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Abstract 
We performed the largest genome-wide meta-analysis (GWAMA) (Max N=26,494) of the 
levels of 184 cardiovascular-related plasma protein levels to date and reported 592 
independent loci (pQTL) associated with the level of at least one protein (1308 significant 
associations, median 6 per protein). We estimated that only between 8-37% of testable 
pQTL overlap with established expression quantitative trait loci (eQTL) using multiple 
methods, while 132 out of 1064 lead variants show evidence for transcription factor binding, 
and found that 75% of our pQTL are known DNA methylation QTL. We highlight the variation 
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in genetic architecture between proteins and that proteins share genetic architecture with 
cardiometabolic complex traits. Using cis-instrument Mendelian randomisation (MR), we 
infer causal relationships for 11 proteins, recapitulating the previously reported relationship 
between PCSK9 and LDL cholesterol, replicating previous pQTL MR findings and 
discovering 16 causal relationships between protein levels and disease. Our MR results 
highlight IL2-RA as a candidate for drug repurposing for Crohn’s Disease as well as 2 novel 
therapeutic targets: IL-27 (Crohn’s disease) and TNFRSF14 (Inflammatory bowel disease, 
Multiple sclerosis and Ulcerative colitis). We have demonstrated the discoveries possible 
using our pQTL and highlight the potential of this work as a resource for genetic 
epidemiology.  

Introduction 
Proteins are the key functional elements in the body and are instrumental in most biological 
processes including, growth, repair, transport and signalling. Dysregulation of proteins 
circulating in the blood is often observed in disease and, moreover, is often part of the 
causal pathway, making them ideal candidate drug targets. The plasma proteome, which 
consists of both proteins which are actively secreted and passively leaked from cells, is an 
attractive and accessible system to study. As samples are easy to store, collection is 
minimally invasive for study participants, and hundreds to thousands of molecules can be 
measured, plasma proteins have been investigated as biomarkers for numerous diseases1. 
The recent advances in targeted proteomics technologies have allowed thousands of 
circulating plasma protein levels to be measured simultaneously, even in large sample 
sizes2–9. Uncovering relationships between protein biomarkers and disease has the potential 
to aid in prediction of risk, diagnosis and development of new therapies for disease10. 
Cardiovascular disease (CVD)-related proteins are of particular interest as CVD was the 
leading cause of morbidity and mortality globally in 201911, being responsible for 18.6 million 
deaths and 393 million disability adjusted life years (DALYs). 
 
As circulating plasma protein levels are partly heritable12, genome-wide association studies 
(GWAS) have been used to discover genetic loci that are associated with regulation of 
protein levels; protein quantitative trait loci (pQTL)3,4,13–17. Previous pQTL studies have 
uncovered potential mechanisms of action for how common genetic variants affect 
circulating protein levels4,18. 
 
Using Mendelian Randomisation (MR) to assess potential causal relationships between 
biomarkers and disease phenotypes has become an increasingly utilised approach for drug 
target discovery and validation and has also successfully predicted outcomes of randomised 
controlled trials (RCTs)19. Despite many associations between levels of circulating 
biomarkers and various diseases in the literature, positing causal roles for these biomarkers 
has only been possible through the application of methods such as MR. The study of the 
genetics of circulating biomarkers such as plasma protein levels therefore has the capacity 
to uncover pathways, disease aetiology, therapeutic targets and biomarkers to aid detection 
and diagnosis of disease10. Unlike GWAS of complex traits, targets highlighted studying the 
plasma proteome are themselves directly actionable. 
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Previous large GWAS of plasma protein levels have discovered hundreds of associated loci, 
uncovered mechanisms for pQTL, causal relationships between proteins and diseases and 
posited how plasma protein levels may act to influence disease risk3,4,7,8,17,18,20. In order to 
maximise the potential for pQTL discovery and MR to find causal associations with disease 
and build on previous work, we performed genome-wide meta-analysis with the largest 
sample size for 184 cardiovascular-related plasma proteins. We uncovered insights into the 
genetic architecture of these proteins, indicating potential mechanisms for pQTL from 
altering gene expression and beyond. Using a broad exploratory analysis, we demonstrate 
the power of pQTL as genetic instruments in MR and highlight potential causal relationships 
between proteins and disease. These results suggest putative drug targets and repurposing 
opportunities. With this work we have created a resource of pQTL data that will aid the field 
of genetic epidemiology and provide tools for targeted experiments in the future. 

Results 

Discovery of Protein Quantitative Trait Loci 

We performed genome-wide meta-analyses (GWAMA) of the levels of 184 cardiovascular-
related plasma protein levels measured by the Olink proximity extension assay in a 
maximum of 26,494 individuals of European ancestry from 18 cohorts. We identified 1,073 
significant protein-locus associations (cis: p<1.18 x 10-7, trans: p<5.55 x 10-10, where cis was 
defined as ±1 Mb flanking the protein-coding region). After performing conditional analysis, 
we report a further 235 conditionally-independent protein-variant associations. In total we 
found 1,308 significant lead variant-protein associations, 288 cis-associations and 1,020 in 
trans (Figure 1a, Supplementary Table 1). This equates to the discovery of 592 independent 
loci significantly associated with the levels of at least one protein (Supplementary Table 2). 
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Figure 1. Significantly associated loci from GWAMA of 184 proteins. a) Points indicate 
the genomic position of 1,308 significant pQTL against the genomic position of the 
transcriptional start site (TSS) of the gene encoding the protein that the variant is associated 
with. Colour indicates if the variant is a cis- or trans-pQTL. Cis- is defined as any variant 
within ±1 Mb of the coding region of the gene encoding the protein, trans- defined as any 
variant outside that region. b) Histogram of the counts of significant pQTL per protein. c) 
Relationship between -log P-value and distance of each cis-pQTL from the TSS of the gene. 
d) Magnitude of effect size (absolute beta) shows a typical L-shaped relationship with minor 
allele frequency (MAF) of our pQTL (cis in blue, trans in pink). e) The frequency of predicted 
effect of the sentinel variants. 
 
Only two proteins, growth hormone 1 (GH) and Inhibitor of nuclear factor kappa B kinase 
regulatory subunit (NEMO), had no significant pQTL. For an additional 16 proteins we found 
no significant cis-signals (ACE2, CCL22, CD40-L, CD93, Ep-CAM, GDF-2, HAOX1, ICAM-2, 
IL-6, ITGB1BP2, MB, PDGF subunit B, PECAM-1, SRC, t-PA, VEGF-D). For five of the 
above eighteen proteins, ACE2, CD40-L, NEMO, ITGB1BP2 and VEGF-D, this is expected 
as they are encoded on the X chromosome, which was not studied here. For the remaining 
13 proteins, the minimum p-value and cis regions are shown in Supplementary Figure 1. 
Altogether, we report significant cis-pQTL for 92.7% of the plasma proteins (where cis-
regions were tested). 182 out of the 184 proteins analysed had a pQTL, 155 proteins had 
both cis- and trans-pQTL, 11 cis-only and 16 trans-only.  
 
The majority of proteins had 6 or fewer significant pQTL (Median N pQTL = 6), with 3 
proteins (CD163, CTSL1 and RAGE) having more than 20 (Figure 1b). In general proteins 
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with multiple significant pQTL had 1-3 cis-associated pQTL with any additional associated 
loci being in trans (Supplementary Figure 2). Interestingly, 241 loci contained pQTL for more 
than one protein, with the HLA and ABO regions being associated with the most proteins 
(Supplementary Table 3). We saw a distinct pattern with our significant cis-associated 
variants such that variants nearest the transcriptional start site (TSS) of the relevant gene 
displayed the strongest associations (Figure 1c). As seen for most complex traits, the 
magnitude of effect size increased with decreasing minor allele frequency (Figure 1d). Using 
single variant annotation from Ensembl variant effect predictor21 we found that 70% of our 
lead variants are either intronic or intergenic (Figure 1e).  
 
Six hundred and twenty-one (47.5%) of our significant lead variants (or variants in LD, 
r2>0.5, with our lead variants) have previously been reported as genome-wide significantly 
associated with the relevant protein in previous GWAS of plasma protein levels (Details of 
previous studies summarised in Supplementary Table 4). Thus, 687 (52.5%) of our 
significant protein-variant associations are novel. We also reported 20 novel proteins with 
significant pQTL. 

Genetic Architecture of Plasma Protein Levels 

Unlike traditional complex polygenic traits, many of the proteins have an extremely strong 
cis-association signal and have individual variants that explain relatively large proportions of 
variance in the phenotype. Having very few (or one) strong signals is rare outside of 
molecular phenotypes, as many weak signals with small effects are common in complex 
traits. We found that 75 of our 1,308 lead variants have estimated phenotypic variance 
explained (R2) of >5% (51 cis and 24 trans), with the highest being rs12141375:A, estimated 
to explain 32.7% of the variance in plasma CHIT1 levels (Supplementary Figure 3).  
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Figure 2. pQTL vs Polygenic Contribution to SNP heritability. The SNP heritability 
estimated for each protein, stratified by contributions from significant pQTL and polygenic 
effects. Polygenic: LDSC-estimated SNP heritability excluding variants indexed by the lead 
variants, pQTL: sum of the estimated variance in protein level explained by the lead variants 
(See Methods for details). 
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Standard methods for estimating single nucleotide polymorphism (SNP) heritability from 
association summary statistics assume a polygenic model that is unlikely to hold for proteins. 
We therefore calculated the heritability contributed by significant pQTL (pQTL component) 
and the remaining genome-wide SNP heritability (polygenic component), separately for each 
protein (Figure 2). The pQTL component was calculated as the sum of the estimated 
variance in protein level explained by the lead SNPs and the polygenic component estimated 
using LD-score regression22,23 (see methods for details). Estimates of total genetic 
component ranged from 2.9% for NEMO protein levels to 40.2% for CHIT1. Genetic 
architecture, however, varied across proteins with IL-6RA and CHIT1 protein levels having 
identified pQTL accounting for 96.5% and 93% of their SNP heritabilities, respectively. 
Conversely, the genetic components of NEMO and GH protein levels appear entirely 
polygenic, having no significant pQTL in this analysis.  
 
We observed that there is a relationship between the number of significant pQTL we found 
and the estimated SNP heritability, with increasing heritability estimates with increasing 
number of pQTL (Supplementary Figure 4). 

Colocalisation of pQTL & eQTL 

We sought to uncover potential mechanisms by which our pQTL might act to influence the 
level of proteins circulating in plasma. Biologically, the most direct route biologically, would 
be for the significantly associated variants to affect protein levels by altering gene 
expression. 36.5% of the lead cis-variants have been previously reported as cis-expression 
QTL (eQTL) for the gene encoding the protein of interest (eQTLGen24, at 5% FDR 
(permutation-based)). However, for each of our pQTL, the lead variant (strongest association 
based on p-value) is not necessarily the causal variant. The lead variant commonly tags the 
signal for multiple variants in high LD, any of which could be the true causal variant.  
 
To further define whether the signals were shared we used two different approaches. We 
first looked for evidence of gene expression mediating the effect of our pQTL on plasma 
protein abundances using summary based Mendelian Randomisation (SMR) and tested that 
these estimates were not due to linkage using the heterogeneity in dependent instruments 
(HEIDI) test25. We found associations between 1,371 transcripts and 168 proteins 
(PSMR<1.68 x 10-7, PHEIDI≥0.01) in at least one of four eQTL datasets (eQTLGen24,GTEx v7, 
Westra et al.26 and Cage27). The number of significant transcript-protein associations across 
different eQTL resources are shown in Supplementary Table 5, as well as how many of our 
proteins are associated with the expression level of the transcript encoding the protein, 
compared to other transcripts.  
 
Secondly, to formally test whether the association signals with gene expression and protein 
level share the same causal variant or are driven by different variants, we looked for 
evidence of colocalisation. The Bayesian framework implemented by coloc28 assesses 
several hypotheses simultaneously by estimating separate posterior probabilities (PP) of the 
eQTL and pQTL i) sharing a single causal variant or ii) being caused by two independent 
variants. We found that 18 out of 220 testable cis-pQTL showed strong evidence of 
colocalisation (PP>0.8) with the cis-eQTL in whole blood using the eQTLgen summary 
statistics, with an additional 2 being likely to share a causal variant (PP>0.5). Using eQTL 
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data for 48 different tissues from GTEx v7, we found that 40 out of 277 testable cis-pQTL 
colocalise (PP>0.8) with the cis-eQTL in at least one tissue, with 12 more being likely to 
share a causal variant (PP>0.5). The majority of pQTL which colocalise with eQTL do so in 
<6 tissues, however there are several that colocalise with eQTL across >20 tissues 
(Supplementary Figure 5). Interestingly, there are very few that appear to be tissue specific. 
 
Both of these approaches share the caveat that they are unable to distinguish causality from 
pleiotropy. However, given that we are assessing the effect of genetic variants on gene 
expression and protein levels, the central dogma suggests these relationships are likely to 
be causal, but a definitive statement of causality for individual associations cannot be made 
using current methods. 

Other Potential Mechanisms 

As not all pQTL appear to act by altering gene expression, we looked for other potential 
mechanisms of action. For some proteins we found trans-pQTL that map to that protein’s 
receptor or vice versa. For example, despite having no significant cis-pQTL, IL-6 has an 
extremely strong association in the IL-6 receptor (IL6-RA) region. 
 
Given that 70% of our lead variants are intronic or intergenic, we next looked for existing 
annotation of regulatory function using RegulomeDB29 (Supplementary Figure 6a). Of the 
1064 of our 1093 lead variants that have an entry in RegulomeDB, 50 (8 cis and 42 trans) 
were placed in category 1, meaning they are known eQTL with varying additional levels of 
support (e.g. transcription factor (TF) binding, TF motif, DNase footprint), for the variant 
being located in a functional region. 82 of our lead variants (25 cis, 56 trans & 1 both cis and 
trans, but for different proteins) were scored in category 2, meaning that despite not being 
known eQTL, variants have direct evidence of binding from ChIP-seq and DNase 
footprinting. These results suggest that a substantial minority of pQTL that are not yet 
reported as being significant eQTL influence TF-binding. 
 
To uncover potential mechanisms for our trans-pQTL, we used annotation databases to see 
if trans-genes share pathways or are known to interact with the protein of interest. We 
defined trans-genes as all genes whose coding regions overlapped with a 1 Mb window 
centred on the lead variant of the trans-pQTL. We found that 85 of our trans-pQTL have a 
trans-gene with a known interaction with the protein of interest using STRINGdb30. Similarly, 
37 trans-pQTL have a trans-gene that shares a common KEGG31 pathway with the gene 
encoding the protein of interest, 158 share common gene ontology (GO) terms and 816 have 
a trans-gene that is mentioned in a publication together with the protein of interest 
(Supplementary Table 6). 

pQTL Associated with Metabolites, DNA methylation levels & Complex Traits 

Aside from affecting gene expression and plasma protein levels, our pQTL have also been 
previously associated with the levels of metabolites circulating in the plasma, with 
methylation of CpG dinucleotides and with complex traits. Using Phenoscanner32 we 
established that, of our 1093 unique lead variants: 96 have been reported as significantly 
(p<5 x 10-8) associated with circulating metabolite levels, 816 with DNA methylation and 547 
with complex traits in GWAS (Supplementary Figure 6b). 
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The 547 lead variants reported in previous GWA studies, have been significantly associated 
with a broad range of phenotypes, from cardiovascular-related phenotypes to immune and 
inflammatory diseases (Supplementary Table 7). Lead variants were also associated with 
anthropometric and adiposity-related traits, which are themselves risk factors for 
cardiovascular health; several causes of death in the UK Biobank (e.g. heart failure, vascular 
disease); and, unsurprisingly, blood protein, lipid and metabolite levels, as well as various 
red blood cell and immune cell counts.  
 
As these results are association-based, they do not confirm the causal direction of the 
relationship between protein level and disease phenotype. Similarly, the observation that the 
lead variant at a pQTL is associated with another trait provides no evidence that the same 
variant is causal for both traits. An alternative approach to detect evidence of shared genetic 
risk variants, rather than these single-SNP associations, is to look systematically across the 
whole genome to see if alleles that increase plasma protein levels also increase disease 
risk.  

Genetic Correlations 

To investigate if our proteins share genetic architecture with complex traits or 
cardiometabolic risk factors, we used High definition likelihood33 to estimate genetic 
correlations of our proteins with 14 important risk factors or outcomes (Supplementary Table 
8, full results are in Supplementary Figure 7). Genetic correlations that remained statistically 
significant after Bonferroni correction for multiple testing (p<1.95x10-5) are shown in Figure 
3. Interestingly, the traits with the most significant correlations with protein levels were BMI, 
WHR, creatinine and T2D; for BMI, WHR and T2D the majority were positive correlations, 
whereas all significant correlations between protein levels and creatinine were negative. 
IGFBP-2 levels are significantly genetically correlated with the most (8) traits including: lower 
BMI, WHR, total triglyceride levels, Type II diabetes and creatinine, but with increased HDL 
levels.  
 
Several genetic correlations recapitulated known relationships. For example, we find that 
leptin levels (LEP) are genetically correlated with increased BMI, WHR, type II diabetes, 
coronary artery disease (CAD) and risk of myocardial infarction (MI), and lower HDL levels. 
This finding recapitulates known biology as leptin is involved in the regulation of energy 
homeostasis and is linked to type II diabetes and cardiovascular phenotypes34. 
 
We also discovered novel correlations. The levels of LTBR (lymphotoxin beta receptor) 
circulating in the plasma were genetically correlated with increased BMI while BOC (Brother 
of CDO) and VSIG2 (V-set and immunoglobulin domain containing 2) levels correlated with 
WHR. None of these three proteins has been previously associated with adiposity-related 
traits. 
 
In summary, our plasma protein levels share risk variants across the genome with health-
related risk factors and disease outcomes, although an important caveat is that we are 
unable to distinguish the direction of these relationships from this analysis. 
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Figure 3. Genetic correlations show shared architecture between plasma protein 
levels and complex traits. Genetic correlation coefficients (rg) calculated using High 
definition likelihood for protein levels and complex traits. Only traits passing Bonferroni 
significance (p<1.95 x 10-5) are included (full results in Supplementary Figure 7). Error bars 
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indicate 95% confidence intervals of rg estimation. BMI: Body mass index, WHR: waist-to-hip 
ratio, TG: triglyceride level, CAD: coronary artery disease, MI: myocardial infarction, T2D: 
type II diabetes mellitus, HDL: high density lipoprotein.  

Causal inference using Mendelian Randomisation 

To identify potential causal relationships between plasma protein levels and disease we 
used Mendelian Randomisation (MR). We limited our analysis to only using cis-associated 
variants as instrumental variables (IVs) to reduce the influence of pleiotropy on our results. 
We also excluded any variants in the highly pleiotropic HLA and ABO regions. An LD 
threshold of r2>0.001 was used to remove correlated variants. We tested the association of 
the 169 proteins that had IVs meeting these criteria with 121 outcomes available from MR-
Base35 (outcomes listed in Supplementary Table 9). 96 protein-outcome causal effect 
estimates passed a 1% FDR (Benjamini-Hochberg method36) significance threshold. 
 
MR relies on assumptions that are difficult to test empirically. To increase confidence in our 
results, we therefore performed additional sensitivity analysis (Supplementary Table 10). To 
test the consistency of the causal estimates across IVs, we excluded any protein-outcome 
pairs if there was evidence of significant heterogeneity using Cochran’s Q test (q-value 
<0.05)37. To limit the chance of reverse causality influencing our results we performed 
bidirectional MR38 and excluded protein-outcome pairs that had significant causal effect 
estimates of outcome on protein level (p<3.62 x 10-6). For proteins with multiple cis IVs, we 
performed the pleiotropy-robust method MR-Egger39. An MR-Egger intercept estimate that is 
significantly different from zero can be interpreted as indicative of horizontal pleiotropy39,40. 
We therefore excluded protein-outcome MR estimates that had MR-Egger intercept p-values 
<0.05, leaving 59 significant protein-outcome causal estimates. Finally, to distinguish causal 
relationships from confounding due to LD we performed colocalisation analysis to look for 
evidence of a shared causal variant underpinning the genetic associations with protein and 
outcome. We used coloc28 and only considered protein-outcome pairs with a posterior 
probability (PP) of >0.8 of the hypothesis of a shared causal variant. We report 20 protein-
outcome causal effect estimates that meet all of these criteria, involving 11 proteins 
associated with 16 different outcomes (Figure 4).  
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Figure 4. Cis-Instrument Mendelian Randomisation of plasma protein levels on 
complex diseases and health-related risk factors. MR causal effect estimates and 95% 
confidence intervals of the effect of plasma protein levels on outcome. Results from the fixed 
effects Inverse variance-weighted (IVW) method that passed 1% FDR, had a heterogeneity 
Q-value >0.05, an MR-Egger intercept p-value of >0.05, as well as evidence of a shared 
causal variant from colocalisation analysis (posterior probability of a shared causal variant 
>0.8) are shown. Associations are grouped by type of outcome. Causal effect estimates from 
additional MR methods that are robust to horizontal pleiotropy and relax the assumption of 
IVW allowing correlations between genetic associations with the exposure and outcome are 
in Supplementary Figure 8, as further sensitivity analyses. BMI: body mass index, DBP: 
diastolic blood pressure, SBP: systolic blood pressure, CHD: coronary heart disease, MI: 
myocardial infarction, IBD: inflammatory bowel disease, LDL: low density lipoprotein 
cholesterol levels.  
 
The significant MR causal effect estimate of increased PCSK9 levels increasing LDL 
cholesterol levels (beta:0.74, SE:0.026) provides validation of the approach since the causal 
relationship of PCSK9 levels and LDL and total cholesterol levels is firmly established41; 
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pharmacological inhibition of PSCK9 results in dramatic reductions in LDL cholesterol. In 
addition, our MR analysis confirmed previous reports indicating that PCSK9 increases risk of 
cardiovascular disease. This result is consistent with the findings of reduction in 
cardiovascular events in randomised clinical trials of PCSK9 inhibitors42. We also replicated 
other results from previous MR studies examining the role of circulating proteins in 
cardiovascular diseases and traits. This included the finding that a genetic tendency to 
higher placenta growth factor (PlGF) protein levels decreases the risk of CHD18, and that a 
genetic tendency to higher C-X-C Motif Chemokine Ligand 16 (CXCL16) protein levels 
decreases diastolic blood pressure43.  
 
Variation in the genes encoding several of the proteins examined in our study have been 
associated with particular phenotypes. For example, SNPs mapped to Serine Protease 8 
(PRSS8), Interleukin 2 Receptor Subunit Alpha (IL2RA) and Tissue Factor Pathway Inhibitor 
(TFPI) have been associated with DBP44, Crohn’s disease (CD)12,45,46 and waist 
circumference44, respectively. Here, we advance these associations by demonstrating likely 
causal relationships between the circulating protein and the corresponding phenotypes 
through MR for the first time. 
 
Our MR analysis provides novel insight into the pathogenesis of inflammatory bowel disease 
(IBD), which encompasses Crohn’s disease (CD) and ulcerative colitis (UC). IL27 is a 
heterodimeric cytokine that has complex biological functions including both pro- and anti-
inflammatory effects in the intestine. IL27 can inhibit differentiation of Th17 cells, an 
important cell type in the pathogenesis of IBD. There are conflicting data on IL27’s role in 
IBD. In most47,48, although not all49, murine models of gut inflammation, IL27 is protective: 
IL27R genetic knockout worsens colitis while exogenous administration of IL27 ameliorates 
disease. In patients with IBD, IL27 gene expression is elevated compared to controls50. Here 
we show that, in contrast to the observational human data, a genetic tendency to higher 
circulating IL27 is associated with lower risk of CD. This raises the possibility that the IL27 
elevation in IBD patients results from reverse causation, perhaps as a response to 
dysregulated gut inflammation. Our data is in keeping with the observation that individuals 
with the risk allele for CD have lower IL27 gene expression51. Together this supports the 
concept that IL27 acts to protect the gut from aberrant inflammatory responses and raises 
the possibility that IL27 might be of therapeutic benefit in IBD. 
 
By evaluating whether proteins play a causal role in disease aetiology, MR provides a 
valuable tool to identify and validate potential drug targets before embarking on costly 
clinical trials. We therefore examined whether any of the 11 proteins with inferred causal 
relationships in our MR analysis (Figure 4) were already current targets, using the DrugBank 
database52. In addition to PCSK9, which, as described previously, is a target of existing 
drugs used successfully in the treatment of hypercholesterolaemia and cardiovascular 
disease42,53–55, we found that 5 other proteins: PlGF, PRSS8, IL2-RA, MMP-9 (Matrix 
Metallopeptidase 9) and TFPI are also targets for drugs in various stages of development 
(Supplementary Table 11).  
 
Our results highlighted IL2-RA as a potential candidate for drug repurposing. IL2-RA is the 
target for three approved drugs, two of these: Denileukin diftitox and Basiliximab, inhibit IL2-
RA and are used for cutaneous T-cell Lymphoma (CTCL)56 and to prevent kidney transplant 
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rejection57, respectively. The third, Aldesleukin, is an agonist and increases IL2-RA activity, 
inducing the adaptive immune response in the treatment of renal cell carcinoma58,59. 
Basiliximab has been piloted for use in IBD (UC) patients with apparent success in an 
uncontrolled open-label study60, however no benefit was found in an RCT61. Our finding that 
genetically increased levels of IL2-RA protein increase risk of CD (Beta: 0.26, SE: 0.06) 
suggest that further investigation is warranted into whether the suitability of Basiliximab 
(given the previous contradictory findings) may have a role in the management of CD. 
 
Our inference that genetic predisposition to elevated MMP-9 decreases the risk of CD (Beta: 
-0.7, SE: 0.15) aligns with previous GWAS results: SNPs mapped to the MMP9 gene have 
been associated (p<5 x 10-8) with lower risk of CD12,46. These genetics results are contrary to 
previous observational findings that increased serum MMP-9 levels were prognostic of 
clinical flare ups in CD patients62. Since MR is less prone to confounding and reverse 
causation than observational studies, we hypothesise that raised MMP-9 levels during flares 
of CD are likely to arise from reverse causation, perhaps reflecting an injury response. In 
keeping with this the MMP-9 inhibitor, Andecaliximab, was ineffective in phase 2 trials63, as 
would have been predicted by MR. This example highlights how integrating genetics and 
proteomics can be useful in deprioritising therapeutic targets. 
 
We demonstrate the novel finding that MR identifies TNFRSF14 (HVEM) as protective 
against multiple immune-mediated diseases (IBD and MS). Notably, MS is also associated 
with polymorphisms in the TNFSF14 gene region, which encodes LIGHT, the ligand for 
TNFRSF14. The MS risk allele at TNFSF14 (LIGHT) is associated with lower serum levels of 
this protein64. This, together with our data, demonstrate that lower levels of both the ligand 
and its receptor are protective against MS, clearly indicating a causal role for this pathway in 
the maintenance of immune tolerance and raising the possibility that it could be manipulated 
for therapeutic benefit. 

Discussion 
We have performed the largest pQTL study (Max N=26,494) on 184 plasma protein levels to 
date and report 592 independent loci significantly associated with the levels of at least one 
protein (1,308 protein-lead variant associations), with 687 lead variant-protein associations 
being novel. We found that estimates of the proportion of pQTL that overlap with eQTL 
ranges from 8.2-36.5% using multiple publicly available eQTL datasets and methods. Our 
results highlight that the majority of pQTL do not appear to be explained by eQTL. Given this 
finding, we highlight other potential mechanisms of action such as regulation of ligand-
receptor pairs and transcription factor binding. The genetic architecture of plasma protein 
levels varies across proteins, from entirely polygenic (NEMO, GH) to single loci explaining 
almost all of the estimated genetic component (IL6-RA). Plasma protein levels also share 
genetic architecture with health-related risk factors and complex traits, with 52 protein levels 
being genetically correlated with BMI and 21 sharing heritability with CAD and MI. We also 
performed an extensive exploratory MR analysis using cis-pQTL as instruments, and found 
significant causal effect estimates for the levels of 11 proteins on 16 different outcomes. Our 
MR analysis highlighted plasma proteins that are candidate novel therapeutic targets and a 
candidate for drug repurposing. 
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In line with the larger size of our study, the discovery of a significant cis-pQTL for 92.7% of 
the plasma protein levels (where we tested the cis-regions) surpasses previous GWAS of 
plasma protein levels (18.5% Sun et al. N~5,000, 86% Folkersen et al. N~15,000)4,18. 
Additionally, CD93, ICAM-2, IL-6, PECAM-1 and t-PA levels had variants with p-values 
passing the genome-wide significance threshold for cis-signals (p<1x10-5) but were lost after 
correction for multiple testing, suggesting that our analyses were still underpowered and 
further cis-pQTL could be found in larger studies. Other than an issue of power, it is possible 
that our definition of cis (±1 Mb surrounding the coding region of the gene encoding the 
protein) is not capturing all signals however, no additional signals were found when the cis-
region was widened to ±2 Mb. Ep-CAM, CD93, HAOX1, ICAM-2, MB, PECAM-1 and SRC 
proteins are intracellular65, which could contribute to significant signals not being found in 
samples from plasma. Expanding on previous studies, 78% of our significant pQTL were 
trans-associated compared to 68% in Folkersen et al. and 72% Sun et al. This is most likely 
due to our increased sample size, as like the aforementioned studies we found that proteins 
tended to have at most about 3 cis-pQTL, with any additional pQTL being trans-associated 
(Supplementary Figure 2), indicating that the increase in power allows the discovery of 
further trans-signals, which are likely to have smaller effect sizes (Welch T Test Two-sided 
p-value=1.48 x 10-9). 
 
Akin to findings by Folkersen et al.18, we found that proteins varied in terms of their genetic 
architecture, with some proteins almost monogenic while others have polygenic architecture. 
 
In terms of eQTL/pQTL overlap, our results based on direct lookup of lead variants found 
that 36.5% of our cis-pQTL had been previously reported as significant cis-eQTL (5% FDR). 
This is comparable to the 26% overlap based on variant lookup reported by Folkersen et al. 
and the 40% (including proxies LD r2≥0.8) by Sun et al. However, only 8.2% and 14.4% of 
our cis-pQTL showed strong evidence of colocalisation (PP>0.8) with the eQTL for the 
corresponding gene in eQTLgen and GTEx (at least one tissue), respectively. Additionally, 
coloc assumes that a single causal variant, included in the analysis, is driving the 
association signal in the region being considered. Given the strength of some of our cis-
pQTL in particular, it is possible that the assumption of only one independent association 
signal could be violated. We limited the pQTL regions to ± 200 kb flanking the lead variant in 
our analysis, to minimise the chance of including multiple association signals. However, our 
findings are considerably lower than the reported 78.5% of 228 testable pQTL that showed 
evidence of colocalisation with eQTL in at least one tissue (PP>0.8) by Sun et al. One 
reason for this could be due to the difference in study design. Coloc assumes that the 
populations used to derive association statistics for the two traits have the same underlying 
pattern of LD. By meta-analysing multiple different populations, the LD structure in our 
sample will be different from those used to generate the eQTL datasets, whereas Sun et al. 
used only the INTERVAL cohort of English blood donors which may be a closer match to the 
GTEx population which was the source of their eQTL comparison. Recent methods that 
allow for multiple causal variants could overcome some of these issues. For example, the 
sum of single effects (SuSiE) regression framework coloc method66, however, this approach 
does require LD matrices for both populations and the use of a reference such as UK 
Biobank or 1000 Genomes will still not completely capture the LD structure in a multi-cohort 
GWAMA sample. 
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More generally, there are several reasons why colocalisation approaches might fail to 
indicate eQTL/pQTL overlap other than eQTL and pQTL having two independent causal 
variants: namely, differences in: sample size, assay technology or tissues between the two 
traits. The issue of tissue of origin is of particular concern here as, despite plasma having 
benefits as a medium, it does not accurately capture the levels of proteins in the tissues or 
cell types in which they are expressed and subsequently secreted, an inherent limitation 
when drawing conclusions about mechanisms. It is likely that higher eQTL/pQTL overlap 
would be observed if high-powered eQTL or pQTL datasets were available for the tissues 
from which the genes encoding these proteins are expressed. Despite GTEx having multiple 
different tissues, the small sample size means that its power is limited. This could also 
contribute to the low number of apparent tissue-specific overlapping eQTL/pQTL found using 
GTEx, as only those strong and robust cis-eQTL that are shared between tissues were able 
to be detected. 
 
Our finding that 74.7% of our pQTL have been previously reported as DNA methylation QTL 
(meQTL) mirrors previous findings that 82% of cis-pQTL17,20 are also cis-meQTL67. These 
results highlight the link between DNA methylation and regulation of protein expression and 
exploring the interaction between plasma proteins and the epigenome would be an 
interesting avenue for further study, as would whether pQTL act by influencing mRNA 
splicing. 
 
We restricted our MR analysis to cis IVs only, in contrast to previous studies7,43,68. This 
decision was made to fully take advantage of the direct biological link between cis-pQTL and 
protein level and to prevent highly pleiotropic trans-pQTL influencing our results by breaking 
the assumptions underlying MR. A systematic assessment of cis vs trans IVs would require 
the use of all of the most recent MR methods69,70 and meaningful results would be lost due to 
multiple testing. Additionally, we performed sensitivity analysis in line with the procedure set 
out by Zheng et al43, for using pQTL as IVs and showed that our causal effect estimates 
were consistent across multiple MR methods with varying assumptions (Supplementary 
Figure 8), therefore increasing confidence in the robustness of our results68. 
 
Our exploratory MR analysis for plasma protein levels with a broad range of outcomes using 
the cis IVs was able to recapitulate the well-documented causal associations (PCSK9 with 
LDL and total cholesterol levels) and replicate findings reported by previous pQTL MR 
studies: genetically increased levels of CXCL16 and PlGF decreasing DBP1 and the risk of 
CHD respectively2. We also found evidence of novel causal associations between circulating 
protein levels (PRSS8, IL2-RA, TFPI and IL-27) and traits where the corresponding gene 
was already known to be associated, and novel causal protein-outcome relationships for 
ADM and IDUA. Using pQTL as IVs also highlighted IL2-RA as a potential candidate for drug 
repurposing and TNFRSF14 (IBD and MS) as novel therapeutic targets. Together these 
findings demonstrate the strength of our cis-pQTL as IVs and the potential for future 
discoveries by disease-specific analyses using this resource9. 
 
Our increased sample size compared with previous pQTL studies3,4,7,18, is a particular 
strength of this work as it allowed us to discover novel pQTL for use as instruments. 
Additionally, the breadth of our approach exhibits the range of possible downstream uses of 
GWAS of circulating plasma protein levels. However, this breadth is also a limitation, as our 
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work has uncovered numerous findings that inspire further research. For example, we found 
a significant proportion of pQTL did not overlap with the corresponding eQTL. This could be 
due in part to pQTL acting to influence the protein levels via other mechanisms such as 
influencing translation, clearing of the protein, export or expression of the protein’s receptor. 
However, this could also be due to the predominant use of whole blood eQTL datasets and 
the limited power of the multi-tissue dataset (GTEx), given that our proteins are also 
secreted in several tissues other than blood. Further analyses using high-powered eQTL 
datasets from the relevant tissues would be required to untangle the mechanisms of action 
of these pQTL. Similarly, we emphasise that the potential therapeutic targets identified by 
MR are preliminary and extensive investigations into other factors (e.g. druggability, safety) 
will also play a key role in determining the suitability of therapeutic intervention. As novel 
targets, TNFRSF14, ADM and IL-27, are either secreted into blood or retained membrane-
bound or intracellular, dependent on isoform, further research into the specific functions of 
different isoforms is needed to validate their candidacy.  
 
Our work builds on previous pQTL studies using a larger sample size for more proteins 
allowing the discovery of 1,308 significant protein-locus associations. By studying the 
genetic architecture of plasma protein levels, we have provided insight into the genetic 
regulation of protein levels, disease aetiology and casual relationships between circulating 
protein levels and cardiovascular disease phenotypes. In highlighting the power of our pQTL 
as IV to uncover candidate novel therapeutic targets in a broad exploratory analysis, we 
showcase the potential of this study as a resource to drive highly targeted research 
questions in the future. 
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Methods 

Proteomics Assay 

Participating cohorts performed protein measurement using an antibody-based proximity 
extension assay (Olink Bioscience, Uppsala, Sweden)75 from EDTA plasma in 2 x 92-protein 
panels: ‘cvd2’ and ‘cvd3’. These targeted assays contained promising cardiovascular related 
proteins that also had two specific antibodies available for different epitopes. Analysis of all 
cohorts were conducted at one of two core laboratories with Olink Bioscience of SciLifeLab 
in Uppsala, Sweden.  

Statistical Analysis 

Genome-wide Association 
Summary statistics were obtained from 18 cohorts of European ancestry. Details of which 
cohorts contributed data for each protein are in Supplementary Table 13. The maximum 
sample size across all proteins was 26,494 however, average per-protein maximum and 
mean sample sizes were 23,981 and 18,141 respectively. It is worth noting that the CCL22 
GWAS had a considerably smaller sample size (Max N=7460) than the other proteins as it 
was removed from the CVDIII panel by Olink during the data collection phase of this study, 
meaning only a subset of contributing cohorts returned CCL22 summary statistics. 
 
The majority of cohorts provided data imputed with 1000 Genomes Project phase 3 or higher 
or to the Haplotype Reference Consortium (HRC) reference (Supplementary Table 12). 
Cohorts applied quality control filters for call rates, gender mismatch, cryptic relatedness and 
ancestry outliers. Cohorts performed genome-wide association studies on the inverse rank 
normalised NPX values. Below lower-limit-of-detection values (<LOD) were included in the 
analysis. Cohorts ran linear models adjusting for study-specific covariates such as batch or 
genotyping array as well as: age, sex, first 10 principal components of the genotypes to 
account for population structure, plate number, plate row, plate column, sample time in 
storage (days) and season of venepuncture. Studies containing related individuals corrected 
for kinship. 

Meta-analysis 
METAL76 software was used to perform inverse-variance-weighted meta-analysis (STDERR 
scheme) with the additional filters that only variants with an imputation quality score >0.4 
and that were assessed in three or more cohorts were included. Heterogeneity of variant 
effect estimates between cohorts were also calculated using METAL. 

Locus definition 
In order to prevent heterogeneity influencing our results, only variants that had an I2<30% or 
have both: i) effect direction consistent with the meta in at least 3 individual cohorts and ii) 
be nominally significant (p<0.05) in at least 3 individual cohorts, were eligible to be 
considered genome-wide significant. Separate significance thresholds pre-correction for 
multiple testing were used for cis- (1 x 10-5) and trans-variants (5 x 10-8). A more liberal 
threshold was used for cis-signals as by only testing variants in the cis-region rather than 



 
 

 
 

 

21 

genome-wide, fewer tests were performed. As the protein levels are correlated, rather than 
correcting the significance threshold for 184 traits, we calculated the number of PCs required 
to explain 95% of the variance in the 184 protein levels and took this value as the number of 
independent traits tested, as done previously by Kettunen et al.77. We found that 85 PCs 
explained 95% of the variance in the levels of 184 protein in ORCADES (using the “prcomp” 
function in R), we repeated the analysis in CROATIA-Vis and again found that 85 PCs 
explained 95% of the variance. Our thresholds for significance were therefore 1.18 x1 0-7 

(Bonferroni 1 x 10-5/85) for cis- and 5.9 x 10-10 for trans-associated variants. 
 
In order to identify non-overlapping loci associated with a given protein, 1 Mb windows were 
created around every significant variant for that protein. Starting with the region with the 
lowest p-value, any overlapping windows were then merged, this was repeated until no more 
1 Mb windows remained. To refine a list of non-overlapping loci that are associated with at 
least one of our 184 proteins we repeated this process of merging overlapping 1 Mb 
windows on the list of significant protein-locus associations. 

Conditional Analysis 
Conditional analysis was performed per protein using the --cojo-slct method from GCTA-
cojo78. A minor allele frequency (MAF) filter of 1% and a p-value threshold of 1 x 10-5 were 
used. A random 10,000 unrelated genetically genomically British individuals from the UK 
Biobank were used as linkage disequilibrium (LD) reference.  
 
Due to the particularly strong cis- signals we further filtered conditional variants, retaining per 
protein those with r2<0.001. The criteria to limit heterogeneity for our primary variants were 
applied to conditionally associated variants, retaining those with I2<30 or if I2>30 then at least 
3 cohort level results that have consistent effect direction with the meta-analysis and 
nominally significant at the cohort level (p<0.05). As with primary associated variants the 
threshold for significance corrected for multiple testing was 5 x 10-8/85 for trans variants and 
1 x 10-5/85 for cis variants. Finally, akin to the primary variants, for each protein 1 Mb 
windows were created around each significant conditionally independent variant, with 
overlapping windows being merged, starting with the lowest p-value, until none are 
remaining. 

Novelty of pQTL 
To establish novelty of pQTL, we tested whether our 1,308 lead variants (or variants in LD, 
r2>0.5, with our lead variants) had been previously associated with the relevant protein in 22 
published GWAS or plasma protein levels (Supplementary Table 4). 

Heritability 
Estimates of total SNP heritability for each circulating plasma protein level were calculated 
as the sum of the contributions from two independent partitions of the SNPs: pQTL and the 
polygenic component. The pQTL component was calculated as the sum of the estimated 
variance explained (VE) in protein level by the lead variants of the primary pQTL. VE for 
each lead variant was estimated as 2𝑝𝑞𝛽'	where 𝛽 is the meta-analysis effect size, 𝑝 is the 
effect allele frequency and 𝑞 = 1 − 𝑝. The polygenic component was estimated using linkage 
disequilibrium-score regression (LDSC)22 using variants present in the European 1000 
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Genomes Phase 3 Reference sample79. To ensure that variance explained by SNPs in LD 
with lead variants was not counted twice, variants within ±10 Mb of lead variants were 
excluded from calculations of the polygenic component.  

Annotation of Significant Loci 
Previously reported associations of all 1,093 of our significant variants and their proxies with 
an r2>0.8 based on a 1000 Genomes Phase 3 European reference with GWAS traits, eQTL, 
proteins, metabolites and methylation QTLs were extracted from Phenoscanner v232,80, with 
a p-value threshold of 5 x 10-8. Lead variants were also queried for evidence of being in a 
regulatory region using RegulomeDB29. 
 
For each of the trans-associated variants we defined a set of trans genes. These trans 
genes were any genes whose coding regions overlapped with a ± 500 kb window 
surrounding our significant variant using the Homo.sapiens81 annotation package in R. For 
each of the trans genes we looked to see if the protein they encode have any known 
interactions with the protein we found it associated with using the STRINGdb30 R package 
(database version 10). Similarly, for each trans gene we looked to see if they had any known 
pathways, gene ontology (GO) terms or publications in common with the gene encoding the 
protein we found them associated with. This was done using the KEGGREST31 and 
org.Hs.eg.db82 R packages.  

Colocalisation of pQTL and eQTL 
We looked up whether any of our significant variants had been previously reported as a 
significant eQTL (5% FDR (permutation-based)) in whole blood expression data from 
eQTLgen24 and from 48 different tissues using the Genotype-Tissue Expression project 
(GTEx) v7.  
 
SMR-HEIDI25 was used to test whether a single causal variant is influencing gene 
expression and protein level due to either causality or pleiotropy, however it cannot 
distinguish between the two. We tested if ±500 kb regions flanking all 1,308 of our 
significant lead variants were associated with gene expression using four publicly available 
eQTL datasets: 48 GTEx tissues, both cis and trans eQTLs from eQTLgen24, Westra et al.26 
and Cage27. Correction for multiple testing was carried out per eQTL dataset, with results 
with PSMR passing Bonferroni correction for number of proteins vs probes and PHEIDI≥0.01 
considered significant. 
 
In order to distinguish between causality and pleiotropy, we performed colocalisation using 
the “coloc.abf” function from the “coloc”28 R package, with default priors. This approach 
simultaneously calculates posterior probabilities (PP) of eQTL and pQTL i) sharing a single 
causal variant and ii) being driven by two independent variants. For each of our cis-pQTL, 
the region within ±200 kb of the lead variant was tested for colocalisation with the gene 
encoding the protein in both the eQTLgen and 48 tissues from GTEx v7. We considered a 
PP>0.8 for the hypothesis that eQTL and pQTL share a causal variant as strong evidence of 
colocalisation and a PP>0.5 as likely to colocalise4. 
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Genetic Correlations 
The High definition likelihood33 R package was used to estimate genetic correlations 
between the levels of our 184 proteins and the following cardiovascular-related traits using 
publicly available summary statistics (Download URLs in Supplementary Table 8): body 
mass index (BMI), coronary artery disease (CAD), chronic obstructive pulmonary disease 
(COPD), creatinine levels, Crohn’s Disease, high density lipoprotein cholesterol (HDL), low 
density lipoprotein cholesterol (LDL), myocardial infarction (MI), Rheumatoid arthritis (RA), 
type II diabetes (T2D), total cholesterol, triglyceride levels and waist-hip ratio (WHR). To aid 
visualisation, proteins and complex traits were ordered using Euclidean distance-based 
hierarchical clustering with the hclust function in R. 

Mendelian Randomisation 
Instrument selection: For each protein, instruments were selected from genome-wide 
significant variants that passed the additional criteria of i) having a meta-analysis 
heterogeneity I2<30 or if I2>30, then ii) must have effect direction consistent with the meta-
analysis in at least 3 cohorts and iii) be nominally significant (p<0.05) in at least three 
cohorts. These variants were then clumped for LD using an r2 filter of 0.001 with the 
“TwoSampleMR”35 R package. For each protein, MR was run using cis variants, with any 
variants within the HLA (chr6:29645000-6:33365000, build 37) and ABO (chr9:136131052-
9:136150605, build 37) regions excluded from selection as instruments.  
 
Primary MR Analysis: “TwoSampleMR” was used to perform Mendelian randomisation 
(MR) analysis. Protein level exposures were tested against 121 outcomes available in the 
MR-Base database35 (the full list of outcomes tested is in Supplementary Table 9) using the 
fixed effects inverse variance-weighted (IVW) method. Outcomes were selected due to their 
relation to cardiovascular disease risk or immune-related disorders, given the proportion of 
immune system-related proteins in our set. For each outcome, summary statistics with the 
largest sample size and closest ancestry match with our GWAMA population were chosen.  
 
Sensitivity analyses: To minimise the risk of heterogeneity between IVs influencing our 
results, only those without evidence of significant heterogeneity, using Cochran’s Q test (q-
value>0.05)37, were considered. Additionally, to limit the effect of horizontal pleiotropy, we 
excluded protein-outcome MR estimates that had MR-Egger intercept significantly deviating 
from zero (P<0.05)39,40. We also performed MR analysis using MR-Egger, weighted median 
and weighted mode methods, which are more robust to horizontal pleiotropy69,83 
(Supplementary Figure 8). We also used the maximum likelihood (ML) method84 which 
relaxes the assumption used by the IVW method, allowing both: uncertainty in the effect size 
of the IVs with the exposure and correlations between the genetic associations with the 
exposure and outcome. Consistency in causal estimates across MR methods with varying 
assumptions increases the chance of robust results. 
 
Colocalisation: To distinguish causal relationships from confounding due to LD, we tested 
for evidence of a shared causal variant between each protein-exposure outcome pair using 
colocalisation. Variants within ±200 kb of each IV were tested for colocalisation with the 
overlapping variants in the outcome GWAS (extracted from MR-Base using the 
“associations” function from the ieugwasr R package). Only those with a posterior probability 
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estimate of >0.8 for hypothesis 4 were considered further. Sample sizes for the 26 outcomes 
in the 59 protein-outcome associations passing 1% FDR heterogeneity and pleiotropy filters 
ranged from N=462,116 to N=173,082, for quantitative traits (N=119,731 to N=7,735 cases, 
for binary traits). 
 
Bi-directional analyses: We tested for evidence of causal associations of the 121 
outcomes on proteins using the IVW method. Protein-outcome pairs that had a causal effect 
estimate with p<3.62 x 10-6 (Bonferroni 0.05/13,810) were not considered further due to the 
potential for the estimate for the effect of protein on outcome to be influenced by reverse 
causality. 

Drug Targets 
The DrugBank Release Version 5.1.752 was used to see if the 11 proteins that had evidence 
of significant causal associations (PMR passed 1% FDR & additional criteria described 
above) causal associations in our MR analysis are current drug targets. 

References 
 
1. Enroth, S. et al. High throughput proteomics identifies a high-accuracy 11 plasma protein 

biomarker signature for ovarian cancer. Commun. Biol. 2, 221–221 (2019). 
2. Assarsson, E. et al. Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, 

Specificity, and Excellent Scalability. PLoS ONE 9, e95192–e95192 (2014). 
3. Folkersen, L. et al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular 

disease. PLOS Genet. 13, e1006706 (2017). 
4. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 

(2018). 
5. Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. 

Med. 25, 1851–1857 (2019). 
6. Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the 

lifespan. Nat. Med. 25, 1843–1850 (2019). 
7. Gilly, A. et al. Whole-genome sequencing analysis of the cardiometabolic proteome. Nat. 

Commun. 11, 6336 (2020). 
8. Pietzner, M. et al. Cross-platform proteomics to advance genetic prioritisation strategies. 

bioRxiv 2021.03.18.435919 (2021) doi:10.1101/2021.03.18.435919. 
9. Smith, J. G. & Gerszten, R. E. Emerging Affinity-Based Proteomic Technologies for 

Large-Scale Plasma Profiling in Cardiovascular Disease. Circulation 135, 1651–1664 
(2017). 

10. Gashaw, I., Ellinghaus, P., Sommer, A. & Asadullah, K. What makes a good drug target? 
Drug Discov. Today 17, S24–S30 (2012). 

11. Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 
1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The 
Lancet 396, 1204–1222 (2020). 

12. Liu, Y. et al. Quantitative variability of 342 plasma proteins in a human twin population. 
Mol. Syst. Biol. 11, 786 (2015). 

13. Enroth, S., Johansson, Å., Enroth, S. B. & Gyllensten, U. Strong effects of genetic and 
lifestyle factors on biomarker variation and use of personalized cutoffs. Nat. Commun. 5, 
4684 (2014). 

14. Emilsson, V. et al. Co-regulatory networks of human serum proteins link genetics to 
disease. Science 361, 769–773 (2018). 



 
 

 
 

 

25 

15. Melzer, D. et al. A Genome-Wide Association Study Identifies Protein Quantitative Trait 
Loci (pQTLs). PLOS Genet. 4, e1000072 (2008). 

16. Benson Mark D. et al. Genetic Architecture of the Cardiovascular Risk Proteome. 
Circulation 137, 1158–1172 (2018). 

17. Yao, C. et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal 
genes and pathways for cardiovascular disease. Nat. Commun. 9, 3268 (2018). 

18. Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 
30,931 individuals. Nat. Metab. 2, 1135–1148 (2020). 

19. Holmes, M. V., Ala-Korpela, M. & Smith, G. D. Mendelian randomization in 
cardiometabolic disease: challenges in evaluating causality. Nat. Rev. Cardiol. 14, 577–
590 (2017). 

20. Suhre, K. et al. Connecting genetic risk to disease end points through the human blood 
plasma proteome. Nat. Commun. 8, 14357 (2017). 

21. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016). 
22. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from 

polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015). 
23. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and 

traits. Nat. Genet. 47, 1236–1241 (2015). 
24. Võsa, U. et al. Unraveling the polygenic architecture of complex traits using blood eQTL 

metaanalysis. bioRxiv 447367 (2018) doi:10.1101/447367. 
25. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts 

complex trait gene targets. Nat. Genet. 48, 481–487 (2016). 
26. Westra, H.-J. et al. Systematic identification of trans eQTLs as putative drivers of known 

disease associations. Nat. Genet. 45, 1238–1243 (2013). 
27. Lloyd-Jones, L. R. et al. The Genetic Architecture of Gene Expression in Peripheral 

Blood. Am. J. Hum. Genet. 100, 228–237 (2017). 
28. Giambartolomei, C. et al. Bayesian Test for Colocalisation between Pairs of Genetic 

Association Studies Using Summary Statistics. PLOS Genet. 10, e1004383 (2014). 
29. Boyle, A. P. et al. Annotation of functional variation in personal genomes using 

RegulomeDB. Genome Res. 22, 1790–1797 (2012). 
30. Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased 

coverage, supporting functional discovery in genome-wide experimental datasets. 
Nucleic Acids Res. 47, D607–D613 (2019). 

31. Tenenbaum, D. KEGGREST: Client-side REST access to the Kyoto Encyclopedia of 
Genes and Genomes (KEGG). R package version 1.30.1. (2020). 

32. Kamat, M. A. et al. PhenoScanner V2: an expanded tool for searching human genotype–
phenotype associations. Bioinformatics 35, 4851–4853 (2019). 

33. Ning, Z., Pawitan, Y. & Shen, X. High-definition likelihood inference of genetic 
correlations across human complex traits. Nat. Genet. 52, 859–864 (2020). 

34. Katsiki, N., Mikhailidis, D. P. & Banach, M. Leptin, cardiovascular diseases and type 2 
diabetes mellitus. Acta Pharmacol. Sin. 39, 1176–1188 (2018). 

35. Hemani, G. et al. The MR-Base platform supports systematic causal inference across 
the human phenome. eLife 7, e34408 (2018). 

36. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and 
Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 
(1995). 

37. Bowden, J. et al. A framework for the investigation of pleiotropy in two-sample summary 
data Mendelian randomization. Stat. Med. 36, 1783–1802 (2017). 

38. Timpson, N. J. et al. C-reactive protein levels and body mass index: elucidating direction 
of causation through reciprocal Mendelian randomization. Int. J. Obes. 35, 300–308 
(2011). 

39. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid 
instruments: effect estimation and bias detection through Egger regression. Int. J. 
Epidemiol. 44, 512–525 (2015). 



 
 

 
 

 

26 

40. Burgess, S. & Thompson, S. G. Interpreting findings from Mendelian randomization 
using the MR-Egger method. Eur. J. Epidemiol. 32, 377–389 (2017). 

41. Seidah Nabil G., Awan Zuhier, Chrétien Michel, & Mbikay Majambu. Pcsk9. Circ. Res. 
114, 1022–1036 (2014). 

42. Oyama, K. et al. Effect of Evolocumab on Complex Coronary Disease Requiring 
Revascularization. J. Am. Coll. Cardiol. 77, 259–267 (2021). 

43. Zheng, J. et al. Phenome-wide Mendelian randomization mapping the influence of the 
plasma proteome on complex diseases. Nat. Genet. 52, 1122–1131 (2020). 

44. UK Biobank. Neale lab http://www.nealelab.is/uk-biobank. 
45. Franke, K., Ziegler, G., Klöppel, S. & Gaser, C. Estimating the age of healthy subjects 

from T1-weighted MRI scans using kernel methods: Exploring the influence of various 
parameters. NeuroImage 50, 883–892 (2010). 

46. de Lange, K. M. et al. Genome-wide association study implicates immune activation of 
multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017). 

47. Andrews, C., McLean, M. H. & Durum, S. K. Interleukin-27 as a Novel Therapy for 
Inflammatory Bowel Disease: A Critical Review of the Literature. Inflamm. Bowel Dis. 22, 
2255–2264 (2016). 

48. Porter, R. J., Andrews, C., Brice, D. P., Durum, S. K. & McLean, M. H. Can We Target 
Endogenous Anti-inflammatory Responses as a Therapeutic Strategy for Inflammatory 
Bowel Disease? Inflamm. Bowel Dis. 24, 2123–2134 (2018). 

49. Visperas, A., Do, J. S., Bulek, K., Li, X. & Min, B. IL-27, targeting antigen-presenting 
cells, promotes Th17 differentiation and colitis in mice. Mucosal Immunol. 7, 625–633 
(2014). 

50. Furuzawa Carballeda, J., Fonseca Camarillo, G. & Yamamoto-Furusho, J. K. Interleukin 
27 is up-regulated in patients with active inflammatory bowel disease. Immunol. Res. 64, 
901–907 (2016). 

51. Imielinski, M. et al. Common variants at five new loci associated with early-onset 
inflammatory bowel disease. Nat. Genet. 41, 1335–1340 (2009). 

52. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank database for 2018. 
Nucleic Acids Res. 46, D1074–D1082 (2018). 

53. Page, M. M. & Watts, G. F. Evolocumab in the treatment of dyslipidemia: pre-clinical and 
clinical pharmacology. Expert Opin. Drug Metab. Toxicol. 11, 1505–1515 (2015). 

54. Devito, F. et al. Focus on alirocumab: A PCSK9 antibody to treat hypercholesterolemia. 
Pharmacol. Res. 102, 168–175 (2015). 

55. German, C. A. & Shapiro, M. D. Small Interfering RNA Therapeutic Inclisiran: A New 
Approach to Targeting PCSK9. BioDrugs 34, 1–9 (2020). 

56. Turturro, F. Denileukin diftitox: a biotherapeutic paradigm shift in the treatment of 
lymphoid-derived disorders. Expert Rev. Anticancer Ther. 7, 11–17 (2007). 

57. Choy, B. Y. et al. IL2-receptor antagonist (basiliximab) induction therapy is associated 
with lower morbidity and mortality in renal transplant recipients. Transplant. Proc. 35, 
195 (2003). 

58. Waldmann, T. A. Anti-Tac (daclizumab, Zenapax) in the Treatment of Leukemia, 
Autoimmune Diseases, and in the Prevention of Allograft Rejection: A 25-Year Personal 
Odyssey. J. Clin. Immunol. 27, 1–18 (2007). 

59. Waldmann, T. A. Daclizumab (anti-Tac, Zenapax) in the treatment of 
leukemia/lymphoma. Oncogene 26, 3699–3703 (2007). 

60. Creed, T. J. et al. Basiliximab for the treatment of steroid-resistant ulcerative colitis: 
further experience in moderate and severe disease. Aliment. Pharmacol. Ther. 23, 
1435–1442 (2006). 

61. Sands, B. E. et al. Basiliximab Does Not Increase Efficacy of Corticosteroids in Patients 
With Steroid-Refractory Ulcerative Colitis. Gastroenterology 143, 356-364.e1 (2012). 

62. Yablecovitch, D. et al. Serum MMP-9: a novel biomarker for prediction of clinical relapse 
in patients with quiescent Crohn’s disease, a post hoc analysis. Ther. Adv. 
Gastroenterol. 12, 1756284819881590 (2019). 



 
 

 
 

 

27 

63. Schreiber, S. et al. A Phase 2, Randomized, Placebo-Controlled Study Evaluating Matrix 
Metalloproteinase-9 Inhibitor, Andecaliximab, in Patients With Moderately to Severely 
Active Crohn’s Disease. J. Crohns Colitis 12, 1014–1020 (2018). 

64. Malmeström, C. et al. Serum levels of LIGHT in MS. Mult. Scler. J. 19, 871–876 (2013). 
65. Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, (2015). 
66. Wallace, C. A more accurate method for colocalisation analysis allowing for multiple 

causal variants. bioRxiv 2021.02.23.432421 (2021) doi:10.1101/2021.02.23.432421. 
67. Huan, T. et al. Genome-wide identification of DNA methylation QTLs in whole blood 

highlights pathways for cardiovascular disease. Nat. Commun. 10, 4267 (2019). 
68. Klaric, L. et al. Mendelian randomisation identifies alternative splicing of the FAS death 

receptor as a mediator of severe COVID-19. medRxiv 2021.04.01.21254789 (2021) 
doi:10.1101/2021.04.01.21254789. 

69. Zhao, Q., Wang, J., Hemani, G., Bowden, J. & Small, D. S. Statistical inference in two-
sample summary-data Mendelian randomization using robust adjusted profile score. 
Ann. Stat. 48, (2020). 

70. Morrison, J., Knoblauch, N., Marcus, J. H., Stephens, M. & He, X. Mendelian 
randomization accounting for correlated and uncorrelated pleiotropic effects using 
genome-wide summary statistics. Nat. Genet. 52, 740–747 (2020). 

71. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels. Nat. 
Genet. 45, 1274–1283 (2013). 

72. Sawcer, S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms 
in multiple sclerosis. Nature 476, 214–219 (2011). 

73. Beecham, A. H. et al. Analysis of immune-related loci identifies 48 new susceptibility 
variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013). 

74. Andlauer, T. F. M. et al. Novel multiple sclerosis susceptibility loci implicated in 
epigenetic regulation. Sci. Adv. 2, e1501678 (2016). 

75. Lundberg, M., Eriksson, A., Tran, B., Assarsson, E. & Fredriksson, S. Homogeneous 
antibody-based proximity extension assays provide sensitive and specific detection of 
low-abundant proteins in human blood. doi:10.1093/nar/gkr424. 

76. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics 26, 2190–2191 (2010). 

77. Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and 
reveals novel systemic effects of LPA. Nat. Commun. 7, 11122–11122 (2016). 

78. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics 
identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012). 

79. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 
(2015). 

80. Staley, J. R. et al. PhenoScanner: a database of human genotype–phenotype 
associations. Bioinformatics 32, 3207–3209 (2016). 

81. Team, B. Homo.sapiens: Annotation package for the Homo.sapiens object. R package 
version 1.3.1. (2015). 

82. Carlson, M. org.Hs.eg.db: Genome wide annotation for Human. R package version 
3.8.2. (2019). 

83. Bowden, J., Smith, G. D., Haycock, P. C. & Burgess, S. Consistent Estimation in 
Mendelian Randomization with Some Invalid Instruments Using a Weighted Median 
Estimator. Genet. Epidemiol. 40, 304–314 (2016). 

84. Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian Randomization Analysis With 
Multiple Genetic Variants Using Summarized Data. Genet. Epidemiol. 37, 658–665 
(2013). 

 
 



●

●

●●●●●●

●

●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●●

●

●

●

●

●

●

●●

●
●

●

●

●●●●●●●●●●●

●

●●●●●

●

●

●

●

●

●●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●●

●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●●●●●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●●

●

●
●

●

●

●

●

●
●

●

●

●●●●●●●

●

●

●

●

●
●

●●●●●●●●●●

●

●

●●●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●

●●●

●

●●●●●

●

●●

●

●

●

●

●●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●
●

●

●●●

●

●●●●●●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●●●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●●●●●

●

●

●●

●

●

●
●

●

●

●

●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●●●●●●●●●●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●
●

●

●●

●

●●●●

●
●

●

●

●

●

●

●●●●●●●

●●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

●

●●●●●●●●●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●●
●
●●●

●

●

●

●

●●

●

●

●

●
●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●●●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●●

●

●

●●●●●●●
●●●

●
●

●

●●

●

●

●

●

1

2

3

4

5
6
7
8
9

10
11
12
13
14
1516
17
181920
2122
23

1 2 3 4 5 6 7 8 9 10 11 12 13141516171819202122
pQTL Position

P
ro

te
in

 P
os

iti
on

TYPE ● ●cis trans

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●

●

● ●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

0

100

200

300

−1000−500 0 5001000
Distance from TSS (Kb)

−
lo

g(
P

)

0

1

2

3

0.0 0.1 0.2 0.3 0.4 0.5
MAF

ab
s(

B
E

TA
)

0

200

400

int
ro

n

int
er

ge
nic

up
str

ea
m

m
iss

en
se

do
wns

tre
am

3 
pr

im
e 

UTR

5 
pr

im
e 

UTR

no
n 

co
din

g 
tra

ns
cr

ipt
 ex

on

sp
lic

e 
re

gio
n

sy
no

ny
m

ou
s

ind
el

sto
p 

los
t

sp
lic

e 
ac

ce
pt

or

Predicted Variant Effect

N
 p

Q
T

L

0

10

20

0 5 10 15 20
N pQTL

N
 P

ro
te

in
s

a

b

c d

e



0.0 0.1 0.2 0.3 0.4 0.00 0.05 0.10
NEMO

DECR1
SRC

JAM−A
TNFRSF14

GH
TGM2

CASP−3
STK4

FAS
RARRES2

PCSK9
HB−EGF
PARP−1
EPHB4

ITGB1BP2
IGFBP−1
CD40−L

SOD2
PLC

LOX−1
ADAM−TS13

PAI
EGFR

THBS2
ALCAM

IGFBP−7
MCP−1

DCN
TNF−R1
TNF−R2
SPON2

FGF−23
GDF−15

U−PAR
CXCL1
SPON1

CXCL16
PAR−1
FABP4

t−PA
MMP−2

IL−18BP
VSIG2
KLK6

ANG−1
IL−1RT1

PDGF_subunit_A
PI3

MMP−3
FS

IL−4RA
PRSS8
AMBP

VEGF−D
TFPI

CD93
PDGF_subunit_B

LTBR
IL−6

IGFBP−2
PlGF
LEP

AP−N
CCL22
AZU1

TNFSF13B
vWF

Gal−3
hOSCAR

ADM
CD4

MMP−9
IL−1ra

AXL
CEACAM8

Dkk−1
TNFRSF10A

Gal−4
BNP

TR−AP
OPN

LDL_receptor
CNTN1
PRELP

GT
GRN

HAOX1
CSTB
CTSD
GLO1

NT−pro_BNP

IL−17RA
Protein_BOC

HSP_27
TNFRSF11A

MMP−7
Notch_3

ITGB2
PIgR

BMP−6
MB

IL−17D
ACE2

MARCO
REN

PGLYRP1
SHPS−1

TFF3
MERTK
FABP2

TRAIL−R2
uPA

COL1A1
IL−1RT2

IL−18
TNFRSF13B

OPG
TLT−2

PAPPA
CTSL1
SORT1
TIMP4
CD163
IL2−RA

LPL
MPO

TF
PRTN3
CDH5
CCL3
RETN

DLK−1
THPO
SELE
CA5A

IgG_Fc_receptor_II−b
Gal−9
IL−27

BLM_hydrolase
PTX3
HO−1

CCL24
GDF−2

CD84
FGF−21

MMP−12
CPA1
IDUA

PECAM−1
PD−L2
CPB1

TR
KIM−1
PON3

GIF
TIE2
IL16
TM

CTSZ
CCL15
CCL17

SCGB3A2
PSP−D
IL1RL2

SLAMF7
XCL1
SCF

MEPE
RAGE

PSGL−1
PRSS27

CCL16
AGRP
CTRC

CHI3L1
SELP

ICAM−2
ST2

SERPINA12
IL−6RA

TNFRSF10C
Ep−CAM

CHIT1

Heritability

P
ro

te
in

Component pQTL Polygenic



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

B
M

I
W

H
R

−0.5 0.0 0.5

IGFBP−1
IGFBP−2

GH
VEGF−D

GDF−2
RAGE

SCGB3A2
SCF
DCN

ITGB2
REN

TFF3
FS

CTSL1
PRELP

PSGL−1
MMP−7
FGF−21

PGLYRP1
TNFRSF13B

MB
ACE2

MARCO
LTBR

CEACAM8
RETN
AZU1

MMP−9
AMBP

PlGF
hOSCAR

LDL_receptor
SPON2
CD163
CTSD

PRSS8
CD4

FGF−23
U−PAR

TRAIL−R2
t−PA

TNF−R2
PARP−1

PAI
TNFRSF14

TNF−R1
GDF−15

PLC
IL−6
ADM

FABP4
LEP

IGFBP−1
IGFBP−2

GH
VEGF−D

SCGB3A2
Notch_3
COL1A1
MMP−2

RAGE
Protein_BOC
TNFRSF13B

CPB1
RETN

PGLYRP1
CTSL1

MARCO
VSIG2

CEACAM8
TNF−R2

CD4
MMP−9
CD163

PlGF
U−PAR
AMBP

REN
MMP−7
HAOX1

TNF−R1
FGF−23

ACE2
TNFRSF14

PSGL−1
FGF−21

ADM
IL−6

LDL_receptor
FABP4

GDF−15
CTSD

PRSS8
t−PA
LEP
PAI

Genetic Correlation (rg)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

T
G

C
A

D
M

I
T

2D
C

reatinine
H

D
L

−1.0 −0.5 0.0 0.5

IGFBP−2
CPB1

FABP4
t−PA

FGF−21

IGFBP−2
GRN
CD4

FGF−21
HAOX1
U−PAR
FABP4

REN
CTSD

MMP−7
PRSS8

LDL_receptor
LEP
t−PA

PAI

IGFBP−2
REN
LEP

CTSD
t−PA

IGFBP−2
IGFBP−1

GH
VEGF−D
COL1A1

RAGE
MARCO

AMBP
TFF3
CD4

U−PAR
ADM

CD163
TNF−R1

REN
FGF−23
MMP−7
HAOX1

PSGL−1
LDL_receptor

FGF−21
IL−6

FABP4
CTSD

PRSS8
t−PA

GDF−15
LEP
PAI

PLC
TNFRSF14

TFF3
TNF−R1

TRAIL−R2
LTBR

TNF−R2
CD93

MB
GDF−15
SPON2

IL−18BP
KLK6

U−PAR
AGRP
PlGF

PAR−1
CD4
ADM

MEPE
VSIG2

TNFRSF13B
PRELP
FABP4
AMBP

PGLYRP1
RETN
RAGE

IGFBP−2

LDL_receptor
t−PA
LEP

PRSS8
FGF−21

PlGF
SCGB3A2

Notch_3
IGFBP−2

Genetic Correlation (rg)



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

B
ody C

om
position

B
P

C
ardiovascular

Im
m

une
Lipid

−1.0 −0.5 0.0 0.5

IL−27−−>Hip Circumference

IL−27−−>BMI

TFPI−−>Waist Circumference

CXCL16−−>DBP

IDUA−−>SBP

TFPI−−>Hypertension

PRSS8−−>DBP

PlGF−−>CHD

PCSK9−−>MI

PCSK9−−>Chronic Ischaemic Heart Disease

ADM−−>Varicose veins

PCSK9−−>CHD

IL−27−−>Crohn's Disease

TNFRSF14−−>Ulcerative Colitis

TNFRSF14−−>Multiple Sclerosis

MMP−9−−>Crohn's Disease

TNFRSF14−−>IBD

IL2−RA−−>Crohn's Disease

PCSK9−−>LDL

Beta (CI 95%)


