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Abstract 

There is a critical need for improved infectious disease diagnostics to enable rapid case 

identification in a viral pandemic and support targeted antimicrobial prescribing. Here we use 

high-resolution liquid chromatography coupled with mass spectrometry to compare the 

admission serum metabolome of patients attending hospital with a range of viral infections, 

including SARS-CoV-2, to those with bacterial infections, non-infected inflammatory conditions 

and healthy controls. We demonstrate for the first time that 3'-Deoxy-3',4'-didehydro-cytidine 

(ddhC), a free base of the only known human antiviral small molecule ddhC-triphosphate 

(ddhCTP), is detectable in serum. ddhC acts as an accurate biomarker for viral infections, 

generating an area under the receiver operating characteristic curve of 0.954 (95% confidence 

interval 0.923-0.986) when comparing viral to non-viral cases. Gene expression of viperin, the 

enzyme responsible for ddhCTP synthesis, is highly correlated with ddhC, providing a biological 

mechanism for its increase during viral infection. These findings underline a key future 

diagnostic role of ddhC in the context of pandemic preparedness and antimicrobial 

stewardship.  
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Introduction 

Early differentiation of acute infectious aetiologies is now a priority in diagnostic innovation. 

Conventional methods relying on pathogen identification through culture, polymerase chain 

reaction or antigen detection are time-consuming and/or insensitive, leading to diagnostic 

delays that result in inappropriate antimicrobial prescription and infection transmission.
1-3

 

There is therefore renewed interest in novel biomarkers of infection classes that can better 

guide therapeutic and infection control decisions in real-time. 

 

Metabolomics technologies for large-scale characterisation of low-molecular-weight 

metabolites have the potential to aid discovery of novel biomarkers of infectious diseases. 

Liquid chromatography coupled with mass spectrometry (LC-MS) and nuclear magnetic 

resonance (NMR) spectroscopy stand out among the most commonly employed techniques in 

the field. The use of mass spectrometry has already revolutionised modern microbiology by 

enabling rapid detection of bacterial species from cultured colonies.
4
 

 

Despite its growing impact on biomedical research, metabolic profiling of biofluids has 

produced candidate biomarkers in only a small number of infectious states. One study 

identified a two-metabolite serum signature differentiating infected from non-infected 

patients within a systemic inflammatory response syndrome cohort.
5
 Metabolomic 

interrogation of cerebrospinal fluid from patients with meningitis was able to differentiate 

between M. tuberculosis and other infectious causes.
6
 Wang et al. examined the lipidome of 40 

patients in a paediatric cohort prior to the COVID-19 pandemic and identified a 3-lipid 

signature that discriminated bacterial from viral infection, although wider metabolomic 

changes were not reported.
7
 A number of more recent studies report metabolic differences 
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between patients with and without SARS-CoV-2 infection,
8-10

 but comparator groups did not 

include bacterial infections. 

 

We investigated the serum metabolome of adult patients presenting to two UK emergency 

departments with a range of infections, including SARS-CoV-2, to derive and cross-validate 

novel biomarkers for viral and bacterial infections. We used point-of-admission samples to 

replicate the timepoint where a discovered biomarker would be used clinically. To ensure 

diagnostic certainty, we adopted a case-control approach with laboratory-proven infections. 

Our sampling included unwell, non-infected cases to ensure that any biomarkers identified 

accounted for cases of inflammatory conditions unrelated to infection.
11
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Methods 

Study population 

Serum samples from adult patients presenting to the emergency department were obtained 

from two parallel studies at a major North-West London Teaching Hospital Trust, the 

Bioresource in Adult Infectious Diseases (BioAID)
12

 and Microbial Products in Infection, from 

August 2014 – December 2020. 

 

Patients were recruited to BioAID if they had a suspected clinical infection syndrome of 

sufficient severity, as assessed by a clinician, to warrant blood culture testing. Blood samples 

were obtained at the point of admission, alongside microbial isolates identified during the 

inpatient stay, in conjunction with demographic and clinical data. Ethical approval was 

obtained to take deferred consent from patients (or next of kin/nominated consultee) to retain 

blood samples, including serum and RNA specimens, as well as clinical data (Research Ethics 

Committee [REC] references 14/SC/0008 and 19/SC/0116).
12

  

 

Patients were retrospectively identified as part of the Microbial Products in Infection protocol 

where a pathogen of interest – in this study, SARS-CoV-2 – was identified to the research team 

by the routine diagnostic laboratory. Serum samples obtained at the point of admission were 

linked to anonymised demographic data including age, sex, timing of sample in relation to 

illness onset, survival/death, antibiotic use, ICU admission/duration of stay, and blood test 

results. (REC reference 06/Q0406/20). 

 

For both studies, all serum samples were taken in the same manner at the point of patient 

admission to hospital, prior to any intervention, as part of usual clinical care. Following routine 
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diagnostic testing, surplus volumes were retrieved from the Clinical Chemistry laboratory 

where they were stored at 4°C, and transferred to a -80°C freezer within five days of sample 

acquisition. During the peaks of the UK COVID-19 pandemic (March-April and September-

December 2020), owing to unprecedented pressures placed on laboratory staffing, some 

serum samples from COVID-19 patients (n=80) were transferred to a -80°C freezer between six 

and 30 days from sample acquisition and were classified into a separate sub-group – these 

were not used in the primary analysis to avoid confounding bias. Control serum samples from 

consenting healthy donors were from an approved subcollection of the Imperial College 

Healthcare NHS Trust Biomedical Research Council (ICHT BRC) Tissue Bank (approval R12023). 

 

Patient selection 

Serum samples from patients in one of the following six categories were used in this study: 

Gram-positive bacteraemia, Gram-negative bacteraemia, PCR-confirmed viral infection prior to 

detection of SARS-CoV-2 in the UK (January 2020), PCR-confirmed COVID-19, non-infected 

patients, and healthy controls.   

 

N=24 samples in each of two comparator groups were required to achieve a power of >90% to 

identify an AUC of at least 0.8, at a significance level of 0.01. Thus to enable all comparisons, 

accounting for potential sample exclusion (e.g. assay failure, poor data quality), we used n=30 

samples in each clinical group apart from COVID-19, where we included all available samples 

(n=112) to facilitate exploration of severity differences in this cohort in future work. Infection 

categories were assigned using electronic diagnostic pathology data pertaining to admission 

only and admission case notes were cross-checked for diagnoses by a clinician. Non-infected 

patients were identified from the database where there was no positive microbial diagnostic 
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test and no infection-related ICD-10 diagnostic code from BioAID admission. Sera from n=13 

healthy controls were available from the ICHT BRC Tissue Bank. 

 

To facilitate multi-omic comparison, serum samples from BioAID patients were prioritised if 

whole blood RNA-Sequencing had already been undertaken as part of an earlier study, where 

samples had been selected from the BioAID database using a random number generator.
13

 

Sera from additional BioAID patients were selected randomly from within individual infection 

groups using a random number generator in Excel.  

 

Bacteraemic patients were excluded if the isolated bacterium was deemed a contaminant, or if 

the blood culture was taken >24 hours prior to/post the admission serum sample. COVID-19 

patients were excluded if their positive PCR test was taken >10 days prior to admission, or >2 

days post admission, to avoid non-COVID-19 related admissions and hospital-acquired COVID-

19, respectively. Co-infections across different infection classes were also excluded.  

 

Metabolic profiling 

Serum samples from 245 patients were analysed using ultra-performance LC-MS following 

previously described analytical and quality control (QC) procedures.
14

 A suite of 

chromatographic separations was used, each coupled with high resolution time of flight mass 

spectrometry, to maximise coverage of a broad range of metabolite and lipid classes. 

Hydrophilic interaction liquid chromatography (HILIC) was used for the separation of 

hydrophilic analytes (e.g. polar and charged metabolites), while reversed-phase 

chromatography (RPC) was used for the separation of lipophilic analytes to profile complex and 

neutral lipid species.
15

 Each RPC LC-MS assay was conducted in both negative and positive 
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ionisation modes, producing lipid RPC- and lipid RPC+ datasets. The HILIC LC-MS assay was 

conducted in the positive ionisation mode only, producing the HILIC+ dataset.  

 

For each assay, samples were analysed in a randomised order demonstrating no correlation or 

other relationship with study design variables, precluding any confounding effect of analysis 

order. To facilitate quality assessment and pre-processing, a pooled QC sample was prepared 

by combining equal parts of each study sample and analysed periodically among study sample 

analyses. In addition, for assessment of analyte response,
16

 a series of QC sample dilutions was 

created (10 x 100%, 5 x 80%, 3 x 60%, 3 x 40%, 5 x 20%, 10 x 10%, 10 x 1%) and analysed at the 

start and end of each set of sample analyses. 

 

Serum samples were prepared as previously described.
15

 In brief, 50OμL aliquots were taken 

from each sample and the pooled QC and diluted 1:1 v/v with ultrapure water. Protein was 

removed by addition of organic solvent (diluted sample/isopropanol in 1:4 v/v ratio for lipid 

RPC profiling and diluted sample/acetonitrile in 1:3 v/v ratio for HILIC+ profiling). Mixtures of 

method-specific authentic chemical standards were added at the dilution step (HILIC) or the 

protein precipitation step (lipid RPC) in order to monitor data quality during acquisition. 

Sample analyses were performed on ACQUITY UPLC instruments (Waters Corp., Milford, MA, 

USA) coupled to Xevo G2-S Q-TOF mass spectrometers (Waters Corp., Manchester, UK) via a 

Z-spray electrospray ionisation (ESI) source operating in either positive or negative ion mode.  

 

Raw data were converted to the mzML open-source format and signals below an absolute 

intensity threshold of 100 counts were removed using the MSConvert tool in ProteoWizard 
17

 

before data extraction using XCMS,
18

 outputting a matrix of measurements (peak integrals) 
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organised row-wise into samples and column-wise into LC-MS “features”, each of which is 

described by  its mass:charge (m/z) value and chromatographic retention time. All datasets 

were further processed using the nPYc-Toolbox
19

 for elimination of potential run-order effects 

and filtering of features not meeting previously established QC criteria. Only features 

measured with high analytical quality (RSD in pooled QC<30%, pooled QC dilution series 

Pearson correlation to dilution factor>0.7, RSD in study samples>1.1* RSD in pooled QC) were 

retained and put forward for further statistical analysis. After feature filtering, datasets 

contained the following number of variables; lipid RPC-: 521; lipid RPC+: 2257; HILIC+: 1572.  

 

Metabolite annotation 

The molecular formula of a feature of interest was determined by elemental composition 

analysis of the high resolution time of flight data obtained in the metabolic profiles of the 

study samples. Matches for the observed m/z values were sought in chemical and spectral 

databases (Human Metabolome Database,
20

 METLIN,
21

 NIST17,
22

 Mass Bank of North America 

[http://massbank.us/]). A putative identity was assigned based on the comparison of the 

observed accurate mass and collision-induced dissociation (CID) tandem mass spectrometry 

(MS/MS) fragmentation data to that available in published literature.
23

 The HILIC 

chromatographic method used for CID-MS/MS analysis was the same as that used in the 

profiling method with the same MS source conditions.
14

 CID-MS/MS target selection was 

performed using unit mass selection via quadrupole with a collision energy voltage ramp of 10-

45V. The metabolite identity was validated by matching the accurate mass, isotope 

distribution, fragmentation pattern, and retention time obtained from the feature observed in 

study samples to those obtained by analysis of a chemical standard (acquired from Berry & 
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Associates). The full procedure for the identified biomarker is described in detail in the 

Supplementary. 

 

Statistical analysis 

Data analysis was performed using R.
24

 Power calculations were performed using the pROC 

package.
25

 Unit-variance scaled principal component analysis (PCA) and eigencor plots were 

performed on the primary analysis cohort to identify the major sources of variation in the 

dataset, using the PCAtools package.
26

 For PCA, features where >98.5% of samples returned an 

intensity of zero were excluded (n=3/1572 in HILIC+ dataset, nil in both lipidomics datasets).  

 

We compared all viral cases (COVID-19 and pre-COVID-19) versus others, all bacterial cases 

(Gram-positive and Gram-negative bacteraemia) versus others, and all viral versus all bacterial 

cases. In each comparison, we assessed the fold-change between the infection groups’ median 

intensities for each feature. P-values were generated using the two-sided Wilcoxon test and 

were adjusted using the Benjamini-Hochberg procedure.
27

 Volcano plots were generated 

comparing median log2fold-change and -log10 p-values. 

 

In order to cross-validate findings, we used the variable selection method, forward selection-

partial least squares (FS-PLS).
28

 FS-PLS has been described in detail elsewhere.
7,29

 Briefly, it is a 

forward-selection method that selects variables most strongly associated with the groups of 

interest. It can be used to select a multi-feature signature composed of non-correlated 

variables, but in this study the ‘max’ parameter was set to one to evaluate the performance 

with only one feature. Feature intensities were log2 transformed. A p-value threshold of 0.01 

was used, which determined the selection of a variable or termination. 100 runs of FS-PLS were 
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applied to the dataset for every comparison, each time with a different training:test split at a 

ratio of 70:30. In each FS-PLS run, the feature identified on the training set was tested on the 

test set, and its performance was assessed using the AUC generated. For the feature that was 

selected in the most FS-PLS runs out of 100, the median and interquartile range (IQR) of the 

respective test AUCs were generated.  

 

To assess the diagnostic utility of features of interest and compare it to the traditional 

biomarkers C-reactive protein (CRP), white cell count and lymphocyte count (procalcitonin 

levels were not routinely available), AUCs were generated for the entire primary analysis 

cohort using the pROC package.
25

 The Youden’s J statistic was used to determine thresholds for 

sensitivity and specificity.
30

  

 

Multi-omic comparison 

We examined the interaction between whole blood gene expression and the feature of 

interest identified in this study. Gene expression data were obtained from RNA-Sequencing 

(RNA-Seq) of BioAID patient RNA samples, performed prior to this study in two cohorts. Full 

details for the first patient cohort (recruited pre-COVID-19 pandemic) have been described 

previously (Li. et al, supplementary p. 3).
13

 For the second cohort (recruited during the COVID-

19 pandemic), whole blood was collected in the same way as the first cohort. Material was 

quantified using RiboGreen (Invitrogen) on the FLUOstar OPTIMA plate reader (BMG Labtech) 

and the size profile and integrity analysed on the 2200 TapeStation (Agilent, RNA ScreenTape). 

Input material was normalised and strand specific library preparation was completed using 

NEBNext® Ultra™ II mRNA kit (NEB) and NEB rRNA/globin depletion probes following 

manufacturer’s instructions. Libraries were on a Tetrad (Bio-Rad) using in-house unique dual 
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indexing primers (based on Lamble et al).
31

 Individual libraries were normalised using Qubit 

and pooled together. The pooled library was diluted to ~10 nM for storage and denatured and 

further diluted prior to loading on the sequencer. Paired end sequencing was performed The 

Wellcome Centre for Human Genetics in Oxford UK using a Novaseq6000 platform at 150 

paired end configuration, generating a raw read count of 30 million reads per sample. The 

RNA-Seq analysis pipeline consisted of quality control using FastQC,
32

 MultiQC
33

 and 

annotations modified with BEDTools,
34

 alignment and read counting using STAR,
35

 SAMtools,
36

 

FeatureCounts
37

 and version 89 ensembl GCh38 genome and annotation.
38

 

 

Genes completely missing in either of the RNA-Seq cohorts were removed, in addition to 

ribosomal genes. The two RNA-Seq cohorts were merged and the batch effects between the 

two cohorts, in addition to the plate effects within the first cohort, were removed by 

combat_seq.
39

 The raw counts were normalised using DESeq2.
40

 In patients for whom both 

metabolic and transcriptomic data were available, we assessed the correlation between log2-

transformed feature intensities of a metabolite of interest and log2-transformed expression of 

associated genes using Pearson correlation coefficients. We restricted further analysis to the 

five genes most highly correlated to the metabolite of interest.   
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Results 

Samples 

Serum from 232 patients and 13 healthy controls underwent metabolomic profiling. 173 

patients were selected from the BioAID study (30 Gram-positive bacteraemia, 30 Gram-

negative bacteraemia, 30 pre-COVID-19 viral, 53 COVID-19, 30 non-infected unwell control), 59 

from Microbial Products in Infection (all COVID-19), 13 were healthy controls. Owing to 

insufficient sample volume or data quality, four samples were excluded from the primary 

analysis in both lipidomics assays, and five from the HILIC+ assay. The sub-group of 80 COVID-

19 samples not transferred to a -80°C within five days of collection was also excluded from the 

primary analysis (Figure 1). In all assays, PCA did not show clustering of samples by age or sex 

and eigencor plots did not show correlation above 0.4 (Supplementary Figure 1). The final 

number of samples included in the primary analysis ranged from 161-163, depending on the 

assay, shown alongside patient demographics in Supplementary Table 1. Confirmed infection 

pathogens are shown in Supplementary Table 2.  

 



 

Figure 1. Flowchart of sample selection and exclusion for the primary analysis cohort, data shown for the 

hydrophilic interaction chromatography (HILIC+) assay. 80 COVID-19 samples were excluded as they were 

transferred to a -80°C freezer >5 days after collection (*two samples excluded within this group also had 

insufficient volume / data quality). 

 

Best performing discriminator for viral infections. 

Analysis of the HILIC+ dataset identified significantly differentially abundant (SDA) features 

with a median absolute log2 fold-change of >4 and p-value <0.01 when comparing viral cases 

(pre-COVID-19 viral and COVID-19) versus all other groups, and viral versus bacterial cases 

(Gram-positive and Gram-negative bacteraemia) (Figure 2). Using these empirical thresholds, 

no SDA features were identified in bacterial cases versus all other groups in the HILIC+ dataset, 

as well as in all comparisons in both lipidomics datasets (Supplementary Figure 2). The top SDA 

discriminator was the feature 248.0647 m/z at 1.96 minutes, which showed a 36-fold change in 



the median intensity in viral cases compared to all other groups (adjusted p-value <1x10
18

). 

The marker was identified as 3'-Deoxy-3',4'-didehydro-cytidine (ddhC; Supplementary page 

13), a free base of the antiviral ribonucleotide ddhC-triphosphate (ddhCTP) previously reported 

in the literature.
41

 

 

 

Figure 2. Volcano plot showing median log2 fold change in intensity of each feature versus -log10 p-value in the 

HILIC+ dataset (n=161) when comparing: A. viral cases (pre-COVID-19 viral and COVID-19) versus all other groups 

and B. viral versus bacterial (Gram-positive and Gram-negative bacteraemia) cases. Empirical threshold lines in 

red represent a fold-change of 16 [log2(foldchange) of 4] and p-value of 0.01 [-log10(p-value) of 2]. Candidate 

biomarkers are shown in blue by mass:charge ratio/retention time, with 248.06/1.96 (ddhC) performing best. 

 

Using all samples from the primary analysis cohort, ddhC returned an AUC of 0.954 (95% CI 

0.923-0.986; sensitivity 88.1%, specificity 91.7%) in discriminating viral infections from all other 

groups, and 0.944 (95% CI 0.905-0.983; sensitivity 89.8%, specificity 86.7%) in discriminating 

viral from bacterial infections (Figure 3). When we included the sub-group of samples that 

spent more than five days outside a -80°C freezer, similar results were achieved with AUCs of 

0.966 and 0.959 respectively (Supplementary Figure 3).  

B A



 

Figure 3. Area under the receiver operating characteristic curves (AUCs) for ddhC distinguishing viral versus other 

and viral versus bacterial groups. Using all samples in the primary analysis (n=161): Blue. AUC of 0.954 (95% CI 

0.923-0.986) for ddhC differentiating viral infections from all other groups. Red. AUC of 0.944 (95% CI 0.905-

0.983) for ddhC differentiating viral from bacterial infection (controls omitted). 

 

Within the primary analysis cohort, ddhC demonstrated a higher relative intensity among 

patients with viral infections compared to other groups (Figure 4). Similar results were 

achieved when including samples that spent more than five days outside a -80°C freezer 

(Supplementary Figure 4). Within the viral group, there was no significant (p-value <0.01) 

difference in the median intensity of ddhC between age or sex subgroups (Supplementary 

Figure 5). 

 



  

 

 

Figure 4. Relative ddhC intensity data in different patient groups. Points represent individual patients. Boxes 

represent interquartile ranges with medians. A. All comparator groups. B. Pre-COVID-19 viral and COVID-19 

grouped together into one ‘viral’ group vs all other groups. *2 samples in the COVID-19 group had a relative 

intensity of >700000, not shown. 

 

Cross-validation using single-feature FS-PLS. 

To assess and cross-validate the discriminatory performance of single markers distinguishing 

infection groups in the data, we utilised the FS-PLS method. For each comparison (viral versus 

other, viral versus bacterial, bacterial versus other) we present the discriminating feature that 

A

B 

*

*
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was selected most frequently out of 100 different training:test FS-PLS runs and the median and 

IQR of the test AUCs generated (Supplementary Table 3). When comparing viral versus all 

other groups, ddhC (HILIC+, 248.06/1.96) was selected in all 100 FS-PLS runs, and generated a 

median (IQR) test AUC of 0.957 (0.943-0.970). When comparing viral versus bacterial groups, 

ddhC (HILIC+, 248.06/1.96) was selected in 99/100 FS-PLS runs, generating a median (IQR) test 

AUC of 0.951 (0.926-0.971). 

 

Comparison of ddhC as a biomarker to white cell count, lymphocyte count & CRP. 

We compared the ability of ddhC to differentiate viral infection from other groups to patients’ 

white cell count, lymphocyte count and CRP, which were taken as part of routine admission 

clinical laboratory tests. We used the primary analysis HILIC+ cohort (n=161) and excluded 

healthy controls (n=13), for whom there was no routine laboratory test data (n=148 in total). 

All patients had a white cell count and lymphocyte count recorded, and 122/148 patients had a 

CRP. Routine admission clinical laboratory tests performed poorly compared to ddhC (Figure 

5). 



 

Figure 5. Comparison of area under the receiver operating characteristic curves (AUCs) between ddhC, white cell 

count (WCC), lymphocyte count and C-reactive protein (CRP) as biomarkers to distinguish viral infections from 

other groups in the primary analysis cohort. Black - ddhC (AUC = 0.949, n = 148); green - WCC (AUC = 0.688, n = 

148); red - lymphocyte count (AUC = 0.545, n = 148); blue - CRP (AUC = 0.585, n = 122).  Healthy controls not 

included as WCC, lymphocyte count and CRP not available. 

 

Interaction between ddhC and whole blood gene expression 

RNA-Seq data was available from 122 patients in the HILIC+ primary analysis cohort (29 Gram-

positive bacteraemia, 30 Gram-negative bacteraemia, 29 pre-COVID-19-viral, five COVID-19, 19 

non-infected unwell control, 10 healthy controls). The correlation between log2-transformed 

ddhC intensity and counts for 18,248 genes was evaluated. The five genes with the highest 

correlation to ddhC intensity are shown in Supplementary Table 4, two of which are implicated 

in ddhCTP metabolism – RSAD2 (viperin), aided by CMPK2, has been shown to mediate ddhCTP 

production during viral infection.
41

 The correlation coefficient for viperin expression and ddhC 

intensity was 0.748 (p-value < 1x10
22

) and viperin was more highly expressed in patients with 



viral infections (Figures 6A and 6B). Data for CMPK2 showed the same trends (Supplementary 

Figure 6). 

 

 

Figure 6. A. Correlation between ddhC intensity and viperin (RSAD2) gene expression in 122 patients. Non-viral = 

bacteraemic, non-infected unwell controls and healthy controls, viral = COVID-19 and pre-COVID-19 viral 

infection. Pearson correlation coefficient = 0.748, p-value < 1x10
22

. B. Viperin normalised gene counts for 122 

patients in different infection groups. 

B 

A
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Discussion 

The ability to rapidly differentiate infectious aetiologies is an urgent requirement, underlined 

by the ongoing COVID-19 pandemic. We capitalised on the sensitivity of high-resolution liquid 

chromatography coupled with mass spectrometry to discover that 3'-Deoxy-3',4'-didehydro-

cytidine (ddhC), a free base of the antiviral molecule ddhC-triphosphate (ddhCTP), was 

detectable in patient serum. ddhC was found to have a 36-fold higher median intensity in 

patients with viral infections, including COVID-19, compared to those with bacterial infections, 

non-infected inflammatory states and healthy controls, corresponding to an AUC of 0.954, 

sensitivity of 88.1% and specificity of 91.7%. It outperformed white cell count, lymphocyte 

count and CRP as a viral biomarker (AUCs of 0.688, 0.545 and 0.585, respectively). 

 

ddhCTP has recently been shown to be the first and, to the best of our knowledge, only small 

molecule produced by humans that is capable of directly inhibiting viral replication 

machinery.
41

 Gizzi et al. showed that the enzyme viperin (virus inhibitory protein, endoplasmic 

reticulum-associated, interferon-inducible), aided by the genomically adjacent enzyme 

cytidylate monophosphate kinase 2 (CMPK2), catalyses the conversion of CTP to ddhCTP, 

which acts as a chain terminator for multiple viral RNA-dependent RNA polymerases (RdRPs). 

Synthetic ddhC traversed the plasma membrane of Vero and HEK293T cells, suggesting a 

mechanism for how ddhC might eventually reach the serum in detectable quantity. ddhC has 

also been detected in prokaryotic cells; Escherichia coli production of ddhCTP after viperin 

homolog expression was associated with T7 phage RdRP suppression, suggesting a role for 

ddhCTP in bacterial immunity to viruses.
23

 To our knowledge, ddhC has hitherto not been 

identified in humans or other mammals, nor associated with COVID-19. We showed that this 

antiviral molecule was a sensitive and specific serum biomarker for a range of viral infections, 
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including COVID-19, in clinical samples of patients presenting to hospital. In a subset of 

patients for whom RNA-Seq data was available, we showed that viperin and CMPK2 expression 

was also increased in patients with viral infections. Furthermore, of more than 18,000 genes, 

their expression was amongst the top five most highly correlated with ddhC intensity 

(correlation coefficients 0.75 and 0.76 respectively), providing a plausible mechanism by which 

ddhC may be produced during viral infection. 

 

A robust serum biomarker of viral infection would provide real-time determination of 

infectious aetiology, aiding patient triage and decision-making regarding antimicrobial 

prescription. It would prove vital in infection prevention and control measures, especially in 

the context of a viral pandemic – where rapid detection of an acute viral illness, not dependent 

on nucleotide amplification via PCR, would enable prompt patient isolation. Further work is 

required to ascertain the role of ddhC as a biomarker in viral and bacterial co-infections as well 

as in chronic active viral infections.   

 

The antiviral properties of ddhCTP rely on inhibition of viral RdRPs and are demonstrable in 

vitro, raising the possibility that it may have therapeutic action. RdRPs are an enticing target 

for novel antivirals and are an active focus of ongoing antiviral therapeutics research,
42

 as 

there are no functional homologues in uninfected human cells, thus off-target drug effects are 

less likely. Recently, Wood et al. demonstrated that ddhCTP can be robustly synthesised on a 

gram scale, facilitating further investigation of its use.
43

 Here we show that ddhC is produced 

naturally in vivo in response to viral infections, at levels that are detectable in the circulation, 

increasing the likelihood of an acceptable safety profile of ddhCTP as a therapeutic. 

 



 22

Our study demonstrates a number of strengths. We deliberately included both healthy and 

unhealthy non-infected controls, reducing the likelihood of selecting biomarkers confounded 

by inflammation unrelated to infection. We used stringent inclusion criteria for infected 

patients, excluding those where the timing of clinical presentation or PCR/culture result might 

have affected infection status at the point of sample acquisition. The study replicated ‘real-life’ 

sample collection, where serum samples may spend extended time outside of a fridge prior to 

biochemical analysis. We used admission-day samples taken prior to any intervention, the 

timepoint where a diagnostic test would be most useful. 

 

Our study should be viewed in the context of its limitations. Firstly, in order to ensure 

diagnostic certainty, we only included the extremes of bacterial infection in the form of 

bacteraemia. Secondly, our cohort did not include fungal and protozoan infections. Thirdly, we 

only performed internal cross-validation, which will need further confirmation in an external 

cohort. We plan to address these limitations in future work to assess the performance of ddhC 

in new patient cohorts, including fungal and non-bacteraemic bacterial infections, as well as 

other infections seen outside of the UK. Fourthly, our cohort represents patients unwell 

enough to seek hospital attention – further work will be required to assess the role of ddhC in 

less unwell patients presenting to primary care and determine whether it is detectable in 

minimally invasive samples such as urine or saliva. 

 

In conclusion, using high-fidelity metabolic profiling of serum from patients attending hospital, 

we found that the antiviral molecule ddhC is present in human serum during viral infection and 

represents an accurate biomarker for a wide range of viral infections, including COVID-19. If 
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shown to perform consistently in further validation work, this biomarker will have a crucial role 

in the diagnostic repertoire for infectious diseases. 

  



 24

Acknowledgments 

The authors acknowledge the clinical research teams, diagnostic laboratory leads, and data 

managers whose work supports BioAID. The authors also acknowledge Ash Salam, Stephane 

Camuzeaux, Benjamin Cooper and Lynn Maslen, National Phenome Centre, for their technical 

and administrative expertise in running the LC-MS experiments, and Lachlan Coin for the 

development of the FS-PLS algorithm. 

 

RM and TMR are NIHR Academic Clinical Fellows and with SS, and GSC, acknowledge support 

from the NIHR Imperial BRC, which also supports the Leonard and Dora Colebrook laboratory 

used for bioresourcing and the Imperial Tissue Bank; MK is a Sir Henry Wellcome Fellow 

(206508/Z/17/Z); HJ receives support from the Wellcome Trust (4-Year PhD programme, grant 

number 215214/Z/19/Z); HKL is a Medical Research Council (MRC) Clinical Research Training 

Fellow (MR/R502376/1); TMR acknowledges the Centre for Antimicrobial Optimisation, 

Imperial College London; GSC is an NIHR Research Professor; MN is a Wellcome Trust 

Investigator (207511/Z/17/Z) and acknowledges the NIHR UCLH BRC; SS acknowledges the 

NIHR Health Protection Research Unit (HPRU) in Healthcare-associated Infections & AMR; MRL, 

ZT, CS and EC receive support from the Medical Research Council (grant number 

MC_PC_12025) and metabolomics infrastructure support was provided by the NIHR Imperial 

BRC. 

 

Author contributions 

SS, GSC and MN established the BioAID cohort. RM, SS, MRL, and ZT conceived and designed 

the study. RM, HKL and EM selected and prepared samples from the cohort for analysis. RM, 

PA, TMR, RH, MA, AH and DA acquired clinical data. CS facilitated LC-MS pre-processing. RM, 



 25

HJ, MK and CS analysed data. EC facilitated metabolite identification. RM wrote the first draft 

of the manuscript. SS, MK, HJ, MRL, EC, MN, GC and CS edited the manuscript. All authors read 

and approved the final manuscript.  

 

Competing interests 

The authors declare no conflicts of interest. 

 

Source Data 

All source data will be made publicly available through the European Bioinformatics Institute 

(EMBL-EBI) MetaboLights repository. 

 

Funding 

NIHR Imperial Biomedical Research Centre; Medical Research Council.  



 26

References 

1. Vandenberg, O., Martiny, D., Rochas, O., van Belkum, A. & Kozlakidis, Z. Considerations 

for diagnostic COVID-19 tests. Nat Rev Microbiol 19, 171-183 (2021). 

2. Kanji, J.N., et al. False negative rate of COVID-19 PCR testing: a discordant testing 

analysis. Virology Journal 18, 13 (2021). 

3. Denny, K.J., et al. Appropriateness of antibiotic prescribing in the Emergency 

Department. J Antimicrob Chemother 74, 515-520 (2019). 

4. Singhal, N., Kumar, M., Kanaujia, P.K. & Virdi, J.S. MALDI-TOF mass spectrometry: an 

emerging technology for microbial identification and diagnosis. Front Microbiol 6, 791 

(2015). 

5. Neugebauer, S., et al. Metabolite Profiles in Sepsis: Developing Prognostic Tools Based 

on the Type of Infection. Crit Care Med 44, 1649-1662 (2016). 

6. Zhang, P., et al. (1)H nuclear magnetic resonance-based metabolic profiling of 

cerebrospinal fluid to identify metabolic features and markers for tuberculosis 

meningitis. Infect Genet Evol 68, 253-264 (2019). 

7. Wang, X., et al. Plasma lipid profiles discriminate bacterial from viral infection in febrile 

children. Sci Rep 9, 17714 (2019). 

8. Overmyer, K.A., et al. Large-Scale Multi-omic Analysis of COVID-19 Severity. Cell Syst 12, 

23-40 e27 (2021). 

9. Shen, B., et al. Proteomic and Metabolomic Characterization of COVID-19 Patient Sera. 

Cell 182, 59-72 e15 (2020). 

10. Kimhofer, T., et al. Integrative Modeling of Quantitative Plasma Lipoprotein, Metabolic, 

and Amino Acid Data Reveals a Multiorgan Pathological Signature of SARS-CoV-2 

Infection. J Proteome Res 19, 4442-4454 (2020). 

11. Lindahl, A., Forshed, J. & Nordstrom, A. Overlap in serum metabolic profiles between 

non-related diseases: Implications for LC-MS metabolomics biomarker discovery. 

Biochem Biophys Res Commun 478, 1472-1477 (2016). 

12. Shallcross, L.J., et al. Cohort study protocol: Bioresource in Adult Infectious Diseases 

(BioAID). Wellcome Open Res 3, 97 (2018). 

13. Li, H.K., et al. Discovery and validation of a 3-gene transcriptional signature to 

distinguish COVID-19 and other viral infections from bacterial sepsis in adults; a case-

control then observational cohort study. Lancet Microbe (in press) (2021). 

14. Lewis, M.R., et al. Development and Application of Ultra-Performance Liquid 

Chromatography-TOF MS for Precision Large Scale Urinary Metabolic Phenotyping. Anal 

Chem 88, 9004-9013 (2016). 

15. Izzi-Engbeaya, C., et al. The effects of kisspeptin on beta-cell function, serum 

metabolites and appetite in humans. Diabetes Obes Metab 20, 2800-2810 (2018). 

16. Sands, C.J., et al. Representing the Metabolome with High Fidelity: Range and Response 

as Quality Control Factors in LC-MS-Based Global Profiling. Anal Chem 93, 1924-1933 

(2021). 

17. Chambers, M.C., et al. A cross-platform toolkit for mass spectrometry and proteomics. 

Nat Biotechnol 30, 918-920 (2012). 

18. Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass 

spectrometry data for metabolite profiling using nonlinear peak alignment, matching, 

and identification. Anal Chem 78, 779-787 (2006). 



 27

19. Sands, C.J., et al. The nPYc-Toolbox, a Python module for the pre-processing, quality-

control and analysis of metabolic profiling datasets. Bioinformatics 35, 5359-5360 

(2019). 

20. Wishart, D.S., et al. HMDB 4.0: the human metabolome database for 2018. Nucleic 

Acids Res 46, D608-D617 (2018). 

21. Guijas, C., et al. METLIN: A Technology Platform for Identifying Knowns and Unknowns. 

Anal Chem 90, 3156-3164 (2018). 

22. Technology;, N.I.o.S.a. The NIST Mass Spectral Search Program for the NIST/EPA/NIH 

Mass Spectral Library.  (2017). 

23. Bernheim, A., et al. Prokaryotic viperins produce diverse antiviral molecules. Nature 

589, 120-124 (2021). 

24. R Core Team. R: A language and environment for statistical computing.  (R Foundation 

for Statistical Computing, Vienna, Austria., 2020). 

25. Robin, X., et al. pROC: an open-source package for R and S+ to analyze and compare 

ROC curves. BMC Bioinformatics 12, 77 (2011). 

26. Blighe, K.L., A. PCAtools: Everything Principal Components Analysis.  (2020). 

27. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series B 

(Methodological) 57, 289-300 (1995). 

28. Coin L.J. Lachlancoin/fspls: Minimal TB Biomarkers (Version 0.5.1).  (Zenodo, 2018). 

29. Gliddon, H.D., et al. Identification of Reduced Host Transcriptomic Signatures for 

Tuberculosis Disease and Digital PCR-Based Validation and Quantification. Front 

Immunol 12, 637164 (2021). 

30. Youden, W.J. Index for rating diagnostic tests. Cancer 3, 32-35 (1950). 

31. Lamble, S., et al. Improved workflows for high throughput library preparation using the 

transposome-based Nextera system. BMC Biotechnol 13, 104 (2013). 

32. Andrews, S. FastQC: a quality control tool for high throughput sequence data.  (2010). 

33. Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results 

for multiple tools and samples in a single report. Bioinformatics 32, 3047-3048 (2016). 

34. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic 

features. Bioinformatics 26, 841-842 (2010). 

35. Dobin, A., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 

(2013). 

36. Li, H., et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 

2078-2079 (2009). 

37. Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program for 

assigning sequence reads to genomic features. Bioinformatics 30, 923-930 (2014). 

38. Howe, K.L., et al. Ensembl 2021. Nucleic Acids Res 49, D884-D891 (2021). 

39. Zhang, Y., Parmigiani, G. & Johnson, W.E. ComBat-seq: batch effect adjustment for 

RNA-seq count data. NAR Genomics and Bioinformatics 2(2020). 

40. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion 

for RNA-seq data with DESeq2. Genome Biology 15, 550 (2014). 

41. Gizzi, A.S., et al. A naturally occurring antiviral ribonucleotide encoded by the human 

genome. Nature 558, 610-614 (2018). 

42. Zhu, W., et al. RNA-Dependent RNA Polymerase as a Target for COVID-19 Drug 

Discovery. SLAS Discov 25, 1141-1151 (2020). 

43. Wood, J.M., et al. Chemical Synthesis of the Antiviral Nucleotide Analogue ddhCTP. J 

Org Chem 86, 8843-8850 (2021). 



 28

 


