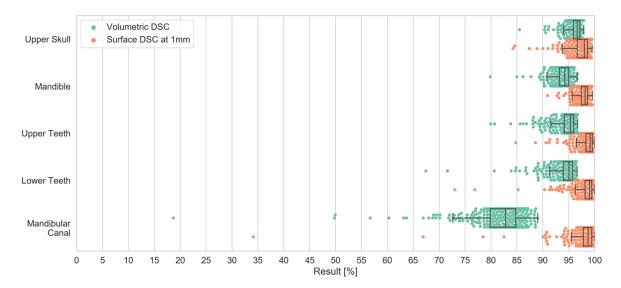
Fully automatic segmentation of craniomaxillofacial CT scans for computer-assisted orthognathic surgery planning using the nnU-Net framework

Supplementary Information

Implementation Details.


All experiments were performed using the nnU-Net v.1.6.5 framework running on an Nvidia Pytorch Docker container (v.20.10-py3) on our laboratory workstation (CPU AMD Ryzen 9 3900X 12-Core; 128 Gb RAM; GPU Nvidia Titan RTX 24Gb). Our preliminary tests showed that the 3D U-Net full-resolution model far outperformed the 2D U-Net model, while 3D U-Net cascade performances were inconsistent. As a result, we focused on training the 3D U-Net full-resolution model. Target spacing of the model was 0.31*0.45*0.45mm, patch size was 192*112*112 pixels and batch size was set to 2.

Training was performed once on our train/validation set following a 5-fold cross-validation strategy. Training time for one fold was about 48 hours (1,000 epochs) and the GPU VRAM memory footprint was about 8GB. Our automatic post-processing strategy showed that removing all but the largest components improved performance in segmentation masks of upper skull and mandible. After the end of the training pipeline, we assessed the need for additional post-processing by looking at the predictions with the worst results. Analysis of cross-validation results showed that the model incorrectly labeled a few voxels as teeth in some scans displaying no upper and/or lower teeth. As a result, we implemented further post-processing for teeth masks, using SimpleITK library to remove all components smaller than a threshold which we empirically set at 60mm³, i.e. the largest volume that improved cross-validation results. Cross-validation quantitative results (300 CT scans) are provided in Supplementary Table 1 and Supplementary Figure 1. Inference was performed once with TTA, then once without, on the test datasets. Inference took approximately 45 minutes per CT scan with TTA, compared to 10 minutes without. Since disabling TTA did not negatively affect the prediction results, we chose to present results for inference without TTA. The post-processing strategy described above was applied to the prediction results.

Our quantitative metrics were computed using SimpleITK library v.2.0.2 (for vDSC, Jaccard Coefficient, Volumetric Similarity, Average Surface Distance and Hausdorff distance) and Medical Segmentation Decathlon Challenge implementation (for sDSC).

For the public mandible dataset, an additional fully-automatic cavity filling was performed using the 3D Slicer software "wrap solidify" filter (outer surface extraction, minimum set to 10mm) [1] and mandible mask predictions were analyzed.

1. Weidert S, Andress S, Linhart C, et al (2020) 3D printing method for next-day acetabular fracture surgery using a surface filtering pipeline: feasibility and 1-year clinical results. Int J Comput Assist Radiol Surg 15:565–575. https://doi.org/10.1007/s11548-019-02110-0

Supplementary Figure 1. Volumetric DSC and surface DSC at 1mm results of our 5-fold cross-validation (300 CT scans).

	Upper Skull	Mandible	Upper teeth	Lower Teeth	Mandibular canal	Total	
Volume DSC	0.9632 ± 0.0138	0.9386 ± 0.0179	0.9455 ± 0.024	0.9414 ± 0.0309	0.814 ± 0.0656	0.9204 ± 0.0648	
Jaccard Coefficient	0.9294 ± 0.0248	0.8848 ± 0.0305	0.8976 ± 0.0407	0.8907 ± 0.0495	0.6906 ± 0.0788	0.6773 ± 0.3595	
Volume Similarity	-0.0043 ± 0.0421	-0.0136 ± 0.0612	-0.0194 ± 0.0583	-0.0188 ± 0.0683	-0.0160 ± 0.0799	0.1668 ± 0.3678	
Average Surface Distance (GT to Prediction)	0.1491 ± 0.098	0.1167 ± 0.0546	0.1021 ± 0.0825	0.1049 ± 0.0985	0.1985 ± 0.5738	0.1344 ± 0.2703	
Average Surface Distance (Prediction to GT)	0.0698 ± 0.0677	0.0866 ± 0.0556	0.0909 ± 0.2332	0.1161 ± 0.4811	0.1646 ± 0.2508	0.1056 ± 0.2684	
Hausdorff Distance 100% (mm)	9.6152 ± 3.9791	4.0386 ± 1.7017	3.9237 ± 7.6032	3.8274 ± 7.1537	3.341 ± 2.7371	4.9541 ± 5.6882	
Hausdorff Distance 95% (mm)	0.8863 ± 0.7018	0.6942 ± 0.2767	0.5909 ± 0.3977	0.8066 ± 2.7852	0.8845 ± 1.9401	0.7731 ± 1.5674	
Surface DSC at 1mm	0.9736 ± 0.0205	0.9791 ± 0.0117	0.9860 ± 0.0176	0.9832 ± 0.0262	0.9786 ± 0.0473	0.9801 ± 0.0278	

Supplementary Table 1. Mean ± Standard Deviation quantitative results of our 5-fold cro	ss-validation (300 CT scans)
---	------------------------------

	Upper Skull	Mandible	Upper teeth	Lower Teeth	Mandibular canal	Total	
Volume DSC	0.9622 ± 0.0143	0.9419 ± 0.0162	0.9483 ± 0.0181	0.9438 ± 0.0232	0.8159 ± 0.0579	0.9224 ± 0.0619	
Jaccard Coefficient	0.9274 ± 0.0258	0.8907 ± 0.0279	0.9022 ± 0.0316	0.8944 ± 0.0389	0.6928 ± 0.076	0.8615 ± 0.0961	
Volume Similarity	-0.0133 ± 0.0412	-0.0118 ± 0.0571	-0.0183 ± 0.0527	-0.0177 ± 0.0606	-0.0119 ± 0.0819	-0.0146 ± 0.0601	
Average Surface Distance (GT to Prediction)	0.1695 ± 0.138	0.1137 ± 0.0508	0.0912 ± 0.0537	0.102 ± 0.1119	0.1935 ± 0.2908	0.134 ± 0.1608	
Average Surface Distance (Prediction to GT)	0.0625 ± 0.0421	0.0807 ± 0.0488	0.0972 ± 0.3492	0.0779 ± 0.0697	0.157 ± 0.1364	0.0951 ± 0.1754	
Hausdorff Distance 100% (mm)	9.4477 ± 4.2425	4.0158 ± 1.5094	4.6572 ± 18.8037	3.5852 ± 2.7675	3.4583 ± 2.933	5.0328 ± 9.078	
Hausdorff Distance 95% (mm)	1.0097 ± 0.8568	0.697 ± 0.2868	0.5403 ± 0.2273	0.589 ± 0.5276	0.9853 ± 1.9992	0.7642 ± 1.0317	
Surface DSC at 1mm	0.9692 ± 0.0308	0.9792 ± 0.0122	0.9887 ± 0.0118	0.9853 ± 0.02	0.979 ± 0.0351	0.9803 ± 0.0248	

Supplementary Table 2. Mean ± Standard Deviation quantitative results on our test dataset (153 CT scans)

Supplementary Table 3. Quantitative results on public mandible test dataset (10 CT scans)

	Prediction	Mandible number									
	vs Operator	1	2	3	4	5	6	7	8	9	10
Volume DSC	А	0.9172	0.8512	0.8929	0.8938	0.9216	0.9074	0.9215	0.8871	0.9266	0.6119
	В	0.9147	0.8468	0.8980	0.8911	0.9203	0.9129	0.9277	0.8823	0.9257	0.6146
Jaccard Coefficient	А	0.8471	0.7409	0.8065	0.8079	0.8545	0.8306	0.8544	0.7971	0.8632	0.4408
	В	0.8428	0.7344	0.8149	0.8037	0.8524	0.8398	0.8652	0.7894	0.8617	0.4437
Volume Similarity	А	0.0410	0.0200	0.0325	0.0175	0.0200	-0.0135	0.0070	0.1420	-0.0234	0.6886
	В	0.0041	0.0411	0.0720	0.0370	0.0185	-0.0013	-0.0072	0.1641	-0.0315	0.6802
Average Surface Distance	А	0.2620	0.4735	0.2562	0.3892	0.2329	0.2820	0.2834	0.4199	0.2221	26.8738
(GT to Prediction)	В	0.2644	0.4933	0.2382	0.4205	0.2385	0.2593	0.2573	0.4463	0.2256	27.0208
Average Surface Distance (Prediction to GT)	А	0.2201	0.2138	0.1908	0.1846	0.1721	0.2256	0.1557	0.2437	0.1789	0.2053
	В	0.2302	0.2277	0.1717	0.1972	0.1753	0.2176	0.1687	0.2591	0.1775	0.2063
Hausdorff Distance 100% (mm)	А	4.0352	11.3262	4.0872	5.1444	2.5488	2.8038	3.8194	6.9552	2.9770	90.3069
	В	4.0000	10.9110	3.1053	4.2960	2.5993	3.0000	3.7950	6.9552	2.9770	90.4536
Hausdorff Distance 95% (mm)	А	1.0000	2.0000	1.2598	1.9994	0.7209	1.3037	1.0000	2.0000	0.7500	80.9020
	В	1.0000	2.0615	0.9390	1.9994	1.0000	1.0307	1.0000	2.0000	0.7500	81.0128
Surface DSC at 1mm	А	0.9710	0.9296	0.9562	0.9056	0.9803	0.9412	0.9729	0.9084	0.9910	0.6386
	В	0.9708	0.9232	0.9636	0.8952	0.9775	0.9481	0.9801	0.9002	0.9903	0.6404