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Supplementary information 

Supplementary Text and Figures  

 
Supplementary Figure 1: shows the effect of non-preserved equivalence. BBT2D = Biobank 
Type 2 diabetes defined as diabetes diagnosed over 30 years of age and non-insulin treated. 
BB WTCCC T2 is defined as first degree relative with type 1 diabetes diagnosed aged over 30 
up to 40 years of age to recreate the WTCCC cohort. The WTCCC T2 cohort is also shown. 
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Supplementary Figure 2: A comparison of the four methods prevalence estimates and 

confidence intervals for varying proportion of disease and cohort sizes using the T1DGRS from 

the WTCCC dataset (𝒏 = 𝟑𝟖𝟖𝟕). (Top row) Estimate of prevalence (�̂�𝑪) in the constructed 

mixtures. (Second row) Bias of the prevalence estimates (�̂�𝑪) across the constructed 

mixtures. (Third row) deviation from the true proportion (𝒑𝑪 − �̂�𝑪) across the constructed 

mixtures. (Bottom row) The width of confidence (𝑪𝑰𝑼 − 𝑪𝑰𝑳) intervals of the estimates across 

the constructed mixtures. The purple colour (bottom row) indicates regions in which the 

confidence interval did not include the true value (𝒑𝑪), 𝑪𝑰𝑼 = 𝑪𝑰𝑳 or CI are undefined (both 

latter cases can happen if �̂�𝑪 = 𝟎 or  �̂�𝑪 = 𝟏). Sample sizes: 𝑹𝑪 – cases WTCCC type 1 
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diabetes (𝒏 = 𝟗𝟖𝟐), 𝑹𝑵 – non-cases WTCCC Type 2 diabetes (𝒏 = 𝟗𝟔𝟐), mixtures – sampled 

with replacement from a holdout half of the 𝑹𝑪 (𝒏 = 𝟗𝟖𝟏) and 𝑹𝑵 (𝒏 = 𝟗𝟔𝟐) samples. 

 

Quantitative characterisation of methods 

To compare bias and precision (quantified as the width of CI) of all the methods we compared 

their performance assuming that 𝑝𝐶 = �̂�𝐶  and acceleration=0. Again, the proportion and 

sample size were systematically varied, with 𝑝𝐶  ranging from 0 to 1 in 0.01 (1%) steps while 𝑛 

ranged from 100 to 2,500 in steps of 100 samples. All four methods were applied to each 

combination of these parameters. At each point in the parameter space, we estimated the bias 

and confidence intervals. This idealised scenario allows a direct head-to-head comparison of 

accuracy between all four methods without the randomness originating from the sampling 

process. Results of this comparison are presented in Supplementary Figs 3 and 4. 

Supplementary Figs 3 and 4 show: 

- (1st row) Median of the 100,000 bootstrap samples med({{𝑝𝐶
′ }1000}100), 

- (2nd  row) Median bias B = med({{𝑝𝐶
′ }1000}100) − �̂�𝐶 . , 

- (3rd row) The width of confidence (𝐶𝐼𝑈 − 𝐶𝐼𝐿) intervals, 
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Supplementary Figure 3: Evaluation of the four Estimation Methods using T2DGRS from the 
WTCCC dataset (𝒏 = 𝟑𝟖𝟖𝟕). (Top row) Median value of the 100,000 estimates of prevalence 

(𝒑𝑪
′ ) in the bootstrap samples across defined mixture proportions (𝒑𝑪 ) and the mixture 

sample size (𝒏) of the dataset for each method. (Second row) Median bias of the methods 
across the constructed samples. (Bottom row) The width of confidence intervals (𝑪𝑰𝑼 − 𝑪𝑰𝑳) 

of the individual estimates across the defined mixture proportions (𝒑𝑪 ) and the mixture 
sample size (𝒏). The purple colour (row 3) indicates regions in which the confidence interval 
did not include the true value (only observed for the Excess method), 𝑪𝑰𝑼 = 𝑪𝑰𝑳 or CI are 
undefined (both latter cases can happen if 𝒑𝑪 = 𝟎 or  𝒑𝑪 = 𝟏). It can be observed that across 
the parameter space, the Means, EMD and KDE methods all typically outperform the Excess 
method. It is also evident that the Means and KDE methods practically do not exhibit any 
bias. A further increase of sample sizes would be recommended in order to reduce the width 
of the 𝑪𝑰 below 10% (see Table 1). Sample sizes: 𝑹𝑪 – cases WTCCC type 1 diabetes (𝒏 =
𝟗𝟖𝟐), 𝑹𝑵 – non-cases WTCCC Type 2 diabetes (𝒏 = 𝟗𝟔𝟐), mixtures – sampled with 
replacement from a holdout half of the 𝑹𝑪 (𝒏 = 𝟗𝟖𝟏) and 𝑹𝑵 (𝒏 = 𝟗𝟔𝟐) samples. 
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Supplementary Figure 4: Evaluation of four Estimation Methods using the T1DGRS from the 
WTCCC dataset (𝒏 = 𝟑𝟖𝟖𝟕). (Top row) Median value of the 100,000 estimates of prevalence 

(𝒑𝑪
′ ) in the bootstrap samples across defined mixture proportions (𝒑𝑪 ) and the mixture 

sample size (𝒏) of the dataset for each method. (Second row) Median bias of the methods 
across the constructed samples. (Bottom row) The width of confidence intervals (𝑪𝑰𝑼 − 𝑪𝑰𝑳) 

of the individual estimates across the defined mixture proportions (𝒑𝑪 ) and the mixture 
sample size (𝒏). The purple colour (row 3) indicates regions in which the confidence interval 
did not include the true value (only observed for the Excess method), 𝑪𝑰𝑼 = 𝑪𝑰𝑳 or CI are 
undefined (both latter cases can happen if 𝒑𝑪 = 𝟎 or  𝒑𝑪 = 𝟏). It can be observed that across 
the parameter space, the Means, EMD and KDE methods all typically outperform the Excess 
method. Sample sizes: 𝑹𝑪 – cases WTCCC type 1 diabetes (𝒏 = 𝟗𝟖𝟐), 𝑹𝑵 – non-cases WTCCC 
Type 2 diabetes (𝒏 = 𝟗𝟔𝟐), mixtures – sampled with replacement from a holdout half of the 
𝑹𝑪 (𝒏 = 𝟗𝟖𝟏) and 𝑹𝑵 (𝒏 = 𝟗𝟔𝟐) samples. 
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Supplementary Figure 5: A comparison of the four methods using an artificial genetic risk 
score with increasing discriminative ability as measured by AUC, from AUC = 0.5 (no 
discriminative ability) through to AUC = 1 (complete differentiation). The estimated 
proportion with confidence intervals for each of the methods (Excess, Means, EMD, KDE) are 
shown using mixture sample size, 𝒏 = {𝟏𝟎𝟎𝟎, 𝟓𝟎𝟎𝟎}. This figure is generated using artificial 

data: N(,) is a normal distribution with mean  = {0.0, 0.093, 0.17, 0.25, 0.33, 0.41, 0.49, 
0.57, 0.65, 0.4, 0.82, 0.91, 1.01, 1.1, 1.21, 1.31, 1.43, 1.55, 1.68, 1.83, 2, 2.17, 2.42, 2.73, 3.2, 9} 

and standard deviation ={1, 1.2} and �̃� is a mixture of the two normal distributions; 𝒑𝑪 =
𝟎. 𝟏 (blue) or 𝒑𝑪 = 𝟎. 𝟓 (red). Both reference samples have 𝒏 = 𝟐𝟎𝟎𝟎. At several small AUC 
values, mean of the constructed mixture samples was smaller than both means of the 
reference samples, in these cases the prevalence estimate from the Means method is 
assumed to be �̂�𝑪 = 𝟎 and confidence intervals are undefined due to undetermined 
acceleration value. 
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Supplementary Figure 6: Illustration of the approaches used to estimate �̂�𝑪 throughout the 
paper. The �̂�𝑪 can be estimated from data (real or simulated) or can be fixed by hand. We 

used simulated data generated with a specified value of 𝒑𝑪  to evaluate the methods by 

comparing the estimated value, �̂�𝑪, with the true prevalence, 𝒑𝑪  (results illustrated in Figs 3, 
4 and 5, Supplementary Figs 2 and 5). In Supplementary Figs 3 and 4 with assume that 𝒑𝑪 =
�̂�𝑪. In this way we compare bias and width of the CI of the methods without the random 
effects caused by simulating mixture data. 
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Supplementary Figure 7: Illustration of the steps used in estimation of the confidence 
intervals of the prevalence estimate �̂�𝑪. To find bias corrected and accelerated (BCa) 
confidence intervals, we used the estimate �̂�𝑪, sample size of the original mixture sample, 
and the reference samples. We generated 𝑵𝑴 = 𝟏𝟎𝟎 mixture samples with a given 
composition (�̂�𝑪 ) and sample size (𝒏) equal to the size of the original mixture sample. Next, 
we resampled (with replacement) each of the 𝑵𝑴 = 𝟏𝟎𝟎 new mixtures, generating 𝑵𝑩 =
𝟏, 𝟎𝟎𝟎 bootstrap samples for each. We applied each chosen method to all generated samples 
to obtain 𝑵𝑴 ∙ 𝑵𝑩 =  𝟏𝟎𝟎, 𝟎𝟎𝟎 bootstrapped estimates 𝒑𝑪

′ . We then used the methods 
described in section “Calculating confidence intervals” to find BCa confidence intervals. 
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The mixture assumption 

To check if the mixture assumption, 𝑝𝐶 + 𝑝𝑁 = 1, is satisfied, three different errors of the point 

estimates of prevalence derived from the EMD and KDE methods, eEMD,1, eEMD,2, eKDE could be 

further analysed. The eEMD,1 error captures the deviation of the mixture from the convex 

combination of the two reference samples. The eEMD,2 error is the EMD between the mixture 

and a model cumulative density function (CDF) based on the two independently estimated not 

normalised prevalence values 𝑝𝐶
𝐸𝑀𝐷 and 𝑝𝑁

𝐸𝑀𝐷. The eKDE error is the sum of squared residuals 

(multiplied by the Gaussian kernels bandwidth) from the least-squares fitting procedure, which 

forms part of the KDE method. In order to interpret the initial point values of the errors, we 

compared them to 100,000 bootstrapped error values (as in all other computations we used 

100 mixtures * 1,000 bootstraps). The bootstrap samples are generated using the two 

reference samples and their composition is based on the estimate of prevalence. In this way, 

we compare the error value of the investigated mixture sample with 100,000 values from a 

model that explicitly assumes there are only two reference populations (i.e. 𝑝𝐶 + 𝑝𝑁 = 1). This 

approach allows us to check how likely the occurrence of the observed error value is in the 

model for a given sample size and reference samples. The obtained bootstrap p-values are the 

number of bootstrapped modelled errors that are higher than the sample error and can be 

interpreted as the probability that the observed values of eEMD,1, eEMD,2 and eKDE are a result of 

the sampling error. The bootstrap p-values are equivalent to p-values of a traditional statistical 

test (7, 11). 

 

Supplementary Figure 8 shows an example of a mixture of two samples (𝑝𝐶 + 𝑝𝑁 = 1) and an 

example of a mixture of three samples (with the third sample constituting 7.5% of the mixture, 

𝑝𝐶 + 𝑝𝑁 + 0.075 = 1). It illustrates how the eEMD,1, eEMD,2 and eKDE errors could be used to test 

the assumption that the mixture is composed of only two samples. In the first case where the 

mixture is composed of just two samples, the observed eEMD,1, eEMD,2 and eKDE values are small, 

and when compared with the 100,000 bootstrapped error values, they indicated that there is a 

high chance: p=0.19 (eEMD,1), p=0.95 (eEMD,2) and p=0.96 (eKDE) of observing them due to the 

sampling error in the mixture sample. In the second case where the mixture is composed of 

three samples, comparison of the observed eEMD,1, eEMD,2 and eKDE values with the bootstrapped 

values shows that they are unlikely to be a result of the sampling error: p=0.0001 (eEMD,1), p<1e-

5 (eEMD,2) and p=0.003 (eKDE). In fact, the value of eEMD,2 is smaller than any of the bootstrapped 

error values. However, the figure shows only one particular example and the performance of 

the methods will depend on the mixture composition (contribution of the other sample) and 

features of the reference and the other samples. 
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Supplementary Figure 8: Worked examples of checking the mixture assumption, 𝒑𝑪 + 𝒑𝑵 =
𝟏. A: An example of a mixture that consists of two samples and an example of a mixture that 
consists of three samples. Left: mixture of two reference samples (𝒑𝑪 = 𝟎. 𝟓, 𝒑𝑵 = 𝟎. 𝟓). 
Right: mixture where the third sample has a small contribution (𝒑𝑪 = 𝟎. 𝟓, 𝒑𝑵 = 𝟎. 𝟒𝟐𝟓, 𝒑𝟑 =
𝟎. 𝟎𝟕𝟓; R3 is a truncated normal distribution with mean 0.17 and std 0.025). B: Illustration of 
the methods: eEMD,1, deviation from collinearity between the two reference distributions and 
the mixture; eEMD,2, EMD between the mixture and a model CDF based on the two 
independently estimated prevalence values; eKDE, the sum of squared residuals of the final fit. 
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