage in the post-
COVID19 airway
BAL and blood immune cells from post-COVID19 patients were analyzed by spectral deconvolution
cytometry. (A) Heatmap of normalised median expression of myeloid cell modulatory and subset
markers by clusters of myeloid cells in the airways identified by FlowSOM analysis. (B) Violin plot
showing frequencies of each cluster in BAL and blood. (C) Violin plots showing classical, non-classical
and intermediate monocyte subsets as proportions of live leukocytes in BAL and blood identified by
manual gating. (D) Violin plots showing pDC, cDC1 and cDC2 cell proportions in BAL and blood. (E)
Geometric mean fluorescence intensity of activation markers expressed by CD11c+ monocytes. (F)
Pearson’s correlation between BAL myeloid subsets (as a % of leukocytes) and airway LDH, albumin
and DPP4. Data are presented as median ± IQR. Each point represents an individual patient. Statistical
significance for (B), (C) and (D) was tested by Mann-Whitney U test. *P < 0.05, **P < 0.01, ***P <
0.005, ****P < 0.001.
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Figure 6. The airways of post-COVID19 patients are enriched for activated CD8 TRM cells
BAL and blood immune cells from post-COVID19 patients were analyzed by spectral deconvolution
cytometry.(A) Heatmap of normalised median expression of T cell modulatory and subset markers by
clusters of T cells in the airways identified by FlowSOM analysis. (B) Violin plot showing frequencies of
each cluster in BAL and blood. (C) tSNE projection of clusters identified by FlowSOM analysis in BAL
and blood. (D) Violin plots showing CD4+ and CD8+ T cell subsets as proportions of all T cells in BAL
and blood identified by manual gating. (E) Violin plots showing gd, NK, NKT and MAIT cell proportions
in BAL and blood. (F) Pearson correlations between total airway CD4+ and CD8+ T cell numbers and
subsets. (G) Heatmap depicting Pearson correlation between different T cell populations (as a % of
BAL leukocytes) and the concentration of DPP4, LDH and Albumin in the airways. (F) Pearson
correlations between the gMFI of LDH and albumin. Data are presented as median ± IQR. Each point
represents an individual patient. (A, B, E and F) represent n = 20 individuals. (C) represents an equal
number of cells from n = 10 patients combined. (G & H) represents n = 18 individuals. Statistical
significance for (B), (D), (E) and (G) was tested by Mann-Whitney U test. *P < 0.05, **P < 0.01, ***P <
0.005, ****P < 0.001.

0

5

10

15

C
D

3+  C
D

56
+

(%
 li

ve
 le

uk
oc

yt
es

)

✱✱
Blood
BAL

TC
Rα
β

TC
Rγ
δ

CD
4
CD
8
CD
10
3

CR
TH
2

CX
CR
5

CD
27
CD
69
CD
45
RA

CD
56
CD
12
7

HL
A-
DR

CD
28
CD
38
PD
1
CD
16
1

CD
86
CD
25

1

2

3

4

5

6

7

8

9

10

11

12

-2

0

2

4

0
20
40
60
80

100

C
D

69
+  C

D
10

3-  C
D

4+

(%
 T

 c
el

ls
)

✱✱✱✱

0
20
40
60
80

100

C
D

69
+  C

D
10

3-  C
D

8+

(%
 T

 c
el

ls
)

✱✱✱

1
2
3
4
5
6
7
8
9
10
11
12

0

5

10

15

C
D

3+  C
D

16
1+

(%
 li

ve
 le

uk
oc

yt
es

)

0.0 0.1 0.2 0.3 0.4
0
2
4
6
8

40

80

BAL CD4 T cells (# x 106 per ml)

su
bs

et
 (%

 o
f C

D
4 

T 
ce

lls
)

CD69+ CD45RA-
r = 0.30
p = 0.18
CD45RA+
r = -0.31
p = 0.11

0.00 0.05 0.10
0

20

40

60

80

100

BAL CD8 T cells (# x 106 per ml)

su
bs

et
 (%

 o
f C

D
8 

T 
ce

lls
)

CD69+ CD45RA-
r = 0.57
p = 0.007
CD45RA+
r = -0.51
p = 0.01

G H

Cell type (% of BAL 
leukocytes): LD

H
 (O

.D
.)

Al
bu

m
in

 (u
g/

m
l)

D
PP

4 
(n

g/
m

l)

T cells 0.3 0.3 0.0
CD4 T cells 0.1 0.2 0.1
CD8 T cells 0.4 0.5 0.1

CD45RA+ CD8 T cells 0.3 0.2 -0.2
CD69+ CD8 T cells 0.5 0.6 0.1

CD69+ CD103- CD8 T cells 0.7 0.3 0.0
CD69+ CD103+ CD8 T cells 0.3 0.6 0.2
CD69- CD103+ CD8 T cells 0.0 0.5 -0.1

Marker (gMFI) - 
CD103- CD69+ 
CD8 T cells LD

H
 (O

.D
.)

Al
bu

m
in

 (u
g/

m
l)

D
PP

4 
(n

g/
m

l)

CRTH2 0.0 -0.1 0.5
CXCR5 0.0 0.0 -0.2

CD27 0.1 -0.1 -0.5
CD69 0.3 -0.1 0.2

CD127 -0.5 -0.2 -0.3
HLA-DR 0.0 -0.3 0.2

CD28 -0.2 -0.4 -0.1
CD38 0.3 -0.4 0.4
CD25 0.0 0.1 -0.2
CD86 0.0 -0.1 -0.3

Correlation 
(r)

+1

0

-1

Marker (gMFI) - 
CD103+ CD69+ 
CD8 T cells LD

H
 (O

.D
.)

Al
bu

m
in

 (u
g/

m
l)

D
PP

4 
(n

g/
m

l)

CRTH2 0.0 -0.1 0.5
CXCR5 0.1 0.1 -0.2

CD27 0.6 -0.1 -0.6
CD69 0.5 -0.1 0.2

CD127 -0.5 -0.2 -0.2
HLA-DR 0.0 -0.3 0.2

CD28 -0.1 -0.5 0.0
CD38 0.3 -0.5 0.5
CD25 0.0 0.1 -0.2
CD86 0.0 -0.1 -0.3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 10, 2021. ; https://doi.org/10.1101/2021.08.10.21261834doi: medRxiv preprint 

https://doi.org/10.1101/2021.08.10.21261834
http://creativecommons.org/licenses/by/4.0/


0.0

0.2

0.4

0.6

C
el

l c
ou

nt
 (x

10
6 /m

l B
AL

)

0.0

0.1

0.2

0.3

0.4

C
D

14
+  (%

 le
uk

oc
yt

es
)

First appointment
Follow-up

0.00

0.05

0.10

0.15

Ly
m

ph
oc

yt
es

 (x
10

6 /m
l B

AL
)

0.00

0.05

0.10

0.15

C
D

3+  (x
10

6 /m
l B

AL
)

0.000

0.001

0.002

0.003

C
D

20
+  (x

10
6 /m

l B
A

L)

0.000

0.001

0.002

0.003

0.004

C
D

3+  C
D

56
+  (x

10
6 /m

l B
AL

)

0.000
0.001
0.002
0.003
0.004
0.005

C
D

56
+  (x

10
6 /m

l B
A

L)

A B

Figure 7. Reduced cellularity in the airways one year after initial bronchoscopy post-COVID19
(A) Total cell counts (left) and proportions of lymphocytes (right) in the BAL following first
bronchoscopy and one year follow-up bronchoscopy. (B) Cell counts of lymphocyte populations in the
BAL following first bronchoscopy and one year follow-up bronchoscopy. (C) Cell counts of myeloid
populations in the BAL following first bronchoscopy and one year follow-up bronchoscopy. (D)
Proportions of T cell subsets in the BAL following first bronchoscopy and one year follow-up
bronchoscopy. (E) LDH (left) and albumin (right) measurements in BAL following first year
bronchoscopy and one year follow-up bronchoscopy. (F) Percentage of abnormal CT following first
year CT and one year follow-up CT. (G) BAL LDH and albumin quantification following first year
bronchoscopy and one year follow-up bronchoscopy. Each point represents a single patient. Green
shading indicates median+/-IQR for proportions of populations and mediator levels observed in healthy
airways.
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