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Abstract
Introduction

Machine learning and artifcial intelligence (AI) models have been applied in histopathology to
solve specifc problems like detection of metastasis in lymph nodes and immunohistochemical
scoring.  We  have  aimed  to  develop  a  machine  learning  model  which  can  be  trained  in
histopathology from the basics, i.e. identifcation of normal tissue. We have tried to replicate the
process through which a human pathologist learns recognition of normal tissue from histological
sections, and evaluate the performance of a machine learning model at this task.

Materials and methods

A total  of  658  histologic  images  were  anonymised,  microphotographed  at  10x  magnifcation,
under  the  same condition of  illumination,  with  a  Magnus  DC5 integrated  microphotography
system. Te images were split into two subsets, training (386) and validation (272 images). Te
images belonged to seven classes of tissue: brain, intestine, kidney, liver, lungs, muscle and skin.
Archived  material  of  the  hospital  were  used  for  the  study.  A machine  learning model  using
convolutional neural network (CNN) was developed on the Keras platform, using the convolution
layers of a pretrained VGG16 model. Te model was trained with the training set of images over
10 epochs. Afer training, performance of the model was assessed on the validation set.

Results

Te model achieved 88.2%a accuracy in classifying the images of the validation set. Te most
frequent errors were met in recognising images of kidney (1% errors, 33.33a). Te commonest
error was wrongly classifying kidney tissue as liver (07 errors). Analysis of the deeper layers of
the neural network revealed specifc paterns in images which were wrongly classifed.

Conclusion

Te results of the present study indicates that a convolutional neural network might be trained in
histology similar to a trainee pathologist. Te study represents the frst step towards developing a
machine learning model as a generalised histopathological image classifer.

Introduction
Histopathology is  held  as  the  fnal  bastion of  pathology and the gold standard  of  diagnostic
testing. However, interpretation of histopathological sections is inherently observer dependent,
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and years  of training are required to obtain expertise in histopathology. Te initial training in
histopathology  is  spent  in  long hours  looking  at  sections  of  normal  tissue,  and  preparing  a
generalised mental representation of each kind of tissue. Te trainee pathologist must recognise
and classify normal tissue,  and this comprises a signifcant proportion of  his/  her training in
pathology.

Te identifcation of tissues from histological sections has long been held to be the domain of
professionally  trained  human  beings.  However,  present  day  machine  learning  models  have
matured sufciently enough, so much so that the task of identifcation of histological sections by
machines can be taken up.

Machine learning models have successfully classifed real world images from a very large dataset.
[1] Such models have been able to classify images into multiple classes – i.e. animals, cars, people,
street signs, objects of daily use. Te basis for such models is usually a artifcial neural network
(ANN).[2]   ANNs  are  a  departure  from  conventional  image  analysis  techniques.  An  ANN  is
constructed of multiple feed forward layers of simpler units (‘neurones’), each of which take an
input number x  and convert it to a non linear output

y = f(wx + b)

Where ‘w’ and ‘b’ are the two parameters ‘weight’ and ‘bias’ of the particular neurone and f is a
non-linear  function.  A  neural  network  is  made  of  several  such  layers  made  of  individual
neurones. Over repeated epohcs of training, the network adjusts its parameters so as to produce a
correct result majority of the time. 

For image recognition, a specialised class of ANNs, the convolutional neural network (CNN), is
widely  in  use;  the  theory  of  convolutional  neural  networks  has  been  described  in  detail  by
Karpathy et al.[3]  CNNs have successfully been applied in several felds of histopathology, such as
classifcation  of  histopathologic  paterns  of  lung  adenocarcinoma[%] ,  for  scoring
immunohistochemical  staining on breast cancers[5],  for  Gleason’s  scoring on prostate cancer[6]

[7] ,mitotic count in breast cancer[8] , tumor proliferation, budding and lymphatic vessel density[9]

[10], detecting metastasis in lymph nodes[11] and gland segmentation[12]. 

Such studies have achieved varying levels of success in solving a particular problem. We have
taken the systematic approach of training a machine learning model from the ground up, similar
to the manner the medical student is trained. Our aim was to develop and test a CNN which can
classify normal histological images into seven categories: brain, lung, skin, liver, kidney, muscle,
intestine.  A similar study has been atempted by Kiefer et  al  on grayscale images,  achieving
7%.87a accuracy[13] on 2% classes, using the feature vector from the last layer of a pretrained neural
network.  

Materials and methods
We photographed histopathologic slides from 07 classes of tissues: brain, intestine, kidney, liver,
lungs, muscle and skin. Te histologic sections were retrieved from the archives of the laboratory.
All sections were earlier stained with hematoxylin and eosin (staining method is described in
Table 1).
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Step Description
1 Sections brought down to water
2 Placed in haemalum solution for 10 minutes
3 Rinsed in tap water for 5 minutes
% Diferentiated in 1a acid alcohol with 3 dips
5 Washed in running water
6 Dipped in Scot’s solution 3 times
7 Wash in running water for 3 minutes
8 Stained in eosin or 15 seconds
9 Dehydrated and mounted in DPX

Table 1: Staining protocol

A total of 658 foci were microphotographed, at 10x magnifcation, with 0.25 numerical aperture,
under  the  same condition of  illumination,  with  a  Magnus  DC5 integrated  microphotography
system. Te images were split into two subsets, training (386) and validation (272 images). Te
distribution of images in two datasets is shown as follows.

Tissue Train Validation
lungs 60 50
liver 60 %2
kidney 60 %2
muscle 58 36
intestine 52 %5
brain 52 35
skin %% 22

386 272

Table 2: Distribution of images in training and validation set

Afer  collection  of  images,  a  machine  learning  model  was  developed  with  the  Python [1%]

programming language and Keras deep learning library; the model constituted of a pretrained
image  recognition  model,  VGG16,  with  the  fully  connected  layers  modifed  to  suit  the
classifcation problem.[2] [15] Te fnal  model  consisted of  26  layers  of  neurones and 2,626,055
trainable parameters (i.e. weights and biases). It accepted a color image of 256 x 192 pixels as
input, and produced a single number between 0 to 6 as output (corresponding to the seven classes
of images).

Te model was trained in the Google Colab platform[16] with 10 epochs, i.e. each training image
was shown to the model 10 times. Images were resized to a dimension of 256 x 192 pixels before
training.  During training,  the  model  adjusted  its  parameters  to  minimise  the error  rate  (loss
function) at each epoch.

Afer completion of training, the performance of the model was assessed over the validation set.
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Results
Te results are depicted as follows.

Predicted brain intestine kidney liver lungs muscle skin Total Accuracy
Actual
brain 35 0 0 0 0 0 0 35 100.00a
intestine 0 %0 0 0 % 1 0 %5 88.89a
kidney 0 0 28 7 3 % 0 %2 66.67a
liver 2 0 0 39 0 1 0 %2 92.86a
lungs 0 0 0 0 50 0 0 50 100.00a
muscle 0 1 0 2 1 31 1 36 86.11a
skin 0 % 0 0 1 0 17 22 77.27a
Total 37 %5 28 %8 59 37 18 272 88.2%a

Table 3: Performance of the model on the validation set

Te maximum accuracy was seen in recognising the classes ‘brain’ and ‘liver’. Figure 1-% shows a 
few images correctly identifed by the model.

Figure 1: Muscle tissue correctly identifed by the model

Figure 2: Kidney correctly identifed by the model
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Figure 3: Intestine correctly identifed by the model

Figure 4: Liver correctly identifed by the model

Figure 5: Muscle tissue wrongly classifed by the model as kidney
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Figure 6: Intestine wrongly classifed by the modell this might be due to the fact that the patern of an
epithelial layer overlying a fbrovascular stroma is common to both skin and intestine

Figure 7: Kidney wrongly classifed as liverl the single small glomerulus seems to have been ignored 
by the model

Figure 8: Kidney wrongly classifed as musclel the deeply eosinophilic staining produces a wrong 
impression of muscle tissue
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Discussion
Te analysis  of  histologic  images  is  a  non  trivial  machine  learning  problem,  because  of  the
inherent variability in biological tissues. No two foci from any tissue are exactly the same; even in
a homogeneous organ like liver, one with well defned compact lobular architecture, arrangement
of hepatocytes around central veins radiating towards portal triads show signifcant variability in
each focus. Tis variability in architecture is present in all  bodily tissues. For example, in the
intestines, there might be signifcant variability in villus: crypt ratio along the length of the gastro
intestinal tract.[17] Similarly, depending on site of biopsy, histology of skin might show variable
thickness of epidermis and stratum corneum. A learning model, either human or machine, must
learn to take all the morphologic variability in consideration and learn the essential features of
histomorphology which give tissues their identity.

Te difculties in histologic image analysis have been enumerated by Komura et al.[18] One of the
major difculties encountered in Whole Slide Image (WSI) analysis is lack of labeled images. A
pathologist must manually label a region of interest (ROI) an a WSI for the machine to train. We
have not used whole slide images, but random foci from the slide to train the machine learning
model. Te entire image, not just a ROI, was used as input to the model. Te other difculty is
that of magnifcation, because depending on magnifcation, the same tissue might show diferent
histologic paterns. We have photographed all images at 10x magnifcation to have a consistent
histologic patern for the model to learn.

A similar  study by Kiefer  et  al  used grayscale  histopathology images of  1000 x  1000 pixels,
belonging to 2% classes,  achieving 7%.87a accuracy[13] on 2% classes, using the feature vector from
the last layer of a pretrained neural network. Tey concluded that the performance of a pretrained
network  and a  network built  specifcally  for  the  task were  comparable.  We have  used  color
images and a pretrained CNN (VGG16),  but altered its  fnal,  fully connected layers so that it
produces only one of seven outputs. Tis model has achieved 88a accuracy, although on a smaller
dataset than Kiefer et al.

Analysis of the predictions made by the model shows that the model has wrongly classifed 1%
images  of  kidney,  predicting  them  as  ‘liver’  (07),  ‘lungs’  (03)  or  ‘muscle’  (0%).  Tis  may  be
atributable to the deeply eosinophilic renal tubules in these images as well as overfting on the
‘liver’  class.  Kidney tissue  is  readily  recognisable  by  human observers  due  to  the  prominent

Figure 9: Te model fails to classify this image (from kidney  in any defnite categoryl there is deep 
eosinophilia resembling muscle, but also artifactual blank spaces – similar to alveoli in lungs
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glomeruli, even if a single glomerulus is present. Te fact that the model has ofen missed out on
kidney tissue indicates a diference between how a human and a machine perceives a histologic
image. 

Analysis of the deeper layers of the model reveals a patern. Figures 10-12 shows example images
from the validation set with the frst 3 slices of the frst four layers of the CNN. Te intermediate
layers show the process of convolution, and how the features of the image are used to arrive at a
simplifed array of numbers. Figure 10 & 11, having at least 03 full or partial glomeruli, were
classifed correctly  as  kidney;  whereas,  fgure 12 – having only one small  glomerulus  – was
recognised as liver. Interestingly, the artifactual tear in the tissue (Figure 11) during sectioning has
been lost over successive intermediate layers, indicating that the CNN is not afected by minor
artifacts introduced during sectioning.

Figure 10: Inner layers of the network while correctly classifying an image from kidneyl the glomeruli
are well preserved till the third layer

Figure 11: Another image from kidney, correctly classifed, with activations in inner layersl note the 
presence of glomerular structures in the third layer

Figure 12: Kidney wrongly classifed as liver, with activations in inner layersl the single small 
glomerulus is not preserved till the third layer
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Figure 1% shows an image (muscle) which was wrongly classifed by the CNN as ‘intestine’. Te
deeper  layers  of  the CNN, while  operating in this  image,  produce a  characteristic  patern of
smooth muscle layering around intestinal epithelia, which might be the cause of this error. Again,
in fgure 15, the artifactual blank spaces in the image has lead to the wrong classifcation as ‘lung’ 

Conclusion
Te results of the present study indicates that a convolutional neural network might be trained in
histology similar to a trainee pathologist, and is prone to similar kind of error as that of the

Figure 13: Kidney wrongly classifed as lungl possibly due to the artifactual blank space (may have 
been mistaken for an alveolus 

Figure 14: Image from muscle tissue wrongly classifed as intestinel the layered patern of muscle 
fbers in this image is reminiscent of intestinal smooth muscles

Figure 15: Muscle tissue wrongly classifed as lungl note the abundant artifactual blank spaces in the 
original image
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beginner human pathologist. However, the study represents the frst step towards developing a
machine learning model as a generalised histopathological image classifer.
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