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KEY POINTS 

Question: How often does documentation for commonly deployed clinical predictive models 

report the information requested by model reporting guidelines? 

Finding: Combining the recommendations from 15 model reporting guidelines, we identified 

220 unique requested items. We reviewed the documentation of 12 commonly deployed Epic 
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models and assessed the completion rate of applicable items. The median completion rate was 

39%. While the most commonly requested items were highly reported, information on 

usefulness, reliability, transparency and fairness was missing from at least half of documentation. 

Meaning: There is incomplete documentation for model users to ensure that deployed models 

are useful, reliable, transparent and fair. 

 

ABSTRACT 

 

Objective:  

To assess whether the documentation available for commonly used machine learning models 

developed by an electronic health record (EHR) vendor provides information requested by model 

reporting guidelines.  

 

Materials and Methods:  

We identified items requested for reporting from model reporting guidelines published in 

computer science, biomedical informatics, and clinical journals, and merged similar items into 

representative “atoms”. Four independent reviewers and one adjudicator assessed the degree to 

which model documentation for 12 models developed by Epic Systems reported the details 

requested in each atom. We present summary statistics of consensus, interrater agreement, and 

reporting rates of all atoms for the 12 models. 

 

Results: 
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We identified 220 unique atoms across 15 model reporting guidelines. After examining the 

documentation for the 12 most commonly used Epic models, the independent reviewers had an 

interrater agreement of 76%. After adjudication, the model documentations’ median completion 

rate of applicable atoms was 39% (range: 31%-47%). Most of the commonly requested atoms 

had reporting rates of 90% or above, including atoms concerning outcome definition, 

preprocessing, AUROC, internal validation and intended clinical use. For individual reporting 

guidelines, the median adherence rate for an entire guideline was 54% (range: 15%-71%). Atoms 

reported half the time or less included those relating to fairness (summary statistics and subgroup 

analyses, including for age, race/ethnicity, or sex), usefulness (net benefit, prediction time, 

warnings on out-of-scope use and when to stop use), and transparency (model coefficients). 

Atoms relating to reliability also had low reporting, including those related to missingness 

(missing data statistics, missingness strategy), validation (calibration plot, external validation), 

and monitoring (how models are updated/tuned, prediction monitoring). 

 

Conclusion: 

There are many recommendations about what should be reported about predictive models used to 

guide care. Existing model documentation examined in this study provides less than half of 

applicable atoms, and entire reporting guidelines have low adherence rates. Half or less of the 

reviewed documentation reported information related to usefulness, reliability, transparency and 

fairness of models. There is a need for better operationalization of reporting recommendations 

for predictive models in healthcare. 
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INTRODUCTION 

Despite good predictive performance in metrics such as the area under the receiver operating 

characteristic (AUROC) curve, the use of machine learning models trained on electronic health 

records (EHR) data1 to guide care does not always translate into clinical gains in the form of 

better medical care, lower cost or more equitable outcomes,2–4 leading to a gap referred to as an 

“Artificial Intelligence (AI) chasm”.5 Some potential causes of this chasm are that current 

models are not useful,4,6,7 reliable,8,9 or fair.10–18 Nevertheless, predictive models have been 

deployed in healthcare settings without transparency or independent validation,19,20 and their 

subsequent failures have been met with public outcry.2,21–23 

 

Adhering to model reporting guidelines is one way to improve the usefulness,24–28 fairness,29,30 

and reliability27,31–34 of clinical predictive models. Reporting guidelines have long been used to 

assess the strength of clinical trial studies,35,36 observational studies,37 and diagnostic studies.38 

Guidelines concerning predictive models are receiving increasing attention, including from the 

National Institutes of Health,39 and several more are in development.40–42  

 

While there has been increasing interest in model reporting guidelines, the degree to which 

currently deployed models adhere to these guidelines has not been studied. One review 

examining 164 models described in the scientific literature found low reporting rates of 

demographic variables such as race (36%) and socioeconomic status (8%) as well as low external 

validation rates (12%).43 A critical review of published models for diagnosis and prognosis of 

COVID-19 found that most models were at high risk of bias due to poor reporting.44 
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The purpose of this analysis is to assess whether the documentation available for commonly 

deployed models provides the information requested by model reporting guidelines. Compared to 

previous work,43,44 we focus on user-facing product documentation accompanying models. Thus, 

we are able to analyze models that have been deployed in practice but not yet described in  peer-

reviewed publications. Furthermore, we make a comprehensive assessment of the reporting rates 

of every requested item in the guidelines. 

METHODS 

We searched MEDLINE via PubMed using queries for "machine learning model card" and 

"reporting machine learning" in November 2020. We reviewed citations to find additional 

publications. Finally, we excluded publications that did not give specific model reporting 

recommendations. We included all Explanation and Elaboration documents, AI-specific 

extensions and multi-part guidelines for papers which had them.  

 

We gathered the set of reportable items in these reporting guidelines and deduplicated these 

items; i.e. we merged similar items into distinct, representative “atoms.” For example, “report the 

intended user of the model”24 or “describe external validation strategy”31 are unique atoms. We 

performed the de-duplication in two rounds. First, we created an initial set of atoms by reviewing 

each reporting guideline, including the Explanation & Elaboration documents and AI-extensions 

to verify that every publication’s atoms were captured. Second, we reviewed each atom and 

merged those that requested the same information. We recorded the phrases describing the atoms 

to enable a full traceback of which items were merged to the same atom. Lastly, we created a 

one-line summary of each atom to share in our reported results. To facilitate summarization, we 
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mapped the atoms (eFile 1) to several general stages in the creation and evaluation of a machine 

learning model to guide care (Figure 4 of Jung et al7, eFigure 1). The general stages are Use 

Case, Model Formulation, Model Development, Fairness in Model Development, Practical 

Feasibility, Utility Assessment, Deployment Design, Deployed Model (including Execution and 

Workflow) and Prospective Evaluation. Each stage has a color (eFigure 1), so our tables and 

figures use the stage’s color for atoms in that stage. We also mapped atoms to specific tasks in 

the model development process (eFile 1). 

 

We next identified the model documentation to review. Epic provides Cognitive Computing 

Model Briefs (hereafter referred to as Model Briefs), which are user-facing documentation sheets 

(analogous to a drug package insert) for models available from the vendor. Each Model Brief has 

a community adoption score which represents the number of organizations that have used a 

specific model as a proportion of the number of organizations using any model, and takes values 

from a scale ranging from 1 to 3. We chose all models that had a community adoption score of 2 

or 3 in March 2021. The six Model Briefs with community adoption score 3 out of 3, 

downloaded on March 8th, 2021, were for Deterioration Index, Early Detection of Sepsis, Risk 

of Unplanned Readmission (Version 2), Risk of Patient No-Show (Version 2), Pediatric Risk of 

Hospital Admission or ED Visit (Version 2), and Risk of Hospital Admission or ED Visit. The 

six Model Briefs with community adoption 2 out of 3, downloaded on April 13th, 2021, were for 

Inpatient Risk of Falls, Projected Block Utilization, Remaining Length of Stay, Risk of Hospital 

Admission for Heart Failure, Risk of Hospital Admission or ED Visit for Asthma, and Risk of 

Hypertension. 
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Four reviewers read each of the 12 Model Briefs and assessed whether they reported information 

specified in the atoms (eMethods). Specifically, for each atom, each reviewer first determined if 

the atom was applicable to the model. For example, an atom such as “A link to the clinical trial 

registration” is not applicable to models where documentation does not intend to describe a 

clinical trial. When atoms were applicable, the reviewer decided whether the Model Brief 

reported the information requested in the atom. 

 

Atoms had consensus when all four reviewers agreed that an atom was reported by the Model 

Brief, was not reported by the Model Brief, or was determined to be not applicable. For atoms 

that did not have consensus across all four reviewers, a designated adjudicator reviewed the 

atoms and the corresponding Model Brief content, to independently adjudicate the reviewer 

responses. 

 

To determine the inter-rater agreement, we calculated the fraction of atoms that a pair of 

reviewers agreed were reported, were not reported, or were determined to be not applicable, 

averaged across all Model Briefs and pairs of the four reviewers.  

 

To standardize nomenclature, we define that an atom is “requested” by a reporting guideline if 

any reportable item from the reporting guideline was merged into that atom. We define that an 

atom is “reported” by a Model Brief if we determine that the Model Brief contained the 

information requested in the atom, after adjudication. 
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An atom’s reporting rate is the number of Model Briefs that reported the atom divided by the 

number of Model Briefs for which the atom was applicable.  A Model Brief’s completion rate of 

a given group of atoms is the number of atoms reported by the Model Brief divided by the 

number of atoms that were applicable to that Model Brief.  Finally, the adherence rate to a 

reporting guideline is the completion rate of atoms requested by the specific reporting guideline, 

averaged across all Model Briefs. We calculate median, interquartile range (IQR) and range for 

atoms’ reporting rates, Model Briefs’ completion rates, and reporting guidelines’ adherence 

rates, as appropriate. 

 

RESULTS 

 

Atoms Requested by Model Reporting Guidelines 

Our MEDLINE search resulted in an initial list of 26 publications.24–30,38,41,45–62  We reviewed 

citations and found 3 additional publications.32–34 We excluded publications that did not give 

specific model reporting recommendations to arrive at our final list of 15 model reporting 

guidelines published (Table 1).24–36,38,45–47,62–65  

 

Publication venues include computer science venues (ACM Fairness, Accountability, and 

Transparency29 and IEEE27), biomedical informatics journals (Journal of the American Medical 

Informatics Association, npj Digital Medicine, Journal of Medical Internet Research24,30,45), and 

clinically-focused journals (Annals of Internal Medicine, BMJ, Nature Medicine, Heart, 

European Heart Journal, PLOS Medicine, and NEJM Catalyst26,28,31–35,38,46,47,62).  Four guidelines 
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published between 2010 and 2015 have been cited by other articles over 1000 times to date, 

while four guidelines were published after 2019 and have been cited less than 50 times to date. 

 

Of the 15 reporting guidelines, 11 had examples of how to complete their requested 

atoms.24,27,29,30,32,33,38,62–65 However, only 5 showed a full example completing all atoms for a 

single model,24,29,30,33,62 and only 1 of those models was deployed in a health system.24,66  

 

After deduplication, there were 220 distinct atoms requested by all of the reporting guidelines 

(eFile 1). We provide a cross tabulation of the 220 atoms against the 15 reporting guidelines 

(eTable 1) to show the most relevant guideline for a task. For example, the TRIPOD reporting 

guideline has more atoms requesting details on preprocessing47 while MI-CLAIM has more 

atoms requesting details for model examinations.46 

 

Figure 1 summarizes the model reporting guidelines in terms of the number of atoms that map to 

each stage in the creation and evaluation of a machine learning model (Figure 4 of Jung et al7, 

eFigure 1). This allows selecting the stage-appropriate reporting guideline: for example, Model 

Cards29 contributes the most atoms to fairness in model development, while Model Facts 

Labels24 or CONSORT-AI25 contribute the most atoms to use case assessment.  

 

There are stages in the creation and evaluation of a machine learning model for which reporting 

guidelines focus less; for example, there are less than five atoms related to Deployment Design, 

e.g.. considering work capacity and resources to perform interventions, and for Utility 
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Assessment, e.g. considering the net benefit of taking actions guided by the model’s output. 

Meanwhile, the Model Development step comprises 53 atoms.  

 

Table 2 shows the atoms requested by at least 10 out of the 15 reporting guidelines. The most 

commonly requested atoms relate to model development tasks, such as preprocessing, missing 

data handling, model performance including handling of uncertainty (e.g. confidence intervals, 

statistical significance) or AUROC, and internal validation. A total of 28 distinct performance 

metrics were requested (eTable 2), including discrimination, calibration, classification, 

goodness-of-fit, utility, and comparisons of model discrimination. 

 

Finally, there were 77 atoms that were requested by just one reporting guideline (eTable 3). ML 

Test Score had 20 unique atoms related to model deployment and monitoring, such as steps for 

model updating and rollback. CONSORT-AI and SPIRIT-AI had a combined 21 clinical trial-

specific atoms, which mostly did not apply to Epic’s Model Briefs (e.g. random allocation 

methods). Twelve uniquely requested atoms were model performance metrics such as the F-

Score or Relative Utility. 

 

Reporting of deduplicated atoms by Model Briefs 

 

A median of 93 (IQR: 88-95, range: 66-108) atoms per brief underwent adjudication for 

discordant findings by reviewers. Interrater agreement on atom reporting was 76%. 

 

There were 40 commonly reported atoms, whose information was reported by over 90% of the 

Model Briefs (eTable 4). These atoms requested information about model development and 
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formulation, including the training data set, preprocessing, model type, internal validation, and 

performance metrics. These 40 commonly reported atoms by Model Briefs included 9 of the 12 

most commonly requested atoms across the reporting guidelines (Table 2). 

 

There were 75 rarely reported atoms, whose information was reported in less than 10% of the 

Model Briefs (eTable 5). These atoms included missing data statistics, blinding of 

predictor/outcome assessors, variability of performance measures (e.g. confidence intervals), 

reporting of model coefficients or most predictive features, model examinations including 

performance errors and intersectional subgroup analyses, user-facing materials and warnings on 

when to stop use of model, and monitoring of input data and model predictions. In addition, of 

28 distinct performance metrics requested, only AUROC (92%), PPV (67%), and sensitivity 

(42%) were reported by more than a fifth of the Model Briefs (eTable 2). 

 

There were 34 atoms for which reviewers had no consensus across any of the 12 Model Briefs 

(eTable 6). These atoms without consensus included atoms related to data collection, reference 

standards, and performance metrics, where there was disagreement about applicability. Of 220 

atoms, 176 (80%) were considered applicable for at least one Model Brief. Of these 176, 119 

(68%) were reported by at least one Model Brief. Atoms had a median reporting rate across 

briefs of 25% (IQR: 0%-83%, range: 0%-100%). 

 

From the standpoint of a specific Model Brief (eTable 7), there were a median of 171 applicable 

atoms (IQR: 170-173, range: 166-173) per brief of which a median of 67 atoms were reported in 

the brief (IQR: 64-74, range: 53-81). A Model Brief’s median completion rate of applicable 
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atoms was 39% (IQR: 37%-43%, range: 31%-47%). After excluding all atoms corresponding to 

performance metrics -- to ensure briefs were not penalized for not reporting multiple redundant 

performance metrics -- the median completion rate for applicable atoms was 43% (IQR: 41%-

48%, range: 33%-52%). Lastly, every Model Brief covered the following use case-related atoms: 

how the model is to be used in clinical care, who will use the model, ways the model could 

impact clinical care, and rationale for use. 

 

Adherence to Entire Reporting Guidelines by Model Briefs 

 

Table 3 shows the adherence rates to individual reporting guidelines, which is the Model Briefs’ 

average completion rate of atoms requested by the reporting guideline. Model reporting 

guidelines had a median adherence rate of 53% (IQR: 50%-63%, range: 18%-74%). The ML 

Test Score had the lowest adherence rate (18%) while Model Facts Labels had the highest (74%). 

After excluding redundant performance metrics as before, the median adherence rates remained 

similar, at 57% (IQR: 50%-70%, range: 16%-73%).  

 

Requested, but Less Reported Atoms 

 

We identified 29 atoms that were requested by at least 4 out of 15 the reporting guidelines, but 

were reported by 50% or less of Model Briefs (Table 4). Many of these less reported atoms are 

related to fairness, i.e. data set representativeness and performance across subgroups. These 

include summary statistics of key characteristics of the training data set (reporting rate 50%) or 

disaggregating performance by a subgroup (33%). Key factors such as age (50%), sex (33%), 

and other relevant factors (50%) lacked both summary statistics and disaggregated performance. 
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There was low availability of information on missingness-related atoms, including statistics on 

amount of missing data (8.3%) and how missing data were handled (50%). There was low 

information on atoms related to interpreting the model and its performance, such as model 

coefficients (8.3%), confidence intervals or statistical significance in model performance metrics 

(0%), and performance of an external validation (33%). There was low reporting of guidance on 

how to deploy the ML model into a clinical workflow (33%), what user-facing materials there 

will be with the model (0%), and how models are updated (42%). Lastly, some logistical 

information had 0% completion, including who funded the study (which might be relevant for 

conflict of interest purposes) and how to access the data set. 

Discussion 

 

This work is one of the first to systematically compile atoms from reporting guidelines and 

analyze deployed models’ adherence to existing model reporting guidelines. The 220 atoms, 

compiled from 15 model reporting guidelines, demonstrate the breadth of details that model 

developers and researchers consider important to report about a model that will guide care. These 

atoms cover a range of steps in bringing a model into clinical use (Figure 1). Some categories of 

model development and deployment have many corresponding atoms, while others have few. For 

example, while there are 28 atoms on model performance metrics, there are few related to 

deployment design such as work capacity and resources to perform interventions,7 and utility 

assessment, including eliciting stakeholder preferences.67 
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Model Briefs had excellent reporting of the most commonly requested atoms (Table 2): 9 of the 

12 most commonly requested atoms had reporting rates above 90%. These included information 

on model development and use, such as the outcome definition, and how the model is intended to 

be used. 

 

However, Model Briefs had low completion rates of all applicable atoms (median 39%). We 

acknowledge that some reporting guidelines were published after some Model Briefs were 

created, so it may not be reasonable to expect Model Briefs to adhere fully to those reporting 

guidelines. Nevertheless, the low completion rate overall suggests that the combined request of 

all atoms may be formidable for model developers to report and adhere to. 

 

Different reporting guidelines have different focus areas in terms of the different stages in 

creation and evaluation of a machine learning model (Figure 1). Individual reporting guidelines 

have generally low adherence rates (median 53%), suggesting that it may be infeasible to report 

everything that the 15 guidelines collectively request. We recommend model developers select 

the appropriate reporting guidelines based on their focus of interest (Figure 1); e.g. for model 

development, use TRIPOD; for fairness, use Model Cards. 

 

Lastly, there are many atoms requested by the reporting guidelines, that are not reported in any 

of the reviewed Model Briefs (Table 4). Broadly, these relate to fairness, utility, reliability and 

transparency. For atoms relating to fairness (in this case, referring to data set representativeness 

and model performance for subgroups), there was low reporting of summary statistics or 

disaggregated performance for race/ethnicity (33%), age (50%), sex (33%), and other relevant 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.21.21260282doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.21.21260282
http://creativecommons.org/licenses/by/4.0/


 

factors (50%). Subgroup and intersectional analyses were rarely performed (33%, 0%), despite 

evidence of algorithms’ discriminatory behavior against individuals in subgroups2 and 

intersectional subgroups.68 We further acknowledge this is a limited view of “fairness” (which 

has an entire dedicated field of scholarship69) and that atoms must be contextualized depending 

on how the model is used and how the data is collected. For example, biased outcome 

measurement would not be captured by subgroup analyses of performance.6 

 

For atoms relating to utility (referring to the net benefit of model use, including from the 

standpoint of stakeholder values and resource constraints7,70–76), none of the Model Briefs 

reported any utility-related metrics, including the Net Benefit.32,33,65 Work capacity7 (resources 

required to perform interventions) or stakeholder preferences67,77 were not formally requested by 

any model reporting guideline, nor reported by any Model Brief. This is despite studies showing 

that utility-maximizing models may be different from discrimination-maximizing models78 and 

that work capacity must be taken into consideration for models to create net benefit for patients.7 

Finally, while there was 100% reporting of atoms on both the intended user and intended use of 

the model in a specific clinical context, more detailed information on deployment was often 

missing, like specific guidance on how to deploy into a workflow (33%), specific directions or 

other user-facing material (0%), time of model prediction (33%), and warnings on out-of-scope 

use (42%) and when to stop use (8.3%). 

 

For atoms relating to reliability (referring to the stable performance of clinical predictive models 

across time and deployment sites), there was low reporting of atoms regarding missingness, 

validation, and monitoring. For missingness, missing data statistics and strategy of missingness 
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handling had low reporting rates (8.3% and 50%). For validation, external validation strategy 

(33%), calibration plots (0%), and performance comparison against a baseline model (58%) also 

had low reporting.  For monitoring, how models are updated and tuned had a low reporting rate 

of 42%, and other key atoms for monitoring had reporting rates less than 10%, such as 

monitoring input data (10%) or regressions in prediction quality in newer data (8.3%). 

 

Lastly, on transparency, there was low reporting of information to enable model reproducibility 

(0%), model coefficients (8.3%), how to access the data set (0%) (acknowledging necessary limits 

to protect patient privacy), and who funded the study (0%), which might be relevant for conflict of 

interest purposes. Model Briefs are not accessible to those without an Epic institutional license, 

which may further hamper reproducibility and independent validation. A recent independent 

validation of the Epic Sepsis Model indeed found decreased calibration and discrimination.23 

 

Low adherence rates when considering entire model reporting guidelines suggest opportunities to 

better operationalize reporting practices to ensure deployed models are useful, reliable and fair. 

One might choose among the many available reporting guidelines by tracking which models 

have reported atoms from which guideline. Such usage analysis would allow prioritization of 

more relevant and feasible reporting practices. Similarly, we could incentivise improved 

reporting if models that have better reporting result in higher adoption, perhaps via endorsement 

from professional societies in a manner similar to clinical practice guidelines. This could be 

enabled by a public dashboard tracking models’ guideline adherence. Lastly, deployment teams 

can benefit from adherence to reporting guidelines by using the atoms from them as checklists 

for assessing usefulness, workflow capacity, reliability monitoring,27 and reviewing them at 

project initiation time.79 
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There are several key limitations of our methods. First of all, our deduplication of the reporting 

guidelines may mask certain differences -- e.g. some guidelines provide explicit instructions and 

examples while others just call for reporting. We also caution against over-interpreting the 

completion rate across all atoms, as atoms are not exchangeable entities. Two atoms such as 

“Missing data statistics” and “Sensitivity” provide different information, so we recommend 

looking at individual atoms when possible. Lastly, to provide an upper bound on the quality of 

reporting, we gave generous credit to Model Briefs for reporting of an atom. For example, we 

gave credit for “Describe how models were tested in a new setting before deployment” for 

statements that might have simply stated to contact a support representative to validate the 

model. Hence reporting rates should be viewed as likely overestimates. 

 

Conclusion 

Despite ongoing discussion on what should be reported about predictive models, adherence of 

current documentation for deployed models to existing reporting guidelines has not been 

assessed. In this work, we compiled reportable items from existing reporting guidelines into a set 

of unique “atoms” and reviewed the documentation of the 12 most adopted models from a 

widely used health vendor, Epic. We identified 220 distinct atoms, of which 176 were applicable 

to at least one model.  

 

Current model documentation reports information for less than half of applicable atoms (median 

39% per Model Brief), and model reporting guidelines have low adherence rates based on the 
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documentation (median 54% per guideline). Current model documentation provides relatively 

little information on usefulness, reliability, transparency and fairness. There is a need for better 

operationalization of reporting practices for predictive models in healthcare.  
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FIGURES 

Figure 1: Model reporting guidelines (in rows), with their atoms mapped onto different 

stages in the creation and evaluation of a machine learning model to guide care.7 Stages are 

listed in eFigure 1. Each cell is the number of atoms contributed by the relevant model reporting 

guideline towards a given stage of the workflow (columns). Model Dev. stands for Model 

Development. The highest number in each column is bolded. 
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TABLES 

 

Abbreviation Title 

Author and 
Year Journal 

Total 
citations* Atoms 

CONSORT-AI 

CONSORT 2010 statement: updated 
guidelines for reporting parallel group 
randomised trials 
CONSORT 2010 Explanation and 
Elaboration: updated guidelines for reporting 
parallel group randomised trials 
Reporting guidelines for clinical trial reports 
for interventions involving artificial 
intelligence: the CONSORT-AI extension 

Schulz 2010 
Moher 2010 
Liu 2020 

Lancet 
Journal of 
Clinical 
Epidemiolo
gy 
Nature 11529 68 

Risk 

Risk prediction models: I. Development, 
internal validation, and assessing the 
incremental value of a new (bio)marker 
Risk prediction models: II. External 
validation, model updating, and impact 
assessment 

Moons 2012 
Moons 2012 

Heart 
Heart 1320 41 

SPIRIT-AI 

SPIRIT 2013 Statement: Defining Standard 
Protocol Items for Clinical Trials 
SPIRIT 2013 explanation and elaboration: 
guidance for protocols of clinical trials 
Guidelines for clinical trial protocols for 
interventions involving artificial intelligence: 
the SPIRIT-AI extension 

Chan 2013 
Chan 2013 
Rivera 2020 

Annals of 
Internal 
Medicine 
BMJ 
Nature 2952 75 

ABCD 

Towards better clinical prediction models: 
seven steps for development and an ABCD 
for validation 

Steyerberg 
2014 

European 
Heart 
Journal 709 33 

CHARMS 

Critical Appraisal and Data Extraction for 
Systematic Reviews of Prediction Modelling 
Studies: The CHARMS Checklist Moons 2014 

PLOS 
Medicine 565 63 

TRIPOD 

Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or 
Diagnosis (TRIPOD): The TRIPOD 
Statement 
Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or 
Diagnosis (TRIPOD): Explanation and 
Elaboration 

Collins 2015 
Moons 2015 

Annals of 
Internal 
Medicine, 
Annals of 
Internal 
medicine 3031 86 

STARD 
STARD 2015 guidelines for reporting 
diagnostic accuracy studies: explanation and Cohen 2016 BMJ Open 711 55 
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elaboration 

Guidelines 

Guidelines for Developing and Reporting 
Machine Learning Predictive Models in 
Biomedical Research: A Multidisciplinary 
View Luo 2016 

Journal of 
Medical 
Internet 
Research 244 49 

ML Test Score 

The ML Test Score: A Rubric for ML 
Production Readiness and Technical Debt 
Reduction Breck 2017 

IEEE 
Internationa
l 
Conference 
on Big Data 68 34 

PROBAST 

PROBAST: A Tool to Assess the Risk of 
Bias and Applicability of Prediction Model 
Studies 
PROBAST: A Tool to Assess Risk of Bias 
and Applicability of Prediction Model 
Studies: Explanation and Elaboration 

Moons 2019 
Moons 2019 

Annals of 
Internal 
Medicine 
Annals of 
Internal 
medicine 284 55 

Model Cards Model Cards for Model Reporting Mitchell 2019 

ACM 
Fairness, 
Accountabi
lity and 
Transparen
cy 311 49 

Model Facts 
Labels 

Presenting machine learning model 
information to clinical end users with model 
facts labels Sendak 2020 

npj Digital 
Medicine 14 37 

MINIMAR 

MINIMAR (MINimum Information for 
Medical AI Reporting): developing reporting 
standards for artificial intelligence in health 
care 

Hernandez-
Boussart 2020 JAMIA 18 28 

MI-CLAIM 
checklist 

Minimum information about clinical artificial 
intelligence modeling: the MI-CLAIM 
checklist Norgeot 2020 

Nature 
Medicine 24 40 

Trust and Value 
Checklist 

AI-Enabled Clinical Decision Support 
Software: A “Trust and Value Checklist” for 
Clinicians Silcox 2020 

NEJM 
Catalyst 2 26 
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Table 1: Summary of 15 Model reporting guideline papers. “Total citations” sums the citations 

for each of the  papers, excluding the Explanation and Elaboration papers. “Atoms” indicates the number 

of deduplicated atoms sourced from that guideline. We included the Explanation and Elaboration papers 

for CONSORT, SPIRIT, TRIPOD and PROBAST [32,63–65]. For CONSORT and SPIRIT, we also included 

the AI-specific extensions 25,26. We grouped Risk Prediction Models II 31 with the Risk Prediction Models 

I paper 62.  
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Atom Description 

# Reporting 
Guidelines 
Requesting Task Stage 

Reporting 
Rate 

Provide any description of the data set (training / study) in question 12 
Data 
Composition 

Model 
Development 100.00% 

Define the output/outcome produced by the model 10 

Data 
Composition: 
Output 

Model 
Formulation 100.00% 

Define the specific local area/environment/setting of training data / 
model deployment. 10 

Study 
Design/Popul
ation Use Case 100.00% 

How data was preprocessed (data cleaning, predictor transformation, 
outlier removal, predictor coding) 10 

Preprocessin
g and Data 
Cleaning 

Model 
Development 100.00% 

How missing data were handled 10 

Preprocessin
g and Data 
Cleaning 

Model 
Development 50.00% 

What parameters, including constraints and penalties added as loss 
terms (e.g. shrinkage penalties), were used to train and select models 10 

Model 
Development 

Model 
Development 58.33% 

Provide confidence intervals, statistical significance, or some other 
handling of uncertainty and variability in model performance metrics 10 

Model 
Performance 
and 
Comparison 

Model 
Development 0.00% 

Clarify what type of validation is done, whether internal or external 11 Validation 
Model 
Development 100.00% 

Describe internal validation strategy to account for model optimism 
(e.g. cross-validation, bootstrapping, data splitting)) 11 Validation 

Model 
Development 91.67% 

Mention what performance measures are used 13 Metrics 
Model 
Development 100.00% 

AUROC (c- index) 11 

Metrics: 
Discriminatio
n 

Model 
Development 91.67% 

Describe how the ML model is supposed to be used in clinical context 11 Intended Use Use Case 100.00% 

 

Table 2:  Commonly Requested Atoms across reporting guidelines. This table lists all atoms 

requested by at least 10 model reporting guidelines. Reporting Rate indicates the % of the Model 

Briefs that reported the information requested in the atom. Task and Stage indicate the atoms’ 

related task and related stage of clinical predictive model development, respectively 7. 
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 EPIC MODEL BRIEFS 

AVERAGE MIN MAX 

Applicable 
Atoms 

(Average) 

Applicable 
Atoms 

(Range) 

MODEL 
REPORTING 
GUIDELINES 

Deter
iorati
on 
Index 

Early 
Detec
tion 
of 
Sepsi
s 

Risk 
of 
Unpl
anne
d 
Read
missi
on 

Risk 
of 
Patie
nt 
No-
Show 

Pediatri
c Risk 
of 
Hospital 
Admissi
on or 
ED Visit 

Risk of 
Hospit
al 
Admiss
ion or 
ED 
Visit 

Inpatie
nt Risk 
of 
Falls 

Proje
cted 
Block 
Utiliz
ation 

Remai
ning 
Lengt
h of 
Stay 

Risk of 
Admiss
ion of 
Heart 
Failure 

Risk of 
Hospital 
Admissi
on or 
ED Visit 
for 
Asthma 

Risk 
of 
Hyper
tensio
n 

Model Cards 66% 47% 63% 51% 40% 69% 51% 45% 47% 47% 41% 57% 52% 40% 69% 48.7 [47, 49] 

Model Facts Labels 77% 71% 80% 89% 71% 80% 71% 71% 77% 60% 63% 71% 74% 60% 89% 34.9 [34, 35] 

Guidelines 64% 66% 66% 66% 57% 74% 62% 49% 66% 64% 64% 66% 64% 49% 74% 47.0 [47, 47] 

MI-CLAIM 55% 58% 63% 58% 47% 68% 53% 34% 47% 53% 45% 58% 53% 34% 68% 38.0 [38, 38] 

MINIMAR 71% 71% 79% 61% 68% 86% 71% 46% 61% 75% 61% 82% 69% 46% 86% 28.0 [28, 28] 

TRIPOD 63% 63% 61% 48% 42% 61% 47% 36% 55% 48% 44% 51% 51% 36% 63% 75.5 [72, 77] 

CONSORT-AI 63% 43% 63% 60% 33% 67% 53% 47% 47% 49% 42% 51% 52% 33% 67% 42.4 [40, 43] 

SPIRIT-AI 61% 55% 54% 54% 38% 61% 44% 49% 51% 41% 39% 46% 49% 38% 61% 40.4 [38, 41] 

Trust and Value 46% 33% 39% 50% 29% 42% 38% 46% 46% 25% 33% 46% 39% 25% 50% 23.9 [23, 24] 

ML Test Score 27% 15% 33% 24% 9% 33% 15% 6% 18% 12% 9% 15% 18% 6% 33% 32.9 [32, 33] 

Risk 64% 65% 63% 53% 50% 68% 53% 48% 56% 56% 56% 56% 57% 48% 68% 33.7 [32, 34] 

STARD 54% 45% 50% 40% 29% 52% 52% 39% 34% 40% 40% 52% 44% 29% 54% 48.8 [46, 50] 

ABCD 65% 65% 48% 55% 61% 68% 52% 39% 55% 65% 61% 61% 58% 39% 68% 31.0 [31, 31] 
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CHARMS 78% 70% 68% 65% 56% 75% 66% 47% 70% 65% 63% 64% 66% 47% 78% 55.0 [53, 56] 

PROBAST 69% 71% 67% 62% 53% 68% 58% 46% 60% 60% 58% 60% 61% 46% 71% 52.2 [49, 53] 

 

Table 3: Adherence rates to entire reporting guidelines across Model Briefs. Cells are colored green if above 50%, yellow if 

between 25% and 50%, and red if below 25%. The AVERAGE, MIN, and MAX columns are the average, minimum and maximum 

adherence rates for the model reporting guidelines, respectively. 
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Atom Description 
Reporting 
Rate # Applicable # Filled 

# Model 
Reporting 
Guidelines 
requesting 

Specify who funded / supported the study and clarify any conflicts of 
interest 0.0% 10 0 4 

Information on how to access the data used 0.0% 12 0 4 

Provide statistics on the amount of missing data there is. 8.3% 12 1 5 

Given the problem context, describe what factors or subgroups would be 
helpful to do a sub-analysis of model performance evaluation (e.g. 
demographics, environment, lighting)? These factors do not have to be 
available in the data. 41.7% 12 5 5 

Provide summary statistics of key demographics/characteristics/other factors 
for the data set in question 50.0% 12 6 6 

Age is an important demographic factor to report summary statistics on or 
disaggregate performance by 50.0% 12 6 4 

Sex is an important demographic factor to report summary statistics on or 
disaggregate performance by 33.3% 12 4 4 

Other factors for the prediction problem are important to discussed to report 
summary statistics on or disaggregate performance by (e.g. Gender, Sexual 
orientation, Fitzpatrick skin type, Socioeconomic Status, Geographic 
Location, Presenting Symptoms/Clinical Signs/Lab Values/Other 
Diagnoses) 50.0% 12 6 4 

Flow chart of how participants were interacted/assigned/followed up with in 
the study (especially in clinical trials) 0.0% 12 0 5 

Describe the annotation process of the input data, including who annotated 
the input data, what instructions they were given, and what expertise was 
needed. 18.2% 11 2 4 

Blinding of Data Collectors/Predictor Assessors to outcomes, if done 0.0% 9 0 4 

Describe the annotation process of the output data, including who annotated 
the output data, what instructions they were given, and what expertise was 
needed. 27.3% 11 3 7 

Blinding of Outcome Assessors to predictors of the model, if done 0.0% 9 0 7 

How missing data were handled 50.0% 12 6 10 

If feature selection involved computing univariate associations between 
input features and outcomes (not recommended), document this. 18.2% 11 2 4 
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Provide confidence intervals, statistical significance, or some other handling 
of uncertainty and variability in model performance metrics 0.0% 12 0 10 

Provide sufficient information to enable reproducibility/replication 0.0% 12 0 7 

Report model coefficients (regression) or saliency map 8.3% 12 1 7 

Disaggregate performance by subgroup / other important data slice 33.3% 12 4 8 

Describe external validation strategy / evaluation data set, e.g. what external 
data set was used, ways it may differ from the training set (e.g. geography, 
time), why the data set was chosen 33.3% 12 4 9 

Calibration Plot 0.0% 12 0 6 

NPV 16.7% 12 2 6 

Sensitivity, ideally at a predefined probability threshold. 41.7% 12 5 9 

Specificity, ideally at a predefined probability threshold. 8.3% 12 1 8 

Net Reclassification Improvement 0.0% 12 0 5 

Specify what directions, explanations and other user-facing materials there 
will be with the model. 0.0% 12 0 9 

Guidance on how to deploy ML model into clinical workflows 33.3% 12 4 7 

Which version of the model is discussed 45.5% 11 5 6 

Describe how models are updated/locally tuned 41.7% 12 5 8 

 

Table 4: Requested, but less Reported atoms. All atoms requested by 4 or more model 

reporting guidelines but reported by no more than 50% of applicable Model Briefs are listed. The 

“Reporting Rate” column is colored yellow if between 25% and 50%, and red if below 25%. 
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