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Supplementary Figures
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Supplementary Figure 1: Theoretical distribution of the incubation period used in the like-
lihood (orange dashed line), and simulated empirical distribution for the incubation period
obtained from the inferred model (green solid line).
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Supplementary Figure 2: Distribution of the generation time (the time from becoming
infected oneself to infecting others), according to the two different relationships between infec-
tiousness and viral load discussed in the text.

0.00

0.05

0.10

−10 −5 0 5 10
Time from onset of symptoms

to transmission (days)

P
ro

ba
bi

lit
y 

de
ns

ity
 (

pe
r 

da
y) from case−contact

 pairs
Lee 2021

Supplementary Figure 3: Distribution of the time from onset of symptoms to transmis-
sion (TOST), according to the two different relationships between infectiousness and viral load
discussed in the text.
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Supplementary Figure 4: Sensitivity of a LFA test depending on viral load. The dashed line
shows the theoretical sensitivity from clinical samples in a laboratory setting; the continuous
line illustrates the actual sensitivity that we considered for the model, accounting for self-
administration. (Note that this sensitivity does not account for the probability of not taking
some tests or dropping off the testing schedule altogether, which is considered separately in the
model.)
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Supplementary Figure 5: Cost-benefit ratio for quarantine strategy and DCT strategy for
vaccinated and unvaccinated contacts. The cost-benefit ratio is defined as the total days of
quarantine or self-isolation per transmission averted. Results using the relationship between
viral load and infectiousness inferred in this paper are shown as solid lines; results using the
relationship inferred by Lee et al are shown as dashed lines.
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Supplementary Figure 6: Total number of transmissions averted by quarantine or DCT
strategies for contact-traced individuals, and number of days of quarantine per traced individual.
Quarantine is shown as black lines; daily testing is shown in blue. Solid lines correspond to
inference of infectiousness from timing of transmission of case-contact pairs, semi-transparent
lines to inference from Lee et al. Each row explores a different range for a given parameter with
respect to the default scenario in Figure 3.
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Supplementary Figure 7: Illustrative explanation of the lower cost/benefit ratio for DCT.
The impact on transmission is given by the isolation of infected contacts (in green) from the
general population, and it is comparable between quarantine and DCT with similar adherence.
On the other hand, then number of uninfected contacts that are isolated (in yellow) ontributes
to the difference in social costs between the two strategies, and it is disproportionately higher
for quarantine.
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Supplementary Methods

Data sources

We bring together four main sources of data to parameterise the model:

• Serially sampled viral loads. [Kissler et al] have studied viral load trajectories (longitudinal
Ct values) in serially sampled individuals in the NBA ‘bubble’ of players and support staff.

• Viral loads and symptoms. [Hellewell et al] provide serial positivity and Ct testing data
with symptoms.

• Viral load/infectiousness curve. [Lee et al] fitted a logistic regression in terms of Ct values
for the index case and other factors to the secondary attack rate in a large study on traced
contacts from the UK.

• Timing of transmission. [Ferretti, Ledda et al] studied the time distribution between
infection and/or onset of symptoms in the source cases, and transmission(s) to secondary
cases, based on four datasets of case-contact pairs [Ferretti&Wymant et al, Xia et al, He
et al, Cheng et al].

The model

Let i index the different infected individuals.

Submodel 1

Viral load trajectories Time since infection is denoted t, and the viral load trajectory of
individual i, denoted Vi(t), is given by

Vi(t) =

{
V 0 exp (rit), if t ≤ tPi
V 0 exp (rit

P
i ) exp (−di(t− tPi )), if t > tPi

(1)

where

• V 0 is the viral load at the time of becoming infected for individual i,

• ri is the pre-peak exponential growth rate of viral load for individual i,

• tPi is the time from becoming infected to peak viral load for individual i,

• −di is the post-peak exponential ‘growth’ rate of viral load for individual i (with di > 0
such that this describes exponential decline),

We re-parameterize this model by introducing a parameter for the peak viral load V P
i =

Vi(t
P
i ) and then noting that tPi = (log V P

i − log V 0
i )/ri.

We assume that all parameters V P
i , ri, di are lognormally distributed with log-scale means

µs
log V P , µslog r, µ

s
log d for symptomatic individuals and µa

log V P , µalog r, µ
a
log d for asymptomatic

ones, and log-scale standard deviations σlog V P , σlog r, σlog d. All distributions are truncated
within realistic ranges to ri > log(µV P /Vlod)/15, di > log(µV P /Vlod)/30, were Vlod corresponds
to the limit of detection, i.e. we assume that the visible growth and clearance phases cannot
typically last more than 15 and 30 days respectively.
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Observational model The rest of the model and the corresponding likelihood (dealing with
the relative position of the peak, false negative and false positive rates, uncertainties in the
measured Ct values vs the viral load trajectory) is identical to [Kissler et al].

Total viral load is not observed, rather viral load is assessed by quantitative polymerase
chain reaction (qPCR) from a specimen obtained from the respiratory tract. The result is
reported by the number of PCR cycles done before the virus is detected, the cycle threshold
(Ct) value. The Ct value is specific to the method of testing, denoted M . M includes details
of the type of sample collected (e.g. nasopharygeal and oral swabs, saliva samples), methods of
swabbing, and details of the laboratory protocol. The lower the Ct value, the higher the viral
load. There is a limit of detection lodM , that is specific to the testing method M . The expected
Ct value is related to viral loads by the transform

E(Ct) = kM − log(V L)/eM (2)

where kM and eM are constants that are specific to the testing method M . Following [Kissler
et al], we model the observed Ct value by

∆Ct ∼ λ Normal(E[∆Ct], σM ) + (1 − λ) Exponential(log 10)]lod0 (3)

where ∆Ct = lod − Ct, 1 − λ = 0.01 is the probability of a false positive result, and the right
bracket indicates that the distribution is right truncated at lod.

Consider a time series of observed Ct values for individual i. This observation model defines
a likelihood, subject to the unknown time of infection of individual i, tIi , which is the final
parameter of the model.

Hierarchical Bayesian inference in Stan of the parameters of this submodel (except V 0
i , which

cannot be inferred from pure longitudinal Ct information) results in the following estimates
(with viral loads measured in Ct units, calibrated as log10 V = 2.658 + 0.277 × Ct):

mean semean sd 2.5% 25% 50% 75% 97.5% neff R̂

µs
log V P 16.03 0.03 1.66 12.81 14.91 16.01 17.13 19.33 3555.27 1.00

µsr 5.90 0.03 1.74 3.11 4.63 5.68 6.95 9.82 4081.83 1.00
µsd -1.46 0.00 0.19 -1.88 -1.57 -1.45 -1.32 -1.11 2342.91 1.00
µa
log V P 12.98 0.03 1.13 10.78 12.22 12.95 13.74 15.22 1778.48 1.01

µar 4.32 0.02 1.09 2.65 3.55 4.18 4.91 6.92 2073.62 1.00
µad -1.60 0.01 0.19 -2.02 -1.72 -1.59 -1.46 -1.26 967.87 1.01
σlog V 4.10 0.01 0.68 2.87 3.63 4.05 4.52 5.54 2770.82 1.00
σlog r 0.95 0.01 0.20 0.63 0.81 0.93 1.06 1.39 1271.81 1.01
σlog d 0.24 0.01 0.09 0.06 0.18 0.24 0.30 0.44 330.38 1.02

Submodel 2

Incubation and onset of symptoms Denote by tSi the onset of symptoms in individual
i, defined only if individual i develops symptoms at some point (i.e. is not asymptomatic).
We assume that the onset of symptoms is driven by the peak of the viral load dynamics, and
occurs at a mean time µp−S after the peak of viral load (or before, if µp−S < 0). We model the
self-reported onset of symptoms by a (truncated) normal distribution,

tSi ∼ Normal(tPi + µp−S , σ
2
p−S) (4)

with the truncation corresponding to the condition tSi > 0 (i.e. symptoms shouldn’t precede
infection).
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Observational model We apply the above viral load model to the data by [Hellewell et al]
that include reported symptomatic/asymptomatic state along with test results. We exclude
all observations from individuals without reported symptoms. Since Ct values from this study
are not calibrated, the relation between Ct values and log viral load is modelled as linear
Ct = c0 + c1 log(V ) with parameters c0, c1 to be inferred.

The incubation period distribution ι(t) is assumed to be known (since it is derived from
line lists of large numbers of individuals) and taken from the meta-analysis of [McAloon et al]
with Ma et al. excluded due to possible bias. Namely, the incubation time tSi is assumed to be
lognormally distributed with µi = 1.58, σi = 0.47. All times of infection and symptom onset
have flat priors.

The likelihood for the viral load trajectories is similar to the previous one, except for the
addition of a false negative rate λFNR included in the model to account for self-testing, i.e. we
model the observed Ct value by

∆Ct ∼

{
λNormal(E[∆Ct], σM ) + (1 − λ) Exponential(log 10)]lod0 with prob 1 − λFNR

0 with prob λFNR
(5)

In submodel 2 we infer de novo all parameters, except the hyperpriors inferred in the previous
submodel.

Hierarchical Bayesian inference in Stan of the parameters of this submodel and V 0 results
in the following estimates:

mean semean sd 2.5% 25% 50% 75% 97.5% neff R̂

log V 0 -1.21 0.02 1.19 -4.37 -1.70 -0.85 -0.34 -0.02 3302.96 1.00
µp−S 2.50 0.01 0.45 1.66 2.20 2.49 2.79 3.39 1171.01 1.01
σp−S 0.60 0.02 0.50 0.03 0.23 0.49 0.84 1.83 669.22 1.01
λFNR 0.16 0.00 0.06 0.05 0.12 0.15 0.20 0.29 2652.82 1.01

Note that the estimate for λFNR (16%) is lower than the FNR at peak sensitivity found in
the work of [Hellewell et al] (23%). The first value is more likely to represent the true FNR due
to self-administration by trained individuals. However, for the purpose of this model, we prefer
to use a more conservative value and approximate the assumed FNR as 25%.

Submodel 3

Viral infectiousness and transmissibility We assume that infectiousness is a function of
viral load and of time since symptoms. It is a monotonically increasing function of viral load,
since high viral load should correlate with high viral shedding and higher transmission risk. We
model it as a Hill function. We include also an exponential suppression of the infectiousness
after onset of symptoms, due to behavioural effects (self-isolation and distancing).

β(V ) = βmax
V γ

V γ + V γ
50

exp
(
−b
[
t− tSi

]
+

)
(6)

The parameters βmax, γ, V50, b are not assumed to vary between individuals, i.e. hetero-
geneity in the infectiousness between individuals is modelled as arising only though viral load
and time since infection.

Observational model Observations of transmission events typically correspond to the expo-
sure interval during which i could have been infected, [tEi,min, t

E
i,max] and the onset of symptoms
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TSi each individual i = 1 or i = 2 in a linked transmission pair. For small β, the likelihood of
this observation is well approximated by∫ tE1,max

tE1,min

dtE1

∫ tE2,max

tE2,min

dtE2 ι(t
S
1 − tE1 )β(V1(t

E
2 ), tE2 )ι(tS2 − tE2 ) (7)

Contact events without transmission correspond to the likelihood:∫ tE1,max

tE1,min

dtE1 ι(t
S
1 − tE1 ) exp

[
−
∫ tE2,max

tE2,min

dtE2 β(V1(t
E
2 ), tE2 )

]
(8)

Bayesian inference in Stan of all parameters of this submodel, considering a mild prior on
γ ∼ lognormal(log 0.092, log 10) based on [Lee et al], results in the following estimates:

mean semean sd 2.5% 25% 50% 75% 97.5% neff R̂

log V50 8.72 0.02 0.56 7.59 8.35 8.73 9.10 9.78 499.23 1.00
γ 1.99 0.04 0.58 1.06 1.60 1.93 2.31 3.38 245.88 1.02
b 0.40 0.00 0.07 0.27 0.35 0.39 0.44 0.54 484.34 1.01

On the other hand, assuming the values γ = 0.092 obtained from a direct fit of the nonlinear
inference from [Lee et al] and log V50 large (= 4µs

log V P ), Bayesian inference in Stan of the
remaining parameters of this submodel results in the following estimate:

mean semean sd 2.5% 25% 50% 75% 97.5% neff R̂

b 0.38 0.00 0.07 0.26 0.33 0.37 0.42 0.52 549.00 1.00

Modelling DCT and quarantine

Average reduction in contacts during quarantine was estimated in [Wymant&Ferretti et al]
by considering an intermediate scenario assuming that approximately 45% of traced contacts
quarantine perfectly (100% reduction in transmission), 30% of traced contacts quarantine im-
perfectly with 50% reduction in transmission, and 25% of traced contacts do not quarantine
at all (0% reduction in transmission). This corresponds to an adherence of 45%+30%=75%
to quarantine, with an average effectiveness of (100%·45%+50%30%)/75%=80%. We consider
this scenario (75% adherence, 80% effectiveness in reducing contacts when quarantining) as our
central scenario, but vary the adherence from 30% to 90% to acknowledge both uncertainties
and potential changes in time in adherence, which also could differ between vaccinated and
unvaccinated contacts.

The daily sensitivity of LFA tests is modelled with the self-administered sensitivity curve
from Supplementary Figure 2 (approximately valid for Innova) and reduced by several be-
havioural factors, especially the daily probability of missing a test pmiss and the daily probabil-
ity of dropping out altogether pdrop. Hence, daily sensitivity on day t post tracing is modulated
by the behavioural factor (1−pmiss)∗(1−pdrop)t−1 and by the clinical sensitivity (which depends
on the viral load that day).

The difference in cost-benefit between DCT and quarantine is driven by two epidemiological
parameters: the SAR among contacts of unvaccinated index cases, and the vaccine protection
against infection (V PI). The social/economic cost of the quarantine strategy is independent
of these parameters, but the benefit in terms of the absolute reduction in transmissions is
proportional to the SAR for contacts of unvaccinated cases and to SAR(1− V PI) for contacts
of vaccinated cases. Current variants have a relatively low SAR [Lee et al. 2021] and a high
V PI [Hall et al. 2021], here assumed to be SAR = 0.2 and V PI = 0.75, leading therefore
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to a high cost per transmission averted, especially for vaccinated individuals. On the other
hand, both the cost and the benefit of DCT have the same dependence on SAR and V PI as
for quarantine, i.e they are both proportional to the SAR for contacts of unvaccinated cases
and to SAR(1 − V PI) for contacts of vaccinated cases. For this reason, DCT has a much
greater cost-benefit ratio than the quarantine strategy, especially for vaccinated contacts and
for contacts of vaccinated individuals. Since the difference in cost-benefit ratio between the
two strategies depends on the SAR, it could also vary depending on the infectiousness of the
circulating viral variants, and on other interventions that affect how likely infection is to occur
given close contact (for example masks, the movement of social mixing outdoors, and increasing
ventilation indoors).
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