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Supplementary Material 1: Pathological examination 

In the pathology, a distorted (micro)architecture of liver tissue was the common feature of the 

included lesions. Histomorphology often combined with (immuno)histochemistry served the final 

diagnosis. Hepatocellular lesions with loss of portal tracts, cell atypia, thick trabeculae (loss of 

reticulin fibers), pseudoglandular transformation, isolated small arterial branches, and capillarization 

of the sinusoidal areas (CD34 positive) with supportive immunohistochemistry (glypican-3, glutamine 

synthetase, HSP-70), were classified as HCC (1). Cases where the reticulin fibers were maintained, the 

pseudoglandular transformation and the cell atypia were absent or minimal, and the 

immunohistochemistry (glypican-3, HSP-70) was negative, were classified as HCA (1). Lesions 

composed of non-organoid arranged glandular structures, localized at the periphery of the second-

order bile ducts with an expression of keratin 7 and 19, were classified as iCCA, either conventional 

or cholangiolocarcinoma (2). Non-neoplastic lesions, composed of hyperplastic hepatocellular 

nodules separated by fibrotic septa, creating a microscopic image of “localized cirrhosis” and often 

centrally a scar, were classified as FNH. Glutamine synthetase showed the pathognomonic “map-like” 

pattern of immunohistochemical expression (anastomosing groups of positively stained hepatocytes 

(3)). 
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Supplementary Material 2: Radiomics feature extraction 

This supplementary material is similar to (4, 5), but details relevant for the current study are 

highlighted. 

A total of 564 radiomics features were used in this study. All features were extracted using 

the defaults for MRI scans from the Workflow for Optimal Radiomics Classification (WORC) (6), which 

internally uses the PREDICT (7) and PyRadiomics (8) feature extraction toolboxes. An overview of all 

features is depicted in Supplementary Table S2. For details on the mathematical formulation of the 

features, we refer the reader (9). More details on the extracted features can be found in the 

documentation of the respective toolboxes, mainly the WORC documentation (10). 

For MRI scans, the images are by default normalized in WORC as the scans do not have a 

fixed unit and scale, contrary to e.g. computed tomography (Hounsfield units). Normalization is 

performed using z-scoring, i.e., subtracting the mean and dividing by the standard deviation. As the 

datasets used in this study exhibit substantial heterogeneity in the acquisition protocols, the mean 

and standard deviation were computed based on the segmentation of the regions of interest (ROIs), 

i.e., the lesions, and not on the full image, as the latter is more sensitive to acquisition variations. The 

images were not resampled, as this would result in interpolation errors, especially in the axial 

direction due to the substantial differences in slice thicknesses. The code to extract the features has 

been published open-source (11). 

The features can be divided in several groups. Thirteen intensity features were extracted 

using the histogram of all intensity values within the ROIs and included several first-order statistics 

such as the mean, standard deviation and kurtosis. These describe the distribution of intensities 

within the lesion. Thirty-five shape features were extracted based only on the ROI, i.e. not using the 

image, and included shape descriptions such as the volume, compactness and circular variance. 

These describe the morphological properties of the lesion. Nine orientation features were used, 

describing the orientation of the ROI, i.e. not using the image. Lastly, 507 texture features were 

extracted using Gabor filters (156 features) (9), Laplacian of Gaussian filters (39 features) (9), vessel 
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(i.e. tubular structures) filters (39 features) (12), the Gray Level Co-occurrence Matrix (144 features) 

(9), the Gray Level Size Zone Matrix (16 features) (9), the Gray Level Run Length Matrix (16 features) 

(9), the Gray Level Dependence Matrix (14 features) (9), the Neighbourhood Grey Tone Difference 

Matrix (5 features) (9), Local Binary Patterns (39 features) (13), and Local Phase filters (39 features) 

(14, 15). These features describe more complex patterns within the lesion, such as heterogeneity, 

presence of blob-like structures, and presence of line patterns. 

Most of the texture features include parameters to be set for the extraction. The values of 

the parameters that will result in features with the highest discriminative power for the classification 

at hand (i.e., malignant versus benign) are not known beforehand. Including these parameters in the 

workflow optimization, see Supplementary Material 3, would lead to repeated computation of the 

features, resulting in a redundant increase in computation time. Therefore, alternatively, these 

features are extracted at a range of parameters as is default in WORC. The hypothesis is that the 

features with high discriminative power will be selected by the feature selection methods and/or the 

machine learning methods as described in Supplementary Material 3. The parameters used are 

described in Supplementary Table S2. 

The variations in the slice thickness due to the heterogeneity in the acquisition protocols may 

cause feature values to be dependent on the acquisition protocol. Moreover, the slice thickness is 

substantially larger than the pixel spacing. Hence, extracting robust 3D features may be hampered by 

these variations, especially for low resolutions. To overcome this issue, all features were extracted 

per 2D axial slice and aggregated over all slices, which is default in WORC. Afterwards, several first-

order statistics over the feature distributions were evaluated and used in the machine learning 

approach.  
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Supplementary Material 3: Radiomics decision model creation 

This appendix is similar to (4, 5), but details relevant for the current study are highlighted.  

The Workflow for Optimal Radiomics Classification (WORC) toolbox (6) makes use of 

automated machine learning to create the optimal performing workflow from a variety of algorithms. 

Besides deciding whether to use an algorithm, most algorithms require hyperparameters, i.e., 

parameters that need to be set before the actual learning step, to be tuned to enhance the 

performance. WORC defines a workflow as a specific sequential combination of algorithms and their 

respective hyperparameters. In WORC, the radiomics workflow is split into the following 

components: image and segmentation preprocessing, feature extraction, feature and sample 

preprocessing, and machine learning. For each component, a collection of algorithms and their 

associated hyperparameters is included. Given this search space, WORC uses automated machine 

learning to find the optimal solution. The code to use WORC for creating the decision models in this 

specific study has been published open-source (11). 

The workflows could be constructed from the following default search space in WORC, which 

components can only be combined in the order listed below: 

1. Features selection: a group-wise search, in which specific groups of features (i.e., intensity, 

shape, and the subgroups of texture features as defined in Supplemental Material 2 and 

Supplementary Table S2) are selected or deleted. To this end, each feature group had an on/off 

variable which is randomly activated or deactivated, which were all included as hyperparameters 

in the optimization. 

2. Feature imputation: when a feature could not be computed, e.g. a lesion is too small for a 

specific feature to be extracted, a feature imputation algorithm is used to estimate replacement 

values for the missing values. Strategies for imputation included 1) the mean; 2) the median; 3) 

the mode; 4) a constant (default: zero); and 5) a nearest neighbor approach. 
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3. Feature selection: a variance threshold, in which features with a low variance (<0.01) are 

removed. This method was always used, as this serves as a feature sanity check with almost zero 

risk of removing relevant features. 

4. Feature scaling was performed to make all features have the same scale, as otherwise the 

machine learning methods may focus only on those features with large values. This was done 

through z-scoring, i.e., subtracting the mean value followed by division by the standard 

deviation, for each individual feature. A robust version of z-scoring was used, in which outliers, 

i.e., values below the 5th percentile or above the 95th percentile, were excluded from computing 

the mean and variance.  

5. Feature selection: optionally, the RELIEF method (16), which ranks the features according the 

differences between neighboring samples. Features with more differences between neighbors of 

different classes (i.e., malignant versus benign) are considered higher in rank. 

6. Feature selection: optionally, features are selected by training a machine learning model and 

selecting features that are regarded important by the model. Hence the used model should be 

able to give the features an importance weight. Included model choices are LASSO, logistic 

regression, and a random forest. 

7. Dimensionality reduction: optionally, principal component analysis (PCA) is used, in which either 

only those linear combinations of features were kept which explained 95% of the variance in the 

features or a limited number of components (between 10 – 50). 

8. Feature selection: optionally, individual feature are selected through univariate testing. To this 

end, for each feature, a Mann-Whitney U test was performed to test for significant differences in 

distribution between the labels (i.e., malignant versus benign). Afterwards, only features with a 

p-value above a certain threshold were selected. 

9. Resampling: optionally, a various resampling strategy could be used, which are used to overcome 

class imbalances and reduce overfitting on specific training samples. These included various 

methods from the imbalanced-learn toolbox (17): random over-sampling, random under-
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sampling, near-miss resampling, the neighborhood cleaning rule, ADASYN, and SMOTE (regular, 

borderline, Tomek and the edited nearest neighbors variant). 

10. Machine learning: lastly, a machine learning method is used to determine a decision rule to 

distinguish the classes. Methods included were; 1) logistic regression; 2) support vector 

machines; 3) random forests; 4) naive Bayes; 5) linear discriminant analysis; 6) quadratic 

discriminant analysis; 7) AdaBoost (18); and 8) extreme gradient boosting (19). 

By default in WORC, all model construction and optimization was performed on the training 

set in order to prevent overfitting on the test dataset.  To prevent overfitting on the training dataset, 

a 5x random-split stratified cross-validation (20, 21) was performed within the training dataset as 

well, using 85% for model training and 15% for model validation, see Supplementary Figure S1.  

WORC states the radiomics workflow as a combined algorithm selection and hyperparameter 

optimization problem (CASH), as algorithm selection and hyperparameter optimization are often not 

independent (22). Within the training dataset, CASH optimization is performed by testing thousand 

pseudo-randomly generated radiomics workflows from the above search space. These are trained on 

the five training datasets in the 5x random-split training-validation cross-validation, and ranked 

according to their mean performance on the five validation datasets. As performance metric, the 

weighted F1-score is used, which is the harmonic average of the precision and recall.  

Using only the single workflow that on average performs best on the validation datasets may 

result in poor generalization due to overfitting on the validation datasets. Hence, an ensemble was 

constructed by combining the workflows that perform best on the validation datasets. Ensembling 

was done using the default of WORC by averaging the posteriors of the 100 best workflows. 

The following pseudo code illustrates the algorithm of WORC: 

- For each 100x random-split training-test cross-validation iteration: 

- Do: Construct the training dataset by randomly selecting 80% of the patients. 



9 
 

 
 

- Do: On this training dataset, define 5x random-split cross-validation splits, selecting in 

each iteration 85% of the patients for training and 15% for validation. 

- Do: Pseudo-randomly sample 1,000 workflows from the search space. 

- For each of the 1,000 sampled workflows: 

▪ Do: Train the workflow on the five training datasets in the 5x random-split cross-

validation. 

▪ Do: Compute the mean weighted F1-score on the corresponding five validation 

datasets in the 5x random-split cross-validation. 

- Do: Rank the 1,000 workflows, retrain the best 100 workflows on the full training dataset 

and combine them in an ensemble. 

- Do: Evaluate “the model”, i.e., the ensemble of the best 100 workflows as trained on the 

training dataset, on the test dataset, i.e., the remaining 20% of the patients that were 

not included in the training dataset. 

The largest experiments in this study consists of executing 500,000 workflows (1,000 pseudo-

randomly generated workflows, times a 5x train-validation cross-validation, times 100x train-test 

cross-validation for the internal validation), which can be parallelized. The computation time of 

training or testing a single workflow is on average less than a second, depending on the size of the 

dataset both in terms of samples (i.e. patients) and features. The largest experiment in this study, i.e. 

the internal validation on dataset A, had a computation time of approximately 24 hours on a 32 CPU 

core machine. The contribution of the feature extraction to the computation time was negligible. 

The code for the radiomics feature extraction and model creation, including more details, has 

been published open-source (11).  
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Supplementary Figures and Tables 

 

Supplementary Figure S1. Visualization of evaluation setups. (A) The 100x random-split cross-validation used in the 
internal validation; (B) and the 1,000x bootstrap resampling in the external validations. Both include an internal random-
split cross-validation within the training dataset for the model optimization.  
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Supplementary Table S1. Overview of univariate testing of radiomics features. Per dataset (A, B, and C), the statistical 
significance of the difference between the malignant and benign lesions was assessed using a Mann-Whitney U test for 
continuous variables, and a Chi-square test for discrete variables. Only the features that showed statistically significant 
differences in dataset A are include. All p-values were corrected for multiple testing by multiplying the p-values with the 
total number of tests (564). Statistically significant p-values and names of that showed statistically significant differences in 
all three datasets are given in bold. 

Feature name p-value A p-value B p-value C 

tf_kurtosis_sigma1 9.26x10-10 1.80x10-5 1.00 

tf_mean_sigma1 1.06x10-8 1.27x10-4 1.00 

tf_LBP_std_R3_P12 3.19x10-8 8.60x10-4 1.00 

tf_LBP_quartile_range_R8_P24 1.56x10-7 0.0026 7.77x10-5 

tf_peak_sigma1 2.74x10-7 0.0028 1.00 

tf_median_sigma1 8.27x10-7 0.0035 1.00 

tf_LBP_skewness_R8_P24 1.33x10-6 0,0067 2,16x10-4 

tf_LBP_kurtosis_R8_P24 1.51x10-6 0.013 9.44x10-5 

tf_LBP_mean_R8_P24 1.53x10-6 0.014 2.20x10-4 

tf_LBP_skewness_R15_P36 5.18x10-5 0.13 8.70x10-4 

tf_LBP_mean_R15_P36 6.18x10-5 0.14 9.92x10-4 

tf_mean_sigma10 8.40x10-5 0.94 1.00 

tf_LBP_kurtosis_R15_P36 9.02x10-5 0.19 4.75x10-4 

tf_LBP_median_R3_P12 1.29x10-4 0.086 0.27 

sf_area_min_2D 2.29x10-4 0.67 1.00 

tf_Gabor_std_F0.2_A0.79 3.65x10-4 6.42x10-5 0.50 

tf_Gabor_kurtosis_F0.05_A0.79 6.24x10-4 1.00 1.00 

tf_LBP_skewness_R3_P12 8.44x10-4 0.28 0.17 

tf_Gabor_quartile_range_F0.2_A0.79 0.001 9.71x10-5 0.11 

tf_median_sigma10 0.001 0.51 1.00 

tf_Gabor_quartile_range_F0.2_A1.57 0.001 3.79x10-5 1.00 

tf_Gabor_max_F0.2_A0.79 0.004 2.26x10-4 0.24 

tf_Gabor_std_F0.2_A0.0 0.006 0.001 0.18 

tf_Gabor_std_F0.2_A1.57 0.008 0.002 1.00 

tf_Gabor_range_F0.2_A0.79 0.008 6.92x10-4 0.69 

tf_Gabor_quartile_range_F0.2_A2.36 0.009 6.92x10-4 0.12 

tf_LBP_mean_R3_P12 0.012 1.00 0.45 

tf_kurtosis_sigma10 0.012 0.73 1.00 

tf_std_sigma1 0.014 0.44 1.00 

tf_LBP_std_R15_P36 0.015 1.00 0.002 

tf_Gabor_max_F0.2_A1.57 0.015 0.001 1.00 

tf_Gabor_median_F0.5_A0.0 0.015 1.00 1.00 

sf_area_avg_2D 0.015 0.010 1.00 

tf_Gabor_min_F0.2_A0.79 0.017 0.005 1.00 

tf_LBP_std_R8_P24 0.019 1.00 8.80x10-4 

tf_LBP_quartile_range_R15_P36 0.020 1.00 0.084 

tf_Gabor_quartile_range_F0.2_A0.0 0.020 5.80x10-4 0.090 

sf_area_max_2D 0.023 0.011 1.00 

sf_shape_Flatness 0.038 1.00 1.00 
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of_COM_y 0.038 0.69 1.00 

tf_Frangi_inner_energy_SR(1.0. 10.0)_SS2.0 0.042 0.033 1.00 

tf_GLDM_SmallDependenceHighGrayLevelEmphasis 0.046 0.020 1.00 

tf_max_sigma10 0.046 1.00 1.00 

tf_Frangi_edge_energy_SR(1.0. 10.0)_SS2.0 0.049 0.081 1.00 

tf_Frangi_full_energy_SR(1.0. 10.0)_SS2.0 0.049 0.081 1.00 

*Abbreviations: tf: texture feature; sf: shape features; of: orientation feature.
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Supplementary Table S2. Overview of the 564 radiomics features used in this study. GLCM features were calculated in four different directions (0, 45, 90, 135 degrees) using 16 gray levels and pixel distances of 1 and 

3. LBP features were calculated using the following three parameter combinations: 1 pixel radius and 8 neighbours, 2 pixel radius and 12 neighbours, and 3 pixel radius and 16 neighbours. Gabor features were 

calculated using three different frequencies (0.05, 0.2, 0.5) and four different angles (0, 45, 90, 135 degrees). LoG features were calculated using three different widths of the Gaussian (1, 5 and 10 pixels). Vessel 

features were calculated using the full mask, the edge, and the inner region. Local phase features were calculated on the monogenic phase, phase congruency and phase symmetry. 

Histogram  
(13 features) 

LoG  
(13*3=39 features) 

Vessel  
(12*3=39 features) 

GLCM (MS) 
(6*3*4*2=144 features) 

Gabor  
(13*4*3=156 features) 

NGTDM  
(5 features) 

LBP  
(13*3=39 features) 

min 
max 
mean 
median 
std 
skewness 
kurtosis 
peak 
peak position 
range 
energy 
quartile range 
entropy 

min 
max 
mean 
median 
std 
skewness 
kurtosis 
peak 
peak position 
range 
energy 
quartile 
entropy 

min 
max 
mean 
median 
std 
skewness 
kurtosis 
peak 
peak position 
range 
energy 
quartile 
entropy 

contrast (normal, MS mean + std)  
dissimilarity (normal, MS mean + std) 
homogeneity (normal, MS mean + std) 
angular second moment (ASM) (normal, MS mean + std) 
energy (normal, MS mean + std) 
correlation (normal, MS mean + std) 

min 
max 
mean 
median 
std 
skewness 
kurtosis 
peak 
peak position 
range 
energy 
quartile range 
entropy 

busyness  
coarseness 
complexity 
contrast 
strength 

min 
max 
mean 
median 
std 
skewness 
kurtosis 
peak 
peak position 
range 
energy 
quartile range 
entropy 

GLSZM  
(16 features) 

GLRM  
(16 features) 

GLDM 
(14 features) 

Shape  
(35 features) 

Orientation  
(9 features) 

Local phase  
(13*3=39 features) 

 

Gray Level Non Uniformity 
Gray Level Non Uniformity Normalized 
Gray Level Variance 
High Gray Level Zone Emphasis 
Large Area Emphasis 
Large Area High Gray Level Emphasis 
Large Area Low Gray Level Emphasis 
Low Gray Level Zone Emphasis 
SizeZoneNonUniformity 
SizeZoneNonUniformityNormalized 
SmallAreaEmphasis 
SmallAreaHighGrayLevelEmphasis 
SmallAreaLowGrayLevelEmphasis 
ZoneEntropy 
ZonePercentage 
ZoneVariance 

Gray Level Non Uniformity 
Gray Level Non Uniformity Normalized 
Gray Level Variance 
High Gray Level Run Emphasis 
Long Run Emphasis 
Long Run High Gray Level Emphasis 
Long Run Low Gray Level Emphasis 
Low Gray Level Run Emphasis 
RunEntropy 
RunLengthNonUniformity 
RunLengthNonUniformityNormalized 
RunPercentage 
RunVariance 
ShortRunEmphasis 
ShortRunHighGrayLevelEmphasis 
ShortRunLowGrayLevelEmphasis 

Dependence Entropy 
Dependence Non-Uniformity 
Dependence Non-Uniformity 
Normalized 
Dependence Variance 
Gray Level Non-Uniformity 
Gray Level Variance 
High Gray Level Emphasis 
Large Dependence Emphasis 
Large Dependence High Gray Level 
Emphasis 
Large Dependence Low Gray Level 
Emphasis 
Low Gray Level Emphasis 
Small Dependence Emphasis 
Small Dependence High Gray Level 
Emphasis 
Small Dependence Low Gray Level 
Emphasis 

compactness (mean + std) 
radial distance (mean + std) 
roughness (mean + std)  
convexity (mean + std)  
circular variance (mean + std) 
principal axes ratio (mean + std) 
elliptic variance (mean + std)  
solidity (mean + std) 
area (mean, std, min + max 
volume (total, mesh, volume) 
elongation 
flatness 
least axis length 
major axis length 
minor axis length 
maximum diameter 3D 
maximum diameter 2D (rows, 
columns, slices) 
sphericity 
surface area 
surface volume ratio 

theta_x 
theta_y 
theta_z 
COM index x 
COM index y 
COM index z 
COM x 
COM y 
COM z 

min 
max 
mean 
median 
std 
skewness 
kurtosis 
peak 
peak position 
range 
energy 
quartile 
entropy 

 

*Abbreviations: COM: center of mass; GLCM: gray level co-occurrence matrix; MS: multi slice; NGTDM: neighborhood gray tone difference matrix; GLSZM: gray level size zone matrix; GLRLM: gray level run length 
matrix; LBP: local binary patterns; LoG: Laplacian of Gaussian; std: standard deviation. 


