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Abstract 1 

The human cerebral cortex plays a crucial role in brain functions. However, genetic 2 

influences on the human cortical functional organizations are not well understood. Using 3 

a parcellation-based approach with resting-state and task-evoked functional magnetic 4 

resonance imaging (fMRI) from 40,253 individuals, we identified 47 loci associated with 5 

functional areas and networks at rest, 15 of which also affected the functional 6 

connectivity during task performance. Heritability and locus-specific genetic effects 7 

patterns were observed across different brain functional areas and networks. Specific 8 

functional areas and networks were identified to share genetic influences with cognition, 9 

mental health, and major brain disorders (such as Alzheimer's disease and schizophrenia). 10 

For example, in both resting and task fMRI, the APOE ε4 locus strongly associated with 11 

Alzheimer's disease was particularly associated with the visual cortex in the secondary 12 

visual and default mode networks. In summary, by analyzing biobank-scale fMRI data in 13 

high-resolution brain parcellation, this study substantially advances our understanding of 14 

the genetic determinants of cerebral cortex functions, and the genetic links between 15 

brain functions and complex brain traits and disorders.  16 

 17 
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 3 

The human cerebral cortex is the largest part of the human brain and controls complex 1 

brain functions. Based on known functional and topographic specializations at different 2 

scales, the cerebral cortex of the human brain can be divided into distinct areas and 3 

networks, providing insight into the brain's functional architecture1,2. To define such brain 4 

partitions, a few brain parcellations1,3-8 have been developed over the past decade9. In 5 

functional magnetic resonance imaging10,11 (fMRI), cerebral cortex functions can be 6 

evaluated by measuring functional connectivity, correlation of blood-oxygen-level 7 

dependent (BOLD) activity, among multiple cortical areas along a given parcellation. In 8 

particular, resting-state fMRI captures the intrinsic functional organization of the cortex 9 

without any explicit stimuli, whereas task-evoked fMRI measures extrinsic cortical 10 

interaction and temporal synchrony in response to a specific task12,13. A variety of clinical 11 

applications of both task-evoked and resting-state fMRI have revealed changes in brain 12 

function in multiple neurological and psychiatric disorders14-16, such as schizophrenia17,18, 13 

Alzheimer’s disease19, Parkinson’s disease20, autism spectrum disorders21, and major 14 

depressive disorder (MDD)22.  15 

 16 

Twin studies have established that brain functional organizations characterized by resting 17 

and task fMRI are moderately heritable23-30 (heritability range was (0.2,0.6) in a recent 18 

review31). The narrow sense single-nucleotide polymorphism (SNP) heritability of resting 19 

fMRI traits was reported to be around 10% across the entire brain and higher than 30% 20 

in some functional regions32. The heritability of brain functional traits was typically lower 21 

than that of brain structural traits32-35. Nevertheless, brain functional traits could more 22 

directly connect genetic variations to mechanisms underlying behavioral differences36. A 23 

few genome-wide association study (GWAS)32,34,37 have been recently conducted on 24 

resting fMRI traits using a whole brain spatial independent component analysis (ICA)38-40 25 

approach. The whole brain ICA is a parcellation-free dimension reduction method that 26 

estimates the functional brain regions (i.e., ICA components/regions) directly from the 27 

fMRI data. Although ICA is a powerful and popular fMRI tool, it is a data-driven method, 28 

which might limit its generalizability and interpretability12. For example, the ICA 29 

components estimated from training data may form a sample-dependent functional 30 

network and it is not clear if they can be generalized to independent datasets. Moreover, 31 

it might be difficult to use ICA to compare intrinsic and extrinsic functional architectures, 32 



 4 

since the ICA components estimated in resting and task fMRI may not be well-aligned. 1 

Additionally, ICA attempts to capture major variations in the data. As a result, ICA regions 2 

typically have large sizes, limiting their ability to capture high-resolution details of brain 3 

functionality. For example, an earlier study40 defined 55 ICA components in the UK 4 

Biobank41 (UKB) dataset, most of which are distributed across multiple areas and 5 

networks37.  6 

 7 

In this paper, we used a parcellation-based approach to provide fine-grained details about 8 

the genetic architecture of cerebral cortex functional organizations. A recently developed 9 

human brain parcellation1, which partitioned the cerebral cortex into 360 areas (referred 10 

to as the Glasser360 atlas hereafter, Table S1), was used to analyze resting and task fMRI 11 

data of 40,253 individuals in the UKB study. The task implemented in the UKB study was 12 

an emotional processing task42,43, known to robustly activate amygdala and visual 13 

systems. The Glasser360 atlas was constructed using high-quality multi-modality data 14 

from the Human Connectome Project (HCP44) and greatly improved the neuroanatomical 15 

resolution of human cerebral cortex annotations. The 360 cortical areas were grouped 16 

into 12 functional networks45, including four well-known sensory networks (the primary 17 

visual, secondary visual, auditory, and somatomotor), four cognitive networks (the 18 

cingulo-opercular, default mode, dorsal attention, and frontoparietal), the language 19 

network, and three recently identified networks (the posterior multimodal, ventral 20 

multimodal, and orbito-affective) (Figs. 1A-B, Fig. S1A). In addition to pairwise functional 21 

connectivity among areas, we developed a parcellation-based dimension reduction 22 

procedure to generate network level fMRI traits via a combined principal component 23 

analysis (PCA) and ICA methods32 in a training-validation design (Fig. S1B, Methods). The 24 

area level functional connectivity pairs within each network and between each pair of 25 

networks were aggregated into network level traits. Genetic architectures were examined 26 

at both area and network levels for brain functions using these functional connectivity 27 

traits. Together, there were 8,531 area level traits and 1,066 network level traits for 28 

resting fMRI and 8,531 area level traits and 919 network level traits for task fMRI. 29 

Compared to the whole brain ICA-based GWAS32,34,37 in the prior literature for resting 30 

fMRI, the current parcellation-based study 1) enabled the comparison between intrinsic 31 

and extrinsic functional architectures using both resting and task fMRI; and 2) uncovered 32 
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much more and finer detail on the genetic influences on specific functional areas and 1 

networks and their genetic links with brain traits and disorders.  2 

 3 

RESULTS 4 

Consistency and reproducibility of the cerebral cortex functional organizations  5 

In this section, we examined the consistency and reproducibility of functional connectivity 6 

using annotations defined in the Glasser360 atlas in the UKB study. As in Glasser, et al. 1, 7 

we first compared the group means of two independent sets of UKB subjects: the UKB 8 

phases 1 and 2 data (imaging data released up through 201846, n = 17,374) and the UKB 9 

phase 3 data (data released in early 2020, n = 16,852, removing the relatives of subjects 10 

in early released data). Figures S2-S3 illustrate the consistent spatial patterns of 11 

functional connectivity across the two independent groups. The group mean maps were 12 

highly similar, with the correlation across the 64,620 (360 × 359/2) functional connectivity 13 

being 0.996 in resting fMRI and 0.994 in task fMRI. These results may suggest that the 14 

HCP-trained Glasser360 atlas can provide a set of well-defined and biologically 15 

meaningful brain functional traits that are generalizable across datasets.  16 

 17 

Furthermore, we evaluated the reproducibility of the Glasser360 atlas using the repeat 18 

scans from the UKB repeat imaging visit (n = 2,771, average time between visits = 2 years). 19 

We performed two analyses. The first analysis is to compare the group mean maps of the 20 

original imaging visit to those of the repeat visit. Functional connectivity maps were highly 21 

consistent between the two visits, with correlation of 0.997 and 0.994 for resting and task 22 

fMRIs, respectively (Figs. S4-S5). The second analysis quantified individual-level 23 

differences between the two visits. Specifically, we evaluated the reproducibility of each 24 

functional connectivity by calculating the correlation between two observations from all 25 

revisited individuals. Overall, the average reproducibility was 0.37 (standard error = 0.11) 26 

for resting fMRI and 0.30 (standard error = 0.08) for task fMRI (Figs. S6A-B). A few patterns 27 

were observed. For example, the reproducibility of within-network connectivity was high 28 

in resting fMRI but decreased in task fMRI (Fig. 1C, mean = 0.46 vs. 0.32, P < 2.2 × 10-16). 29 

During task fMRI, the connectivity within activated functional areas (defined by group-30 

level Z-statistic maps, Supplementary Note) showed higher reproducibility than that 31 

within nonactivated areas (Fig. 1D, Fig. S7A, mean = 0.40 vs. 0.30, P < 2.2 × 10-16). The 32 
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majority of activated areas were in the secondary visual, dorsal attention, and 1 

somatomotor networks (Fig. S8). Additionally, we found that connectivity with low 2 

reproducibility (e.g., < 0.25) typically had low connectivity strength as well, suggesting 3 

that weak connectivity might be noisier than medium or strong connectivity (Figs. S6C-4 

D). We also evaluated the reproducibility of our network level traits. The mean 5 

reproducibility was 0.43 (standard error = 0.08) for resting fMRI and 0.40 (standard error 6 

= 0.08) for task fMRI. These results indicate that network level traits are more 7 

reproducible, likely due to the reduction of noise that occurred during our dimension 8 

reduction procedure. 9 

 10 

Finally, we compared the spatial patterns of UKB and HCP studies. The correlation 11 

between UKB and HCP was 0.90 for resting fMRI and 0.78 for task fMRI in the group mean 12 

analysis (Fig. S9). These results demonstrate a substantial level of overall consistency 13 

between the typical subjects in a healthy young adult cohort and those of middle age and 14 

older age. Next, we examined the reproducibility of the Glasser360 atlas using the 15 

repeated scans in HCP study (n = 1075, average time between two scans = 1 day). The 16 

average reproducibility was 0.40 (standard error = 0.09) for resting fMRI and 0.22 17 

(standard error = 0.11) for task fMRI (the emotion task) (Fig. S7B). These results show that 18 

the two studies have similar reproducibility, suggesting that the quality of fMRI traits in 19 

the biobank-scale UKB study is comparable to that of the HCP project when using the 20 

Glasser360 atlas. Similar to the UKB study, the activated connectivity of HCP task fMRI 21 

had higher reproducibility than the nonactivated connectivity (Fig. S7C, mean = 0.382 vs. 22 

0.225, P < 2.2 × 10-16). In general, the excellent group mean map consistency, as well as 23 

the similar reproducibility between the UKB and the HCP studies, provide confidence that 24 

the Glasser360 atlas will be able to consistently annotate the functional organization of 25 

typical subjects in a healthy population. 26 

 27 

Heritability of human cerebral cortex functional connectivity at rest and during a task.  28 

We next examined the heritability pattern of functional connectivity across different 29 

functional areas and networks. Using UKB individuals of white British ancestry (n = 34,641 30 

for resting and 32,144 for task), SNP heritability was estimated via GCTA47 for the 8,531 31 

area level within-network functional connectivity traits in both resting and task fMRI. The 32 
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mean heritability (h2) was 10.4% for resting and 6.6% for task fMRI. Overall, the SNP 1 

heritability of 97.9% (8,349/8,531) resting functional connectivity and 80.8% 2 

(6,894/8,531) task functional connectivity traits remained significant after adjusting for 3 

multiple comparisons using the Benjamini-Hochberg procedure to control the false 4 

discovery rate (FDR) at 0.05 level (Table S2). We also estimated the heritability of the 5 

1,985 network level traits (1,066 for resting and 919 for task). The mean h2 was 32.2% for 6 

amplitude and 12% for functional connectivity in resting fMRI; and that was 19.6% for 7 

amplitude and 10.4% for functional connectivity in task fMRI (Table S3). Consistent with 8 

the results above on reproducibility, the higher heritability of network level fMRI traits 9 

may suggest that our dimension reduction approach reduces noise by aggregating fMRI 10 

signals or that genetics have a stronger influence on broader brain networks rather than 11 

specific region pairs.  12 

 13 

Figure 2A and Figure S10A illustrate the heritability pattern across different networks. 14 

The mean heritability was highest in the ventral multimodal network during resting fMRI 15 

(mean = 20.4%). The ventral multimodal is a recently identified network45, consisting of 16 

four cortical areas (left/right TF and PeEc, Fig. S1A) on the ventral surface of the temporal 17 

lobe45. One possible function of this network is to represent higher-order semantic 18 

categories45. In addition, the mean heritability of task fMRI was lower than that of resting 19 

fMRI in all networks except for the secondary visual network, where more than half 20 

(52.32%) of connectivity had greater heritability during task fMRI (Fig. S10B). This might 21 

be partly because the secondary visual network is highly activated, which follows our 22 

results on reproducibility. 23 

 24 

In each network, the heritability pattern across functional areas was identified. For 25 

example, according to physical locations, the areas of the default mode network can be 26 

divided into seven clusters (Fig. S11). There is no significant correlation between the 27 

physical distance of these default mode area pairs and their heritability measurements (P 28 

= 0.563). In the visual cluster (including the precuneus, calcarine, and cingulate) and the 29 

temporal cluster, the default mode connectivity was most heritable. Additionally, the 30 

connectivity between the two clusters and the angular and frontal clusters showed high 31 

heritability, indicating the high degree of genetic control of functional interaction among 32 
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these physically disconnected regions (Fig. 2B). In the somatomotor network, the 1 

left/right 3a, 3b, and 4 areas (in the postcentral, precentral, and paracentral) and the 2 

left/right 7AL and 7PC areas (in the superior parietal) form two separate connectivity 3 

clusters. We found that the 3a, 3b, and 4 areas had the highest heritability within the 4 

somatomotor network, while the heritability of the 7AL and 7PC areas was low. In 5 

addition, the connectivity associated with the left OP2-3 area (in the Rolandic operculum 6 

and insula) had high heritability (Fig. S12). In the cingulo-opercular network, the insula-7 

related areas (e.g., the left/right FOP5, PoI1, FOP3, FOP1, FOP4, MI, and Pol2) exhibited 8 

the highest heritability. However, the heritability of the adjacent para-insular area (the 9 

left/right Pl, in the temporal pole and superior temporal) was low (Fig. S13). The insula is 10 

a functionally diverse part of the cortex involved in multiple functions, including emotion, 11 

cognition, and sensory perception48,49. The insula has been found to have the highest 12 

heritability in surface curvature analysis of cortical morphometry29. Additionally, the 13 

connectivity of a few areas showed consistently high heritability in resting fMRI, including 14 

the left/right IPS1 areas (in the superior occipital) of the secondary visual network and 15 

the right TE1m and left/right TE1p areas (in the inferior temporal and middle temporal) 16 

of the frontoparietal network (Fig. S14). In task fMRI, we also observed a few areas that 17 

had higher heritability than others, including the visual cluster, left OFC (orbitofrontal 18 

complex), and left/right 25 areas (in the olfactory cortex) of the default mode network 19 

(Fig. S15); the left/right RSC (in the middle cingulate), POS2 (in the precuneus and 20 

cuneus), 7Pm (in the precuneus) areas of the frontoparietal network (Fig. S16); and the 21 

middle cingulate-related areas (e.g., the left/right p24pr, a24pr, and left 33pr) of the 22 

cingulo-opercular network (Fig. S17). In summary, our results illustrate the variations of 23 

genetic influences in the cerebral cortex and underscore the important functional areas 24 

whose interactions are strongly influenced by genetic factors.  25 

 26 

We also explored the relationship between heritability and reproducibility and activation 27 

maps. For all 12 networks, both resting and task fMRI showed strong positive correlations 28 

between heritability and reproducibility (overall correlation = 0.47 for resting and 0.40 for 29 

task, P < 2.2 × 10-16, Fig. S18). These results may suggest that functional interactions that 30 

are more reproducible tend to be more genetically controlled. The heritability pattern 31 

was also correlated with the activation maps. In resting fMRI, the heritability of task-32 
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defined activated connectivity was lower than that of nonactivated connectivity (Fig. 2C, 1 

mean = 8.9% vs. 10.8%, P < 2.2 × 10-16). However, in task fMRI, activated connectivity had 2 

a higher heritability than nonactivated connectivity (mean = 7.4% vs. 6.3%, P < 2.2 × 10-3 
16). These differences can be partially explained by the observation that the activated 4 

connectivity had greater reproducibility than the nonactivated connectivity in task fMRI, 5 

and may also due to the task-related changes in brain functions and inter-regional 6 

connectivity50. Some genetic effects may only be detected when activating a particular 7 

brain region, which is like a gene-environment interaction and implies that we would need 8 

broad numbers of tasks to be able to detect more genetic influences on some specific 9 

brain functions. Our findings are also related to previous observations that the correlation 10 

between two activated regions increases during task performance, whereas the 11 

correlation between other regions is decreased51. Overall, these results provide insights 12 

into the genetic influences on the intrinsic and extrinsic functional architecture and link 13 

the genetic variation patterns to reproducibility and activation maps.  14 

 15 

Genetic loci associated with cerebral cortex functional areas and networks  16 

GWAS was performed for the 8,531 × 2 within-network connectivity traits in resting and 17 

task fMRI using UKB individuals of white British ancestry (Methods). The LDSC intercepts52 18 

were close to one, suggesting no genomic inflation of test statistics due to confounding 19 

factors (mean intercept = 1.003, standard error = 0.010). At a stringent significance level 20 

2.93 × 10-12 (5 × 10-8/8,531/2, additionally adjusted for the number of traits studied), we 21 

identified 32 genomic regions (cytogenetic bands) associated with resting connectivity, 9 22 

of which were also associated with task connectivity (Fig. 3A and Table S4).  23 

 24 

Enrichment of locus-specific genetic effects was observed across different areas and 25 

networks in resting fMRI. Many of the fMRI-associated genetic variants are known to 26 

affect gene expressions in previously published human brain expression quantitative trait 27 

loci (eQTL) datasets53,54. For example, most of the associations of the 2q14.1 locus were 28 

in the somatomotor network. The 2q14.1 locus was also particularly associated with the 29 

right MST and right V6 areas (in the middle temporal and cuneus) of the secondary visual 30 

network and a few areas (e.g., the left/right 43 in the Rolandic operculum and the p24pr 31 

in the middle cingulate) of the cingulo-opercular network (Fig. S19). Figure S20 illustrates 32 
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the genes presented at this locus and shows that the index variant (and its proxy variants, 1 

linkage disequilibrium [LD] r2 > 0.8) are associated with the expression of PAX8 and 2 

FOXD4L1 in brain tissues53, suggesting that the two genes are relevant to neuronal 3 

function. The 10q23.33 and 10q26.3 loci were mainly associated with the cingulo-4 

opercular, somatomotor, auditory, and default mode networks (Figs. S21-S22). The index 5 

variants were eQTLs of NOC3L, PLCE1, and INPP5A (Fig. S23). Moreover, most of the 6 

10q26.3-associated areas of the default mode network were in the hippocampal cluster 7 

(Fig. S24). The 3p11.1 locus had genetic effects on a few specific areas, including right PSL 8 

(Perisylvian language area, in the superior temporal) and left PF (in the supramarginal) 9 

areas of the cingulo-opercular network and the left PGs (in the angular) and the left 31a 10 

areas (in the middle cingulate) of the default mode network (Fig. 3B and Figs. S25-S26). 11 

The 11q22.1 locus was associated with the auditory network (especially the left MBelt 12 

[medial belt complex] area) and the insula-related areas (e.g., the left/right PoI1, PoI2, 13 

FOP3, MI, FOP4) of the cingulo-opercular network (Fig. S27). The significant variants were 14 

eQTLs of CFAP300 (Fig. S28). The 15q14 locus was mainly associated with areas of the 15 

somatomotor and cingulo-opercular networks, such as the left FOP2 (in the Rolandic 16 

operculum) and the left 6r (in the opercular part of the inferior frontal) (Figs. S29-S30). 17 

Interesting, all associations at the 19q13.32 locus, which was the major risk factor of 18 

Alzheimer's disease, were in the secondary visual network (such as the left LO1 and right 19 

V3CD in middle occipital, left/right V3A in superior occipital, and left/right V6 in cuneus), 20 

with one exception in the visual cluster of the default mode network (Fig. 3C and Figs. 21 

S31-S32). These results highlight the close relationship between the 19q13.32 locus and 22 

the visual cortex. Similarly, the variants in 10q26.13 locus was particularly associated with 23 

the visual cluster of the default mode network and were eQTLs of LHPP and EEF1AKMT2 24 

(Figs. S33-S34). The 17p11.2 locus was mainly associated with the insula-related areas 25 

(e.g., the left/right MI and FPO4) and the middle cingulate-related areas (e.g., the 26 

left/right a24pr and p32pr) of the cingulo-opercular network (Fig. S35). The significant 27 

variants were eQTLs of GRAPL (Fig. S36). The variants in 3q24 locus were related to the 28 

cingulo-opercular and frontoparietal networks and were eQTLs of ZIC4 (Figs. S37-S38). 29 

Additionally, we found that the 4q24 locus was mainly associated the left 6ma area (in 30 

the superior frontal) of the cingulo-opercular network, the 14q23.1 locus with the left 31 
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IPS1 area (in the superior occipital) of the secondary visual network, and the 2p21 locus 1 

with the left i6-8 area (in the middle frontal) of the frontoparietal network (Figs. S39-S44).  2 

 3 

Among the 9 significant genomic regions identified in task fMRI, the 10q23.33 locus was 4 

mainly associated with the visual cluster of the default mode network (Figs. S45-S46), 5 

especially the left/right 31pv areas (in the middle cingulate) (Fig. S47). For other loci (e.g., 6 

10q26.3, 3p11.1, and 19q13.32), the associated networks were similar to those in resting 7 

fMRI, although the number of connectivity traits surviving the stringent significance level 8 

became much smaller. We examined the pair-wise genetic correlations between the 9 

8,531 connectivity in resting and task fMRI via the cross-trait LD score regression55 10 

(Methods). The average genetic correlation among all of the 8,531 pairs was 0.554, 3,598 11 

of which were significant at the FDR 5% level (Fig. S48, mean = 0.710, standard error = 12 

0.192). The genetic correlations were strongly associated with the corresponding 13 

phenotypic correlations (correlation = 0.340, P < 2.2 × 10-16), and were also related to the 14 

reproducibility of fMRI (correlation = 0.168, P < 2.2 × 10-16). Although it was more difficult 15 

to identify associated loci for task fMRI, these strong genetic correlations suggest the 16 

overall similarity of the genetic architecture on brain functions at rest and during a task.  17 

 18 

Next, we performed GWAS for the 1,985 network level traits to identify variants 19 

associated with connectivity within each of the 12 network and between each pair of 20 

networks. At the 2.51 × 10-11 (5 × 10-8/1,985) significance level, we identified 41 (15 21 

additional) genomic regions for resting fMRI, 14 of which were also associated with task 22 

fMRI (Table S5). On average, these 41 genetic regions explained 13.5% of the heritability 23 

of network level fMRI traits. Together, the area and network level analysis identified 47 24 

genomic regions for resting fMRI, 15 of which were also associated with task fMRI (Fig. 25 

3A). A recent whole brain ICA-based fMRI study34 identified 21 genomic regions using 26 

1,777 resting fMRI traits (P < 2.81 × 10-11, 5 × 10-8/1,777), 16 of which were also identified 27 

in our study. These results may suggest the higher power of our parcellation-based 28 

approach. Of the 47 loci, 19 had been linked to brain structural connectivity in a recent 29 

study of white matter microstructure using diffusion MRI (dMRI)46 (Table S6). A few of 30 

the 19 overlapped loci had wide genetic effects on multiple white matter tracts and 31 

functional networks, such as the 16q24.2, 3p11.1, 16q24.2, and 15q14 (Fig. S49).  32 



 12 

 1 

Finally, we aimed to replicate the identified genomic loci using independent European 2 

and non-European datasets. First, we repeated GWAS on a European dataset with 4,882 3 

subjects, including European individuals in the UKB phase 4 data (early 2021 release, 4 

removed the relatives of our discovery sample) and individuals of white but non-British 5 

ancestry in UKB phases 1 to 3 data. For the 266 independent (LD r2 < 0.1) network-locus 6 

associations in resting fMRI, 60 (22.6%) passed the Bonferroni significance level (1.9 × 10-7 
4, 0.05/266) in this validation GWAS, and 190 (71.4%) were significant at nominal 8 

significance level (0.05). All of the 190 significant associations had concordant directions 9 

in the two GWAS (Fig. S50A). Of the 47 identified genomic loci, at least one association of 10 

13 loci (27.7%) passed the Bonferroni significance level and 37 (78.7%) can be validated 11 

at 0.05 nominal significance level. For task fMRI, 33% (i.e., 19/57) network-locus 12 

associations passed the nominal significance level, all of which had the same effect signs 13 

in the two GWAS (Fig. S50B). The 17 associations were related to nine genomic loci, four 14 

(the 10q23.33, 16q24.2, 10q26.3, and 19q13.32) of which were significant at the 15 

Bonferroni significance level. Next, we performed GWAS on two UKB non-European 16 

validation datasets: the UKB Asian (UKBA, n = 469) and UKB Black (UKBBL, n = 261). Of the 17 

47 genomic loci, 16 (3 also in task) were validated in UKBA and 10 (5 also in task) were 18 

significant in UKBBL at nominal significance level, none of them survived the Bonferroni 19 

significance level (Tables S4-S5). Particularly, the 15q14 locus can be consistently 20 

validated for both resting and task fMRI in UKBA and UKBBL (P < 5.0 × 10-3).  21 

 22 

The shared genetic influences with complex brain traits and disorders.  23 

To evaluate the shared genetic influences between brain functional organizations and 24 

complex brain traits and diseases, we carried out association lookups for independent (LD      25 

r2 < 0.1) significant variants (and variants in LD, r2 ≥ 0.6) detected in UKB white British 26 

GWAS. In the NHGRI-EBI GWAS catalog56, our results tagged variants reported for a wide 27 

range of complex traits and diseases, such as neurological disorders, neuropsychiatric 28 

disorders, mental health and psychological traits, migraine, cognitive traits, educational 29 

attainment, sleep, smoking/drinking, and anthropometric measurements (Table S7). To 30 

explore the detailed colocalization pattern across brain functional regions, we took the 31 

index variants of colocalized traits/diseases and performed variant-specific association 32 
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analysis for all of the 64,620 functional connectivity (Methods). Below we highlighted 1 

colocalizations in a few genomic regions. All these loci have been replicated at nominal 2 

significance level in our validation GWAS.  3 

 4 

We found a colocalization with Alzheimer's disease at rs429358 (19q13.32), one of the 5 

two variants in the APOE ε4 locus (Fig. 4A). In both resting and task fMRI, the secondary 6 

visual network had the strongest association with rs429358 (Fig. 4B and Fig. S51A). The 7 

allele associated with increased risk for Alzheimer's disease (“C”) was associated with 8 

decreased functional connectivity in visual cortex (Fig. S52). Visual deficits were one of 9 

the first symptoms of Alzheimer's disease57 and functional connectivity deficits in the 10 

visual cortex have been reported in Alzheimer's disease58,59. Decreased eigenvector 11 

centrality in visual cortex was associated with APOE ε4 carriership among normal elderly 12 

subjects60. In addition, the risk allele at rs429358 was associated with decreased default 13 

mode activity at the Bonferroni significance level in variant-specific analysis (3.86 × 10-7, 14 

0.05/64,620/2), with distinct patterns in resting and task fMRI. In resting fMRI, the 15 

associations were mainly in the visual cluster and the left/right 10d areas (in the superior 16 

frontal). Decreased default mode network connectivity in the posterior cingulate 17 

cortex/precuneus, orbital and middle frontal cortex, and inferior parietal lobe in APOE ε4 18 

carriers is consistently reported in various studies across adulthood (see Section 3.3.1 and 19 

Table 2 of Foo, et al. 31). Regardless of APOE carrier status, results from previous studies 20 

are consistent in finding decreased functional connectivity in the default mode network 21 

in subjects with Alzheimer's disease and mild cognitive impairment, as summarized in 22 

Dennis and Thompson 61 and Badhwar, et al. 19. For task fMRI, most of the significant 23 

rs429358 effects were on the interactions between the visual cluster and a few areas in 24 

the frontal cluster, including the left/right p32 (in the medial superior frontal), a24 (in the 25 

pregenual anterior cingulate cortex), and 8Ad (in the superior frontal) areas (Fig. S51B). 26 

The reduced deactivation of the default mode network during tasks has been consistently 27 

observed in different stages of Alzheimer's disease62 and normal carriers of the APOE ε463. 28 

Biologically, amyloid-β (Aβ) accumulation preferentially starts in several of the core 29 

regions of the default mode network, and the earliest Aβ accumulation is further 30 

associated with hypoconnectivity within the default mode network and between default 31 

mode network and the frontoparietal network64. Additionally, we found the risk allele at 32 



 14 

rs429358 decreased the functional connectivity of middle temporal areas in the language 1 

network (e.g., the left/right TPOJ and STSdp) and the left IP0 area (in the middle occipital) 2 

of the dorsal attention network in task fMRI, but not in resting fMRI (Fig. S53). We also 3 

tested the association between rs429358 and MRI traits of other imaging modalities, 4 

including structural connectivity traits from dMRI46 and regional brain volumes from 5 

structural MRI (sMRI)65. The fMRI traits had much stronger associations (smaller P values) 6 

with rs429358 than these structural traits. Together, these results suggest the fMRI traits 7 

of brain functions, especially the ones from the visual cortex in the secondary visual and 8 

default mode networks, might be more directly related to the genetic pathways of APOE 9 

ε4 to Alzheimer's disease than brain morphology. These fMRI traits could be used as 10 

imaging biomarkers in etiologic study of Alzheimer's disease and drug development 11 

targeting APOE ε4.  12 

 13 

In the 17p11.2 and 2p16.1 regions, we observed colocalizations between the default 14 

mode network and multiple psychiatric disorders, including schizophrenia66,67, autism 15 

spectrum disorder68, MDD69, and epilepsy70. For example, we tagged the rs4273100 16 

(nearest gene EPN2, 17p11.2) and rs1518395 (VRK2, 2p16.1), which have been implicated 17 

with schizophrenia (Fig. S54). Rs1518395 was also a risk variant for MDD and the 18 

rs2947349 (VRK2, 2p16.1) was associated with epilepsy. In resting fMRI, all three index 19 

variants exhibited the strongest associations with the default mode network, especially 20 

the frontal cluster (Figs. S55-S56). In addition, we observed colocalizations with cognitive 21 

ability and education71 in the 17p11.2 region (e.g., rs12602286, EPN2) and with 22 

psychological traits (e.g., neuroticism72 and subjective well-being73, rs2678897, VRK2) in 23 

the 2p16.1 region, which were also mainly related to the default mode network (Fig. S57).   24 

 25 

In the 10q23.33 and 6q16.1 regions, our identified variants tagged those that have been 26 

implicated with migraine74,75 (Fig. 4C and Fig. S58). For example, the index variant 27 

rs11187838 (PLCE1, 10q23.33) affected multiple networks and had the strongest 28 

associations in the auditory and cingulo-opercular networks (Fig. S59). The index variant 29 

rs11759769 (FHL5, 6q16.1) was mainly associated with the auditory, cingulo-opercular, 30 

and ventral multimodal networks in resting fMRI (Fig. S60). We also found colocalizations 31 

with brain aneurysm76 in rs11187838 and with cerebral blood flow77 in rs2971609 (FHL5, 32 
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6q16.1). Migraine is a heterogeneous disorder and no neuroimaging biomarker has been 1 

well established in previous small sample fMRI studies78. Our results may help identify 2 

whether the risk variants of migraine predispose to migraine in particular brain regions or 3 

networks. Specifically, our findings suggest the genetic overlaps among migraine, 4 

cerebrovascular traits, and brain function across multiple networks and highlight the 5 

enrichment in the auditory and cingulo-opercular networks. 6 

 7 

Colocalizations with cognitive ability71, intelligence79, and education71 were observed in 8 

the 10q26.13, 5q15, and 3p11.1 regions (Fig. S61). The index variants of theses cognitive 9 

traits were associated with a few specific functional areas in the temporal and parietal 10 

lobes. For example, in the 10q26.13 locus, our tagged variants associated with math 11 

ability, education71, and cocaine dependence80 (rs2629540, FAM53B). Rs2629540 variant 12 

was particularly associated with the precuneus-related areas in different networks, such 13 

as the right PCV in the posterior multimodal network, the left/right 7Pm in the 14 

frontoparietal network, and the right 31pd in the default mode network (Fig. S62). The 15 

precuneus is involved in a variety of complex functions and responds to a wide variety of 16 

cognitive processes81. In the 5q15 region, we observed colocalizations with cognitive 17 

performance, math ability, and education71 (rs114468556, NR2F1), most of which were 18 

related to the left/right TPOJ2 areas (in the middle temporal) of the posterior multimodal 19 

network (Fig. S63A). The NR2F1 is well studied in the arealization of the cerebral cortex82. 20 

In the 3p11.1, we found colocalizations with intelligence79 (rs7652296, EPHA3). The 21 

EPHA3 is involved in axon guidance83 and the rs7652296 was mainly associated with 22 

between-network connectivity of a few temporal and parietal areas, such as the right PSL 23 

(Perisylvian language area, in the superior temporal) and the left PF (in the supramarginal) 24 

of the cingulo-opercular network; the left PHT (in the middle temporal) of the dorsal 25 

attention network; the right PFm (in the inferior parietal) and the left TE1p (in the inferior 26 

temporal and middle temporal) of the frontoparietal network; the left PSL (in the superior 27 

temporal) and the right STSdp (in the middle temporal) of the language network; and the 28 

left PGs (in the angular) of the default mode network (Fig. S63B). These findings partially 29 

support the parieto-frontal integration theory of intelligence84,85, uncovering the genetic 30 

overlaps between cognitive functions and specific temporal and parietal functional areas.  31 

 32 
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In addition, we found colocalized genetic effects with psychological traits (e.g., risk-taking 1 

behaviors86) in the 3q24 (rs2279829, ZIC4) and 3p12.1 (rs6762267, CADM2) regions (Fig. 2 

S64). Rs2279829 and rs6762267 were mainly related to the interactions among the 3 

frontoparietal, cingulo-opercular, and default mode networks, with the strongest genetic 4 

effects being on a few frontal areas (e.g., the left/right i6-8, left/right p9-46v, left a10p, 5 

right p24, right PEF). Increasing evidence suggests the frontal lobe plays an important role 6 

in risk-taking and risk behaviors87 (Fig. S65). Finally, the 2q14.1 region had colocalizations 7 

with insomnia88 and sleep traits89 (rs62158170, PAX8, Fig. 4D). The strongest genetic 8 

effects were on the somatomotor network (Fig. 4E). In summary, brain functions 9 

measured in fMRI has substantial area-specific genetic overlaps with complex brain traits 10 

and clinical outcomes. Uncovering the detailed genetic colocalized patterns may help 11 

understand how alterations in specific brain functions lead to risk for brain conditions and 12 

disorders.  13 

 14 

To further explore the genetic links, we examined the genetic correlations55 between 15 

fMRI traits and 50 complex traits, most of which were colocalized traits in the above 16 

association lookups, as well as additionally mental health traits and major brain disorders. 17 

First, we examined the genetic correlations with 4 global functional connectivity and 18 

amplitude traits (2 trait for resting and 2 for task). At the FDR 5% level (4 × 50 tests), we 19 

found the global fMRI traits were significantly associated with hypertension, neuroticism 20 

(e.g., feeling nervous, worry), sleep traits, and task-taking behaviors (e.g., automobile 21 

speeding) (Table S8). For example, resting functional connectivity was negatively 22 

correlated with neuroticism (feeling nervous) (GC = -0.181, P < 1.14 × 10-4) and sleep 23 

duration (GC = -0.173, P < 1.58 × 10-4). Hypertension was negatively correlated with the 24 

global amplitude in task fMRI (GC = -0.282, P < 7.34 × 10-6).  25 

 26 

Next, we explored the spatial patterns of genetic overlaps by evaluating the genetic 27 

correlations between complex traits and 8,531 functional connectivity. Enrichment of 28 

overlaps in specific brain functional areas and networks were observed in resting fMRI. 29 

For example, at the FDR 5% level (8,531 tests), cognitive function had genetic correlations 30 

with cognitive networks (the cingulo-opercular, default mode, frontoparietal, and dorsal 31 

attention), such as the right IFSa area (in the triangular part of inferior frontal) (Fig. 5A). 32 



 17 

Most of the significant genetic correlations were negative, which suggest genetic effects 1 

predispose to less resting connectivity is associated with increased intelligence. For 2 

schizophrenia and cross-disorder90, we found consistent positive genetic correlations 3 

with the default mode network (e.g., the left/right 47s in the posterior orbital and the 4 

left/right 8BL in the medial superior frontal) and negative genetic correlations with the 5 

secondary visual network (e.g., the left/right LIPv in the superior parietal) (Fig. 5B and Fig. 6 

S66). Similarly, we found neuroticism (feeling nervous) had positive genetic correlations 7 

with the default mode network (e.g., the right PGi in the angular) and negative genetic 8 

correlations with the secondary visual network (e.g., the right FST in the middle temporal 9 

and the right VMV3 in the fusiform) (Fig. S67).  10 

 11 

Task fMRI provided additional insights into the genetic correlations with cognitive 12 

function (Fig. 5C). Similar to resting fMRI, the default mode network had negative genetic 13 

correlations with cognitive function. The correlations were enriched in the connectivity 14 

between the visual cluster and the frontal cluster (Fig. S68A). Moreover, the secondary 15 

visual and somatomotor networks (e.g., the right V6 in the cuneus, the left VMV2 in the 16 

lingual, the left VIP in the superior parietal, and the right OP2-3 in in Rolandic operculum 17 

and insula) had positive genetic correlations with cognitive function (Fig. S68B). In 18 

summary, these results show the default mode network has negative genetic correlations 19 

with cognition and positive genetic correlations with brain disorders and neuroticism. The 20 

genetic correlations with cognition had opposite directions in the default mode network 21 

and the secondary visual network in task fMRI, pointing to genetic influences on task 22 

specific brain activity. Patterns of other complex traits (e.g., snoring, sleep during, 23 

hypertension, general risk tolerance, and education) were summarized in the 24 

Supplementary Note and Figures S69-S70. In summary, this section provides several lines 25 

of evidence for the shared genetic influences between brain functions and complex traits 26 

and diseases. Discovering such genetic co-variations in specific brain areas and networks 27 

might improve our understanding of how the brain function is affected by genetic risk 28 

factors and aid early detection and timely treatment of brain diseases.  29 

 30 

Gene-level analysis and biological annotations.  31 
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Using GWAS summary statistics of network level fMRI traits, MAGMA91 detected 67 1 

significant genes with 352 associations (P < 1.34 × 10-9, adjusted for 1,985 phenotypes) 2 

(Table S9). We performed some functional lookups for these genes. First, nine genes 3 

(SSH2, CADM2, FAT3, ANO1, CSMD3, HELLS, CTR9, KANSL1, and ETV1) had a high 4 

probability of being loss-of-function (LoF) intolerant92 (pLI > 0.98), indicating its extremely 5 

intolerant of LoF variation. Second, 24 (UFL1, MEF2C, CPED1, TBC1D12, KANSL1, CRHR1, 6 

RNF112, TBC1D5, ANKRD32, DGKB, HSPG2, ZIC1, GRAP, MFAP4, FADD, NOC3L, CADM2, 7 

LRRC37A, EFCAB5, PLCB1, FAM53B, METTL10, ARL17B, and STH) of the 67 genes were also 8 

identified by a recent eQTL study of developing human brain93. Moreover, in the 9 

constructed transcriptional networks94, FAT3, MEF2C, CRHR1, NR2F1 and VRK2 were 10 

within the adult neurons, synaptic transmission, and neuron projection development 11 

function module; SSH2, HSPG2, and KANSL1 were within the superficial layer neurons and 12 

splicing module; and CADM2, PIP5K1B, ZIC1, CXXC4, ANKRD32, CSMD3 and GNA12 were 13 

within developing neurons and axon guidance module. These results indicate the fMRI-14 

associated genes have potential functions in biological processes of brain development 15 

and healthy aging. In addition, we applied FUMA95 to map significant variants (P < 2.51 × 16 

10-11) to genes via physical position, eQTL association, and 3D chromatin (Hi-C) 17 

interaction. FUMA yielded 226 associated genes, 168 of which were not discovered in 18 

MAGMA (Table S10). In addition, 5 of the fMRI-associated genes (CALY, SLC47A1, SLC6A4, 19 

CYP2C8, and CYP2C9) were targets for 51 nervous system drugs96 (anatomical therapeutic 20 

chemical (ATC) code starts with “N”), such as 29 anti-depressants (N06A) to treat major 21 

depression disorder and related conditions, 13 anti-psychotics drugs (N05A) to manage 22 

psychosis, 4 psychostimulants (N06B) for ADHD and nootropics, and 2 anti-migraine 23 

(N02C) (Table S11). 24 

 25 

To identify brain cell types where genetic variation leads to changes in brain function, we 26 

performed partitioned heritability analyses97 for cell type specific regulatory elements. 27 

Specifically, we estimated partitioned heritability enrichment within differentially 28 

accessible chromatin of neurons (NeuN+, including two subtypes GABAergic 29 

[NeuN+/Sox6+] and glutamatergic neurons [NeuN+/Sox6-]) and glial cells (NeuN-, 30 

including oligodendrocyte [NeuN-/Sox10+], microglia and astrocyte [NeuN-/Sox10-])98. To 31 

identify global enrichment across the whole brain, we performed partitioned heritability 32 
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using global functional connectivity and amplitude traits in resting fMRI. As expected, we 1 

found enrichment of functional connectivity and amplitude in neuronal regulatory 2 

elements but not in glial (Fig. 6A). For further resolution across brain networks, we also 3 

performed enrichment analysis for the mean amplitude of the 12 networks. Neuronal 4 

enrichment was observed in most networks and the strongest enrichment was found in 5 

the posterior multimodal network (Fig. 6B). Overall, these results indicate that common 6 

variants associated with brain functional activity alter the function of regulatory elements 7 

in neurons, the cell type expected to influence brain functional interactions, supporting 8 

the biological validity of the identified genetic associations.  9 

 10 

Intelligence prediction by integrating genetic and multi-modality MRI data.  11 

One ultimate goal in brain imaging genetics is to develop prediction models for brain 12 

complex traits and disorders99-101. In this section, we performed prediction for fluid 13 

intelligence using common genetic variants and neuroimaging traits from multiple 14 

modalities, including resting fMRI, task fMRI, dMRI, and sMRI. We examined the joint 15 

performance and relative contributions of these data types in a training, validation, and 16 

testing design (Methods). The genetic effects were aggregated using polygenic risk scores 17 

(PRS) via PRS-CS102 and the effects of imaging traits were estimated in ridge regression via 18 

glmnet103. All model parameters were tuned using the validation data and we evaluated 19 

the prediction performance on the independent testing data by calculating the 20 

correlation between the predicted values and the observed intelligence, while adjusting 21 

for the covariates.  22 

 23 

The prediction performance was summarized in Figure 6C. The prediction correlation of 24 

genetic PRS is 0.228 (standard error = 0.019), suggesting that about 5.2% variation in fluid 25 

intelligence can be predicted by common genetic variants. The prediction correlation 26 

resting fMRI was 0.234, which was similar to that of task fMRI (correlation = 0.233). The 27 

performance was improved to 0.296 by jointly using resting and task fMRI, which suggests 28 

resting and task fMRI had unique contributions to intelligence prediction. The dMRI and 29 

sMRI traits had much lower prediction accuracy than fMRI traits. Specifically, the 30 

prediction correlation was 0.105 for diffusion tensor imaging (DTI) parameters and 0.08 31 

for regional brain volumes. Moreover, adding these structural traits in addition to fMRI 32 
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traits did not significantly improve the prediction performance (correlation = 0.299), 1 

indicating the prediction power of structural traits for intelligence can be largely captured 2 

by the functional traits. More importantly, by using both of the genetic PRS and 3 

neuroimaging traits, the prediction correlation moved up to 0.347, which was much 4 

higher than only using one of the two data types. These results illustrate the 5 

neuroimaging traits, especially the ones from resting and task fMRI, can substantially 6 

improve the prediction accuracy of intelligence on top of genetic PRS. Future studies can 7 

integrate genetic PRS and multi-modality MRI data for better prediction of brain 8 

conditions.   9 

 10 

DISCUSSION 11 

Using resting and task fMRI data from the UK Biobank, we provided fine details of genetic 12 

influences on cerebral cortex functional architectures through a parcellation-based 13 

approach. We showed the similarities and differences of the genetic architecture of 14 

intrinsic and extrinsic functional organizations in heritability analysis, association analysis, 15 

genetic links with cognition and disease, and prediction models of intelligence. Genetic 16 

colocalization and correlation analyses uncovered important brain functional areas and 17 

networks that were genetically implicated in specific diseases and traits, such as the 18 

substantial genetic links between the visual cortex and the Alzheimer's disease.  19 

 20 

At group mean level, prior literature has demonstrated that the intrinsic and extrinsic 21 

functional architectures are highly similar with small but consistent differences50,104-108. 22 

These task-related changes are essential for the human brain to adaptively alter its 23 

functionality via rapid changes in inter-regional functional connectivity50. Using large-24 

scale individual level data in the UK Biobank, we showed the overall genetic similarity 25 

between resting and task fMRI (e.g., mean genetic correlation = 0.7). Although the genetic 26 

differences between resting and task fMRI are small, multiple lines of evidence suggest 27 

such differences could be important and are genetically related to cognition and brain 28 

diseases. For example, cognitive function had genetic correlations with the secondary 29 

visual and somatomotor networks during task performance, but not at rest. Moreover, 30 

our prediction analysis illustrated that jointly using resting and task fMRI resulted in 31 
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higher prediction accuracy, indicating there were distinct cognition-related components 1 

in resting and task fMRI.     2 

 3 

Although many efforts have been made to understand the functional organizations of the 4 

human brain, there is no one widely-accepted standard pipeline for functional 5 

connectivity analysis in fMRI99. Our study is one of the first attempts to study the genetic 6 

architecture of brain functions using a parcellation-based approach in biobank-scale 7 

dataset. Compared to the recent whole brain ICA-based studies32,34, our parcellation-8 

based approach was able to uncover high-resolution fine details on the genetic effect 9 

patterns and enable the comparison between intrinsic and extrinsic functional 10 

architectures. However, there are still a few limitations in the present study. First, the 11 

UKB participants were mostly middle-aged to elderly Europeans. Although we have 12 

illustrated the overall consistency of group mean maps between the HCP and UKB 13 

cohorts, nonlinear aging effects on brain functional connectivity have been widely 14 

observed109. It is of great interest to study the gene-age interactions and evaluate the 15 

generalizability of UKB results across the lifespan110. It is also interesting to investigate 16 

the population-specific genetic components when more large-scale fMRI data from global 17 

populations become available111. Second, the UKB task fMRI data were from a single 18 

emotion processing task42,43. Although previous studies have shown that the functional 19 

architectures of different tasks were highly similar50,104,106, multi-task fMRI data may 20 

provide new insights in genetic studies. It might be possible to impute/predict multi-task 21 

fMRI data for UKB using the multi-task HCP data as training reference panels. To enable 22 

comparison between resting and task fMRI, our study focused on functional connectivity 23 

traits. It is also of great interest to study the genetics influences on task activation 24 

measures/maps for task fMRI. In addition, fMRI traits show lower reproducibility than 25 

structural MRI traits and this may account for their decreased heritability. New feature 26 

extraction pipeline might help improve the reproducibility by jointly analyzing resting 27 

functional connectivity, task functional connectivity, and structural connectivity. Finally, 28 

we performed functional connectivity analyses using the full correlation measures 29 

extracted from the Glasser360 atlas. Future work is needed to evaluate the consistency 30 

of results between full and partial correlations and compare the Glasser360 atlas with 31 

other common brain parcellations4-8 in the large-scale UKB dataset.  32 
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 1 

METHODS 2 

Methods are available in the Methods section. 3 

Note: One supplementary information pdf file, one supplementary figure pdf file, and one 4 

supplementary table zip file are available. 5 
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 21 

METHODS 22 

Imaging datasets. We used resting and task fMRI data from the UKB and HCP studies. The 23 

UKB study had obtained ethics approval from the North West Multicentre Research Ethics 24 

Committee (approval number: 11/NW/0382). All experimental procedures in the HCP 25 

study were approved by the institutional review boards at Washington University 26 

(approval number: 201204036). The image acquisition and preprocessing procedures 27 

were detailed in the Supplementary Note. This study used a parcellation-based approach 28 

based on the Glasser360 atlas1. Briefly, for each subject, we projected the resting and task 29 

fMRI data onto the Glasser360 atlas and obtained the 360 × 360 functional connectivity 30 

matrices. The original Glasser360 atlas is a surface-based parcellation for the cerebral 31 

cortex112 and it has been transformed to a volumetric atlas that is compatible with the 32 



 33 

UKB volume-based data (Supplementary Note). The 360 functional areas were grouped 1 

into 12 functional networks45 (Table S1). To aid interpretation, the 360 functional areas 2 

were labelled using the automated anatomical labeling atlas113. We mainly studied two 3 

sets of fMRI traits: area level traits and network level traits. Area level traits were the 4 

8,531 functional connectivity among all area pairs within each of the 12 networks, which 5 

provided fine details on cerebral cortex functional organizations and enabled the 6 

comparison between intrinsic and extrinsic functional architectures. Network level traits 7 

were expected to aggregate area level interactions within and between networks. To 8 

ensure high robustness and generalizability, we only input functional connectivity with 9 

high reproducibility and extracted these low-rank traits via a combined PCA and ICA 10 

dimension reduction approach in a training-validation design32. Additionally, we 11 

considered the mean amplitude of each network, which was a measure of brain 12 

activity114. Together, there were 1,985 network level traits, 1,066 of which were from 13 

resting fMRI and 919 from task fMRI. Detailed steps of our parcellation-based dimension 14 

reduction procedure can be found in the Supplementary Note. We removed values 15 

greater than five times the median absolute deviation from the median for each 16 

continuous phenotype or covariate variable. We analyzed the following datasets 17 

separately: 1) the white British discovery GWAS, which used data of individuals of white 18 

British ancestry115 in UKB phases 1 to 3 data (n = 34,641 for resting and 32,144 for task, 19 

released up through 2020); 2) European validation GWAS: UKB white but Non-British 20 

individuals in phases 1 to 3 data and all White individuals in newly released UKB phase 4 21 

data (UKBW, n = 4,882 for resting and 4,023 for task); 3) two non-European UKB validation 22 

GWAS: UKB Asian (UKBA, n = 469 for resting and 368 for task) and UKB Black (UKBBL, n = 23 

261 for resting and 191 for task); and 4) the UKB first revisit data (n = 1,491 for resting 24 

and 1,362 for task). The average age (at imaging) of all subjects was 64.16 (standard error 25 

= 7.73), 51.6% were females. The assignment of ancestry in UKB was based on self-26 

reported ethnicity (Data-Field 21000), which was verified in Bycroft, et al. 115.  27 

 28 

Heritability and GWAS analysis. We downloaded the imputed data from UKB data 29 

resources. We performed the following quality controls on subjects with both imaging 30 

and genetics data: 1) excluded subjects with more than 10% missing genotypes; 2) 31 

excluded variants with minor allele frequency less than 0.01; 3) excluded variants with 32 



 34 

missing genotype rate larger than 10%; 4) excluded variants that failed the Hardy-1 

Weinberg test at 1 × 10-7 level; and 5) removed variants with imputation INFO score less 2 

than 0.8. SNP heritability was estimated by GCTA47 using all autosomal SNPs in the white 3 

British discovery GWAS. We adjusted the effects of age (at imaging), age-squared, sex, 4 

age-sex interaction, age-squared-sex interaction, imaging site, the top 40 genetic 5 

principal components (PCs), as well as the head motion, head motion-squared, brain 6 

position, brain position-squared, and volumetric scaling. Genome-wide association 7 

analysis was performed in linear mixed effect model using fastGWA116, while adjusting 8 

the same set of covariates as in GCTA. GWAS were also separately performed via Plink117 9 

in validation datasets, where we adjusted for top ten genetic PCs instead of top 40. For 10 

area level traits. the independent lead variants were clumped by Plink (--clump-r2 0.1 --11 

clump-kb 250). The genomic loci associated with network level traits were defined using 12 

FUMA95 (version 1.3.5e). To define the LD boundaries, FUMA identified independent 13 

significant variants, which were defined as variants with a P-value smaller than the 14 

predefined threshold and were independent of other significant variants (LD r2 < 0.6). 15 

FUMA then constructed LD blocks for these independent significant variants by tagging 16 

all variants in LD (r2 ≥ 0.6) with at least one independent significant variant and had a MAF 17 

≥ 0.0005. These variants included those from the 1000 Genomes reference panel that 18 

may not have been included in the GWAS. Moreover, within these significant variants, 19 

independent lead variants were identified as those that were independent from each 20 

other (LD r2 < 0.1). If LD blocks of independent significant variants were close (<250 kb 21 

based on the closest boundary variants of LD blocks), they were merged into a single 22 

genomic locus. Thus, each genomic locus could contain multiple significant variants and 23 

lead variants. Independent significant variants and all the variants in LD with them (r2 ≥ 24 

0.6) were searched on the NHGRI-EBI GWAS catalog (version 2019-09-24) to look for 25 

previously reported associations (P < 9 × 10-6) with any traits. We performed association 26 

analysis to illustrate association patterns for selected colocalized index variants across all 27 

64,620 functional connectivity in resting and task fMRI. The significance threshold was set 28 

to be 3.86 × 10-7 (0.05/(64,620 × 2)). The same set of covariates used in the above GWAS 29 

analysis were adjusted in this analysis. LDSC55 (version 1.0.1) was used to estimate and 30 

test genetic correlations. We used the pre-calculated LD scores provided by LDSC, which 31 
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were computed using 1000 Genomes European data. We used HapMap3118 variants and 1 

removed all variants in the major histocompatibility complex (MHC) region.  2 

 3 

Gene-level analysis, biological annotation, and prediction. Gene-based association 4 

analysis was performed in UKB white British discovery GWAS for 18,796 protein-coding 5 

genes using MAGMA91 (version 1.08). Default MAGMA settings were used with zero 6 

window size around each gene. We then carried out FUMA functional annotation and 7 

mapping analysis, in which variants were annotated with their biological functionality and 8 

then were linked to 35,808 candidate genes by a combination of positional, eQTL, and 3D 9 

chromatin interaction mappings. Brain-related tissues/cells were selected in all options 10 

and the default values were used for all other parameters in FUMA. For the detected 11 

genes in MAGMA and FUMA, we performed lookups in the NHGRI-EBI GWAS catalog 12 

(version 2020-02-08) to explore their previously reported gene-trait associations. We 13 

performed heritability enrichment analysis via partitioned LDSC97. Baseline models were 14 

adjusted when estimating and testing the enrichment scores for our brain cell type 15 

specific annotations.  16 

 17 

We built prediction models for fluid intelligence using both genetic variants and multi-18 

type MRI traits, including 1,066 resting fMRI traits (network level), 919 task fMRI traits, 19 

215 DTI parameters from dMRI46, and 101 regional brain volumes from sMRI65. After 20 

removing relatives, we randomly splitting the white British imaging subjects into three 21 

independent datasets: training (n = 18,889), validation (n = 6,338), and testing design (n 22 

= 6,359). The effect sizes of imaging predictors were estimated from the training data (n 23 

= 18,889) and the genetic variants were estimated from all UKB white British subjects 24 

except for the ones in validation and testing data (n = 131,166). We removed the effects 25 

of age, age-squared, sex, age-sex interaction, age-squared-sex interaction, imaging sites, 26 

head motion, brain position, and volumetric scaling on both MRI traits and fluid 27 

intelligence. We additional accounted for the top 40 genetic PCs for genetic variants. The 28 

genetic effects were trained via fastGWA and were aggregated using polygenic risk scores 29 

via PRS-CS102. The MRI traits were modeled using ridge regression via glmnet103 (R version 30 

3.6.0). All model parameters were tuned in the validation data, and we evaluated the 31 
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prediction performance on the testing data by calculation the correlation between the 1 

predicted values and the observed ones.  2 

 3 

Code availability  4 

We made use of publicly available software and tools. The codes used in fMRI 5 

preprocessing and the parcellation-based network level feature extraction pipeline will 6 

be shared on Zenodo.  7 

 8 

Data availability  9 

Our GWAS summary statistics will be shared on Zenodo and at BIG-KP https://bigkp.org/. 10 

The individual-level data used in the present study can be applied from the UK Biobank 11 

(https://www.ukbiobank.ac.uk/) and HCP (https://www.humanconnectome.org/).  12 

 13 

Fig. 1 Illustration of fMRI traits and their reproducibility.  14 

(A) Functional areas defined in the Glasser360 atlas (left hemisphere). See Table S1 for 15 

information of these areas and Figure S1 for maps of the whole brain (both hemispheres). 16 

Visual1, the primary visual network; Visual2, the secondary visual network. (B) 17 

Annotation of the 12 functional networks in the human brain. The default mode network 18 

(bottom right) is divided into seven clusters, mainly based on their physical locations. See 19 

Figure S11 for more information of the seven clusters. (C) Reproducibility of area level 20 

functional connectivity across the 12 networks in resting (left panel) and task (right panel) 21 

fMRI. (D) Comparison of reproducibility between the activated areas (within activation) 22 

and the nonactivated areas (out of activation) in task fMRI. The activation map can be 23 

found in Figure S8.  24 

 25 

Fig. 2 SNP heritability in resting and task fMRI. 26 

(A) SNP heritability of fMRI traits, including 8,531 area level and 1,066 network level traits 27 

from resting fMRI (left panel), and 8,531 area level traits and 919 network level traits from 28 

task fMRI (right panel). (B) Significant SNP heritability of the functional connectivity within 29 

the default mode network in resting fMRI. We grouped all functional areas in the default 30 

mode network into seven clusters. These areas were mainly organized by their physical 31 
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locations (Fig. S11). OFC, orbitofrontal complex. (C) Comparison of SNP heritability 1 

between the activated areas (within activation, defined in task fMRI) and the 2 

nonactivated areas (out of activation) in resting fMRI (upper panel) and task fMRI (lower 3 

panel).  4 

 5 

Fig. 3 The associated genomic regions of fMRI traits. 6 

(A) Ideogram of 47 genomic regions influencing fMRI traits, including 32 regions identified 7 

by area level traits (P < 2.93 × 10-12) and 15 more identified by network level traits (P < 8 

2.51 × 10-11). The point colors represent the 12 networks (and their interactions, named 9 

Between networks). Each signal point indicates that at least one of the fMRI traits (area 10 

level or network level) of this network is associated with the genomic region. The name 11 

of regions replicated at the Bonferroni significance level and nominal significance level 12 

were highlighted in red and brown labels, respectively. (B) Functional areas in the cingulo-13 

opercular and default mode networks associated with the 3p11.1 region (P < 2.93 × 10-14 
12). These associations were enriched in the right PSL (Perisylvian language area, in the 15 

superior temporal) and the left PF (in the supramarginal) areas of the cingulo-opercular 16 

network and the left PGs (in the angular) and the left 31a areas (in the middle cingulate) 17 

of the default mode network. (C) Functional areas associated with the 19q13.32 region (P 18 

< 2.93 × 10-12). Most of these areas were in the secondary visual network.  19 

 20 

Fig. 4 Selected genetic loci associated with both fMRI traits and brain disorders. 21 

(A) In the 19q13.32, we observed colocalization (LD r2 ≥ 0.6) between Alzheimer's disease 22 

(index variant rs429358) and the functional connectivity within the secondary visual 23 

network (visual 2 <-> visual 2, index variant rs429358) in task fMRI. (B) We illustrated the 24 

P-value of the association between the rs429358 and different neuroimaging traits, 25 

including functional connectivity in resting fMRI, functional connectivity in task fMRI, 26 

diffusion tensor imaging (DTI) from dMRI, and regional brain volumes from sMRI. The 27 

strongest genetic effects were in the secondary visual network of resting and task fMRI. 28 

(C) In 6q16.1, we observed colocalization between migraine (index variant rs11759769) 29 

and the functional connectivity of the default mode network (Default <-> Default, index 30 
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variant rs11152952) in resting fMRI. (D) In 2q14.1, insomnia (index variant rs62158170) 1 

was colocalized with the functional connectivity between the auditory and posterior 2 

multimodal networks (Auditory <-> Posterior-Multimodal, index variant rs56093896) in 3 

resting fMRI. (E) We illustrated the P-value of the rs62158170 on functional connectivity 4 

in resting fMRI. We displayed the functional connectivity passing the Bonferroni 5 

significance level (P < 3.86 × 10-7) in this variant-specific analysis. 6 

 7 

Fig. 5 Selected pairwise genetic correlations between fMRI traits and cognitive function 8 

and schizophrenia.  9 

(A) We illustrated significant genetic correlations with cognitive function across different 10 

networks in resting fMRI at the FDR 5% level. These significant genetic correlations were 11 

particularly related to the functional connectivity of a few areas, such as the right IFSa in 12 

the cingulo−opercular network. (B) We illustrated significant genetic correlations with 13 

schizophrenia across different networks in resting fMRI at the FDR 5% level. These 14 

significant genetic correlations were particularly related to the functional connectivity of 15 

a few areas, such as the left 47s in the default mode network and the right LIPv in the 16 

secondary visual network. (C) We illustrated significant genetic correlations with cognitive 17 

function across different networks in task fMRI at the FDR 5% level. These significant 18 

genetic correlations were particularly related to the functional connectivity of a few 19 

areas, such as the left POS1 in the default mode network and the right V6 in the secondary 20 

visual network. Similar to the resting fMRI results in (A), genetic correlations with the 21 

default mode and dorsal attention networks were negative in task fMRI. However, the 22 

genetic correlations with the cingulo−opercular network became positive, and the 23 

somatomotor and secondary visual networks also had positive genetic correlations in task 24 

fMRI.  25 

 26 

Fig. 6 Partitioned heritability enrichment and integrative prediction analyses.  27 

(A) Heritability enrichment of global functional connectivity and global amplitude of 28 

resting fMRI in regulatory elements of glial cells (glia, including all glial cells, 29 

oligodendrocyte subtype, and microglia/astrocyte subtype) and neuronal cells (neurons, 30 



 39 

including all neurons, GABAergic subtype, and glutamatergic subtype). The dashed lines 1 

indicate the nominal significance level. (B) Heritability enrichment of mean amplitude of 2 

the 12 networks in regulatory elements of glial and neuronal cell types. (C) Prediction 3 

accuracy of genetic variants and neuroimaging traits in fluid intelligence prediction 4 

analysis. Genetic PRS, polygenic risk scores of genetic variants; brain volume (sMRI), 5 

region brain volumes from sMRI; DTI parameters (dMRI), diffusion tensor imaging 6 

parameters from dMRI; All MRI traits, including brain volume, DTI parameters, resting 7 

fMRI, and task fMRI.  8 
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UKB resting, locus: 3p11.1, network: Cingulo−Opercular
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