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ABSTRACT 
 
Machine learning-based clinical decision support tools for sepsis create opportunities to identify 
at-risk patients and initiate treatments earlier, critical to improving sepsis outcomes. Increasing 
use of such systems necessitates quantifying and understanding provider adoption. Using real-
time provider interactions with a sepsis early detection tool (Targeted Real-time Early Warning 
System) deployed at five hospitals over a two-year period (469,419 screened encounters, 9,805 
(2.1%) retrospectively-identified sepsis cases), we found high sensitivity (82% of sepsis cases 
identified), high adoption rates (89% of alerts evaluated by a physician or advanced practice 
provider and 38% of evaluated alerts confirmed) and an association between use of the tool and 
earlier treatment of sepsis patients (1.85 (95% CI:1.66-2.00) hour reduction in median time to 
first antibiotics order). Further, we found that provider-related factors were strongly associated 
with adoption. Beyond improving system performance, efforts to improve adoption should focus 
on provider knowledge, experience, and perceptions of the system. 
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Clinical decision support (CDS) tools that leverage machine learning techniques are becoming 
more common. They have been used to facilitate early recognition of disease states, reduce 
diagnostic errors, and improve patient outcomes1–4. Of particular interest are tools that can 
identify at-risk patients early in the progression of a disease, allowing providers to intervene 
earlier and potentially improve outcomes. While traditional CDS tools use a small number of 
criteria to assess patient risk, tools informed by machine learning techniques use large amounts 
of high-dimensional historical data to learn patterns indicative of the disease of interest. They 
can also incorporate individual-specific features (e.g., comorbid conditions and patient history) 
in the algorithm. In retrospective evaluations, these systems are generally more precise and 
identify patients earlier in their disease trajectory5–9. Improved identification of disease, though, 
contributes little if the output is not adopted by providers10–14, making user adoption key to 
improving patient outcomes. Studies to date have shown limited success gaining widespread 
adoption15–21, with systems typically reporting users responding to 6-45% of alerts or requiring 
dedicated staff to review alerts and having low to moderate impact on provider practice22–24. 
However, there is limited evidence on how best to design and integrate such tools in order to 
improve adoption and increase impact on clinical practice. 
 
Adoption of automated systems in non-clinical settings depends on several factors including 
personal characteristics and preferences of the user, characteristics of the automated system 
(e.g., CDS tool), and the environment in which the technology is used25. In clinical simulations in 
a ‘laboratory’ setting, where providers are shown simulated CDS recommendations for exemplar 
patients, studies have found that interface design26, provider expertise27, and clinical time 
constraints28 all play a role in adoption of the tool. However, in the real-world clinical setting, 
there are additional barriers to system adoption, including unpredictable variations in workflow, 
changes in personnel, and high-stakes consequences of incorrect decisions, that are difficult to 
replicate in simulations29. In this study, we sought to identify which patient, provider, and 
environmental factors influence adoption of a CDS tool in the real-world setting and could be 
modified to increase adoption of these systems. 
 
We examined the clinical adoption of a deployed CDS tool for early detection of sepsis called 
the Targeted Real-time Early Warning System (TREWS). Sepsis is a life-threatening condition 
in which systemic infection and the host’s inflammatory response cause organ dysfunction30. 
Early recognition of sepsis is critical for successful treatment and, in particular, early 
administration of antibiotics is associated with decreased mortality31–33. 
 
TREWS was deployed in the Johns Hopkins Health System’s two academic and three 
community hospitals in the Maryland/Washington D.C. area. Using electronic health record data 
collected between April 2018 and March 2020, we set out to answer three questions regarding 
clinical adoption of TREWS. First, to what degree was the tool adopted by clinicians? Second, 
was adoption associated with improved patient care? Answering this question is critical to 
understanding the success or failure of a CDS tool deployment. Third, what patient, provider, 
and environmental factors were associated with adoption of the tool? As additional predictive 
systems are deployed for facilitating proactive care, understanding the extent to which these 
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factors impact provider adoption and dismissal of alerts for true cases can instruct how these 
systems should be designed.  
 
 
RESULTS 
 
When a TREWS alert occurs on a patient, the provider (physician or advanced practice 
provider) has the option to open the alert and view the tool’s analysis. The bedside provider can 
then choose to enter an evaluation via the TREWS interface indicating whether or not they 
believe the patient currently has sepsis (see Methods for additional details). A primary goal of 
TREWS is to trigger such patient evaluations and we will use them as our primary measure of 
system adoption throughout. 
 
Study question 1: Overall adoption 
 
During the study period, the TREWS system screened 469,419 patient encounters, 9,805 
(2.1%) of which were retrospectively identified as having sepsis using the criteria listed for 
sepsis-related organ dysfunction in electronic health record (EHR)-based sepsis 
phenotyping34,35 (Figure 1). The system flagged 31,591 (6.7%) patient encounters for sepsis 
screening; average daily alert counts for each hospital are shown in Supplemental Table 1. Of 
the 9,805 patient encounters with sepsis, 8,033 (82%) of them were flagged by the tool. The 
sample characteristics for these encounters are reported in Supplemental Table 2.  
 
A total of 1,965 providers entered at least one evaluation in TREWS during the study period. 
Among all patient encounters with an alert, 28,243 (89%) had a provider evaluation entered in 
the TREWS page, with 16,768 (53%) and 22,982 (73%) receiving evaluation within 1 and 3 
hours, respectively. Alerts on patients with sepsis were evaluated at similar rates. Of the 
patients who had their alert evaluated at some point, 10,644 (38%) had their alert confirmed 
(i.e., the provider entered that the patient had sepsis at the time of evaluation). Among patients 
who had their alert evaluated and were retrospectively identified as having sepsis, 5,388 (71%) 
had their alert confirmed. The rate of confirmation was near constant across all time ranges 
considered. A full description of the system and its workflow is provided in the Online Methods. 
 
Study question 2: Impact of Adoption on Timing of Antibiotic Orders 
 
Based on current treatment recommendations for sepsis36, we consider an evaluation to be 
‘timely’ if it was entered within the TREWS page within 3 hours after the TREWS alert. Among 
retrospectively-identified sepsis patients, having a timely evaluation entered by a physician was 
associated with a 1.12 (95% CI 0.87 - 1.30) hour reduction in the adjusted median time from 
alert to first antibiotic order compared with not having a timely evaluation entered in the TREWS 
tool (Table 3). Further, timely alert confirmation (i.e., evaluated and confirmed within the 
TREWS tool within 3 hours of the TREWS alert) was associated with a 1.85 (95% CI 1.66 - 
2.00) hour reduction in the adjusted median time from alert to antibiotic order compared to when 
alerts were not evaluated or were dismissed (Table 3).  
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Study question 3.1: Factors associated with alert adoption 
 
To further understand alert adoption, we examined which patient, provider, and environmental 
factors were associated with timely alert evaluation among sepsis patients. Among 3,775 sepsis 
patients without an antibiotic order prior to their alert and antibiotics administered within 24 
hours after the alert, 3,035 had an evaluation entered within 3 hours and 740 did not. Among 
patient factors, advanced age (>70 years) was significantly associated with an increased 
likelihood of entering a timely evaluation; the remaining patient factors were not significantly 
associated (Table 4). Among environmental factors, alert occurrence during the 7am - 3pm shift 
was associated with increased likelihood of evaluating the alert. Alert occurrences between 3pm 
- 11pm and 11pm - 3am and high admission volume were not significantly associated with 
adoption. However, high alert volume in the previous 24 hours was associated with decreased 
likelihood of evaluating the alert. Significance of the ‘High alert level’ factor did not change when 
a shorter time-window of 6 hours was used. Provider factors had the strongest associations with 
alert adoption. Emergency department providers and providers with a recent interaction with the 
alert had the highest likelihood of entering a timely evaluation with adjusted risk ratios of 1.22 
(95% CI 1.14 -1.32) and 1.22 (95% CI 1.19 - 1.26), respectively. A complete list of factors 
considered is provided in Table 1. 
 
Study question 3.2: Factors associated with incorrect alert dismissal 
 
Even when a provider responds to an alert, sepsis may not be recognized. As such, we 
examined which patient, provider, and environmental factors were associated with alert 
dismissal on sepsis patients who received a substantial antibiotic course (4+ continuous days of 
an antibiotics or antibiotics until death or transfer to an acute care facility). See Online Methods 
for details. Among the alerts on included patients with sepsis (N=7,621), 2,463 received a timely 
evaluation and met the additional 4+ antibiotic day restriction (1,751 confirmed alerts and 712 
dismissed alerts). Among patient factors, the absence of key sepsis symptoms and younger age 
were significantly associated with an increase in the likelihood of dismissing the alert (Table 5). 
High acute general severity was also associated with an increase in the likelihood of dismissing 
the alert. Other patient factors were not significantly associated with alert dismissal. Among 
provider factors, working in the ED and recent interactions with alerts were both associated with 
decreased likelihood of dismissal and, among environmental factors, alerts occurring during the 
evening or overnight shifts (3pm - 11pm or 11pm - 7am) were more likely to be dismissed.  
 
 
DISCUSSION 
 
In this study, we characterized the adoption and clinical impact of TREWS, a machine learning-
based clinical decision support system for sepsis, and evaluated the extent to which patient 
presentation, environmental, and provider-related factors were associated with provider reaction 
to the alert. TREWS was adopted at a high rate, with providers entering evaluations for 89% of 
alerts (73% of alerts within 3 hours), with 37-38% of those patients confirmed by the provider as 
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having sepsis. Timely confirmation of alerts was associated with a shorter time from alert to first 
antibiotic order (-1.85 hours (CI -2.00, -1.66)) among patients with sepsis. Studies have found 
that every hour delay in sepsis treatment is associated with significant increase in 
mortality32,33,37; the observed reduction in time to antibiotics suggests that use of the tool as 
intended can lead to faster treatment among sepsis patients and improved clinical outcomes. 
Analysis of the associations between patient presentation, alert environment, and provider 
characteristics and real-time provider response to alerts, showed that provider characteristics 
had the strongest association with the decision to evaluate the alert. However, among alerts 
with timely adoption, certain patient, provider, and environmental factors were significantly 
associated with a provider’s confirmation of the alert. 
 
In sepsis, based on promising retrospective validation, a growing number of tools have been 
deployed prospectively20,38–43. A subset of these have shown process impact38,40,41 but had to 
rely on dedicated staff to manage the high alert volumes and false alarm rates. Employing 
dedicated staff can ensure adoption, but poses challenges for scaling CDS to monitoring 
multiple conditions. Instead, deploying reliable CDS with low alert volumes that are designed to 
integrate into the clinical workflow and encourage adoption can enable bedside implementation 
that improves responsiveness and value of the alerts, while both reducing alert burden and the 
cost of additional staff. 
 
The high overall rate of provider response to the TREWS alert observed in this study (a provider 
entered an evaluation in response to 89% of alerts) is promising given the documented 
challenges to gaining adoption of such systems11,20,21,44–46. Alert burden and the perceived 
accuracy of a CDS tool both play major roles in tool adoption and trust15,16,29 and tuning a 
system to achieve the highest possible performance remains critical to a successful 
deployment. One reason for the high observed adoption of TREWS may be the high predictive 
performance and low alert burden of TREWS relative to comparable deployed systems. Even 
with a sensitivity of 82%, precision was high with 1 in 3 evaluated alerts confirmed by a provider 
to have sepsis. Past deployed systems have reported significantly lower predictive performance 
on similar hospital populations20,42,45. For example, one of the most widely deployed sepsis early 
warning systems had a sensitivity of only 33% and a precision of 2.4% (1 in 46 alerts within 24 
hours of sepsis onset)42. Additionally, ease of use and integration into the workflow have been 
noted as important factors influencing adoption26,28,47,48. Availability of TREWS within a 
provider’s EHR workflow and the inclusion of alert context to avoid “black box” presentation may 
have also improved overall adoption of the tool. 
 
Provider characteristics had the strongest association with the likelihood of evaluating a TREWS 
alert. To a lesser extent, environmental factors like time of day were also associated with the 
likelihood of evaluation, and we did not find an association between patient presentation and 
alert evaluation. Providers who work in the ED or who had previously interacted with the tool 
and entered an evaluation, were most likely to evaluate a new alert. There are several possible 
reasons for these results. Some providers may be more willing to adopt new CDS tools than 
others; this tendency is sometimes referred to as “dispositional trust”49,50. Additionally, increased 
familiarity with the system may add to its perceived ease of use or accuracy. Since most first 
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alerts occurred in the ED, those providers may naturally get more exposure to TREWS and be 
more familiar with the system. This is an example of “learned trust”50. Alternatively, the 
environment of the ED differs from inpatient units in several relevant ways. First, the higher 
degree of uncertainty around patients and emphasis on protocolized sepsis treatment (the 
Centers for Medicare and Medicaid Services’ ‘SEP-1 sepsis bundle’) in the ED may increase 
provider willingness to utilize the alert. Second, the workflow within the ED requires that 
providers make more consistent contact with the EHR system, increasing the likelihood that 
providers see and thus respond to alerts. Both of these are examples of “situational trust”50. 
Creating opportunities to interact with and practice using TREWS in a simulated setting or 
adapting the alert policy and interface design for different types of providers could help increase 
familiarity and increase adoption. Finally, providers who work in the ED will generally see more 
cases and have less information on each individual case. Previous work has shown that an 
increased workload leads to increased reliance on automated tools50 and thus, increased 
adoption in the ED may be expected and appropriate to the treatment context. 
 
The lack of an association between patient factors and the likelihood of a provider entering a 
timely evaluation could be viewed as promising. It suggests that providers are willing to engage 
with the system even in cases that do not display an obvious presentation of sepsis. However, 
patient presentation was associated with alert dismissal on sepsis patients. We found that alerts 
occurring on sepsis patients who did not have certain key sepsis symptoms or with higher acute 
complexity at the time of the alert, were more likely to have their alert dismissed. It makes sense 
that alerts are more likely to be confirmed when there is clear support for the diagnosis and a 
lack of alternate explanation. However, this may pose a problem in cases where patients have 
less typical presentations of sepsis or where the alert occurs in advance of those symptoms 
developing. Further, if TREWS is perceived as less accurate in cases with high general acute 
severity, adoption may be lower in these cases as well. Education to increase awareness about 
alternate presentations of sepsis or situations where patient complexity may mask developing 
sepsis symptoms, may help improve provider trust in the system and understanding that alerts 
are delivering valuable information.  
 
Among environmental factors, alert dismissal was most strongly associated with time of day, 
with alerts occurring during the 3pm-11pm or 11pm-7am shifts more likely to be dismissed, even 
after accounting for patient presentation. This may reflect an association between time of day 
and unit volume. In the ED, total patient volume and workload generally increases throughout 
the day, peaking in the evening, but remaining high even through 2-3am. Greater workload 
during the later shifts could contribute to a perception that dismissing the alert is faster than 
evaluating and completing related documentation on the TREWS page. Increasing awareness 
about the benefits of timely evaluation and creating supplemental support teams during peak 
hours, could improve uptake of ML-based CDS systems during these times. 
 
During the study period, 1,965 providers responded to TREWS alerts. To our knowledge, this is 
the first prospective study of a deployed machine learning-based bedside clinical tool that 
quantitatively studies and achieves high provider adoption. Adoption of CDS has been studied 
across a wide range of clinical applications24,51. These studies generally report low to moderate 
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adoption, with clinicians responding to anywhere from 6 to 45% of alerts depending on the 
clinical task, interface design, and workflow integration22–24,52. As expected, the lack of adoption 
typically translates to low to moderate impact on clinical processes24,51. In order to better 
understand factors impacting the adoption of CDS, previous studies of deployed systems have 
used post-hoc surveys or interviews to gauge provider impressions28,44,53; however, provider 
impressions can differ from their actual use4,18,27. A common alternative is to study real-time 
provider response using a clinical simulation26,27. This allows researchers to study the use of the 
tool under varying design choices. However, the simulated environment is unable to capture the 
full complexity of high-risk decision-making in a live-care delivery setting like the hospital 
environment, where there are many competing time and attention demands4,15,16,29. As a result, 
the factors found to influence response may not generalize to the practice setting. By using real-
time interactions with a deployed clinical support system, we were able to assess the extent to 
which different factors influenced real-time decision making and treatment at a large scale and 
inform future system design. 
 
This study had several limitations. First, there is a lack of consensus on how best to identify 
sepsis retrospectively. In order to maximize the reliability of sepsis labels, we identified sepsis 
cases using an EHR-based sepsis phenotype which accounts for confounding comorbidities 
and has shown increased sensitivity and precision compared to alternatives34,35. However, we 
cannot completely exclude the possibility that some patients had non-infectious syndromes 
mimicking sepsis. We also added requirements for a significant antibiotic course when 
identifying incorrect dismissals of alerts on identified sepsis cases. Second, we relied on 
International Classification of Diseases-10 (ICD-10) codes to identify the presence of chronic 
conditions and alternative diagnoses. While common in large retrospective studies, this may 
introduce some bias from coding practices. Third, all hospitals in this study were part of the 
same health system. However, the study includes a large cohort representing a diverse patient 
population from both academic and community hospitals. Fourth, this study focuses on 
quantitative evaluation of provider interactions that were recorded within the tool itself and does 
not capture any sepsis-related discussions or actions that occurred outside the tool. Finally, this 
study assesses the extent to which each of the factors affects adoption in the context of the 
deployed TREWS system, which has specific performance characteristics, interface 
presentation, and policy decisions about how to integrate alerts into clinical workflow. The 
relative importance of different factors may vary depending on the performance characteristics 
of the system. Additionally, increased deployment of data driven CDS systems may change 
provider attitudes in the future.  
  
An additional study using qualitative human factors tools to study provider perception is 
underway. While we incorporated information about provider type and experience in the tool, we 
were unable to access additional information about provider background and attitudes towards 
CDS. Further study is needed to understand how these additional characteristics may affect 
overall adoption and the potential for alert adoption to lead to over-reliance on the alerts (e.g., 
over-prescription of antibiotics in response to sepsis alerts). Quantifying over-prescription 
resulting from a system is important for understanding the potential harms of a system54; 
however, we currently lack metrics to assess over-prescription and leave this to future work. 
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CONCLUSION 
 
Using real-time interactions with a ML-based sepsis support system, we characterized the 
adoption and clinical impact of the tool and identified key factors related to failure to use the 
tool. Overall, TREWS showed high provider adoption and significant impact on a key clinical 
process metric of reducing time to antibiotics for sepsis patients. Analysis of factors driving 
adoption showed provider-related factors, such as past experience with the system and working 
in the emergency department where providers had increased exposure to the system had the 
strongest association with willingness to evaluate alerts. While patient presentation factors like 
patient severity and absence of key sepsis symptoms were not significantly associated with the 
likelihood of evaluation, they did impact the likelihood of dismissing the alert. Education to 
increase awareness of how patient presentation may encourage providers to accept 
recommendations on sepsis cases with less common presentation. In addition to improving 
model performance, future ML-based systems should focus on the provider in their design 
choices to encourage adoption and realize the potential benefit of these systems.  
 
 
METHODS 
 
This study was approved by the Johns Hopkins University internal review board (IRB No. 
00252594) and a waiver of consent was obtained. 
 
Targeted Real-time Early Warning System (TREWS) 
 
Description of the TREWS Model 
TREWS is a machine learning-based early warning system and decision support tool that was 
trained using historical electronic health record (EHR) data to recognize sepsis early in its 
progression. The system uses routinely-collected laboratory measurements, vital signs, notes, 
medication history (excludes antibiotics), procedure history, and clinical history from the EHR to 
generate patient-specific sepsis risk score and alerts6,55. To improve alert performance, the 
system uses several machine learning-based techniques for tuning to patient context56, handling 
missing data57, suppressing untrustworthy alerts58 and improving reliability and 
transportability59,60. 
 
Deployment Process  
Prior to deployment at a new hospital, the alert threshold was set to achieve an 80% sensitivity 
at that hospital based on applying the model to historical data from that hospital. The same 
model parameters were used at each site. The deployment at each hospital was done in three 
steps. First, a team of educators including clinicians from the site and members of the tool 
development team, met with clinicians to explain the tools functionality, identify clinical 
champions, and to verify the process for clinical workflow integration. During this period, the 
alert was active in the background and the technical team monitored the alert volume across 
different subpopulations in the hospital. Second, deployment was piloted in order to verify the 
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integration of the system at each site with a subset of the users. Finally, the alert was activated 
in all ED and inpatient units and the deployment entered a maintenance stage. Throughout the 
deployment process and maintenance period, the technical and clinical teams monitored alert 
performance and provider use in different units through weekly emails summarizing alert 
interactions, performance, and alert volume. Alerts included in the analyses in this study 
occurred after activating the alert in all units. 
 
TREWS Workflow 
To minimize workflow interruptions and alert fatigue, TREWS uses a passive approach to signal 
new alerts. Instead of triggering a pop-up box or a pager message, the system flags patients 
visually within the EHR, but does not actively interrupt the provider or require an immediate 
response before allowing the provider to continue using the EHR. Once the alert appears (e.g., 
as an icon within the clinician’s patient list), a provider (physician or advanced practice provider) 
can click an icon to address the alert leading to a real-time workflow within the patient chart. 
From within this workflow, the provider can view summary data gathered by TREWS including 
factors leading to why the alert was generated, probability measures indicating likelihood of 
mortality and sepsis, and the status of sepsis-related treatments. Providers are asked to enter 
an evaluation of whether or not they believe the patient currently has sepsis; however, the 
response is not mandated. A nurse can also pre-screen an alert and escalate it to a provider if 
there are indications of new or worsening infection or altered mental status. There are three 
levels of alert response in the TREWS workflow. First is the choice to evaluate the patient 
following an alert and to enter an evaluation within the tool. Second is a judgement of whether 
the provider believes the alert is correct and if the patient does, indeed, have sepsis. Third is 
treatment of the patient, which will necessarily reflect their belief in the alert and diagnosis of 
the patient. 
  
Study Population 
 
The study population included all adults who presented to the emergency department (ED) or 
were admitted to a medical or surgical unit at any of five hospitals (three community and two 
academic hospitals) in the Maryland-DC area that either 1) had a prospective TREWS alert or 2) 
were retrospectively identified as having sepsis based on specified criteria. The included 
hospitals and date ranges were: Howard County General Hospital (April 1, 2018 - March 31, 
2020), Suburban Hospital (October 1, 2018 - March 31, 2020), Bayview Medical Center 
(February 1, 2019 - March 31, 2020), Johns Hopkins Hospital (April 1, 2019 - March 31, 2020), 
and Sibley Memorial Hospital (May 1, 2019 - March 31, 2020). The start date at each hospital 
was based on the timing of the staggered deployment across the five sites. We treated each 
time a patient presented to the ED or was admitted as a unique patient encounter and included 
each encounter separately. Population characteristics and overall adoption rates (Study 
question 1) were estimated using all patient encounters with an alert or sepsis diagnosis during 
this period. Based on a refinement of the criteria used in the third sepsis consensus definition 
(Sepsis-3)30 and the CDC Adult Sepsis Event Toolkit sepsis criteria61, sepsis cases were 
retrospectively identified using EHR-based sepsis phenotyping, which identifies patients with 
sepsis based on clinical symptoms and orders indicating suspected infection and related acute 
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organ dysfunction within 48 hours of each other, while also adjusting for the effects of 
confounding comorbidities on these criteria34,35.  
 
When evaluating the association between adoption and clinical care and between various 
factors and adoption or confirmation (Study questions 2, 3.1, and 3.2) we only included sepsis 
patients who received an alert in the ED or an inpatient unit (e.g., patients who had their alert 
before being assigned a bed in the ED were excluded) and had not received an antibiotic order 
at the time of their alert. This was done to restrict the analysis to cases where there was 
opportunity for the alert to impact care decisions. To further ensure that the antibiotic order was 
related to the alert, we only included patients who received antibiotics within 24 hours after the 
alert.  
 
Key Definitions 
 
Since the goal of the early warning system is to trigger an evaluation of the patient for sepsis, 
our primary measure of adoption was whether or not the provider entered a patient evaluation 
(either confirmed as having sepsis or dismissed as not having sepsis) within the tool following 
the alert. We considered an evaluation “timely” if it was entered within three hours after the 
alert. The three hour window was chosen to match the treatment window recommended by the 
Centers for Medicare and Medicaid Services (CMS) sepsis core measure (SEP-1) and the 
Surviving Sepsis Campaign guidelines36,62,63. Since providers were not required to respond to 
alerts within the TREWS interface, this definition may not capture all patient evaluations 
resulting from the TREWS alerts (e.g., a provider may see the alert in the EHR and choose to 
document and initiate sepsis treatment without documenting it in the tool interface). However, 
since the vast majority of alerts had an evaluation entered in our study (see the Results section 
for more details), we consider this to be a strong proxy measure. 
 
Study Questions and Approach 
 
Study question 1: Assessing the degree of adoption 
  
To understand the alerting behavior of TREWS, we first report the number of patients screened 
by the system and the percentage of encounters with sepsis and/or with an alert. We then 
report the number and percentage of alerts with evaluations entered within 1, 3, and 6 hours 
after the alert or ever evaluated to understand the adoption of TREWS. Additionally, among 
alerts with an evaluation entered, we report the percentage that were confirmed prospectively 
as having sepsis. We report these numbers for all patients with an alert and patients who were 
retrospectively identified as having sepsis based on automated case identification, as described 
above34.  
  
Study question 2: Assessing the association between adoption and patient care 
 
To assess the association between tool adoption and patient care, we examine the extent to 
which using the TREWS page to record an evaluation for sepsis within three hours after the 
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alert was associated with differences in the timing of first antibiotic administration, a key element 
of sepsis treatment32,33,64. We estimated the change in median hours from alert to antibiotics 
using a quantile regression. We estimated both the unadjusted median and an adjusted median 
that accounts for the adjustment covariates listed below (Table 1). We repeated this analysis to 
compare the adjusted risk difference between confirmed alerts vs those where the alert was 
either not evaluated within three hours or was dismissed. All models and statistics were 
computed using Python (version 3.7.6). The quantile regression was computed using the 
StatsModels Python package (version v0.12.2)65. We used bootstrap resampling with 3,775 
bootstrap samples and 100 iterations to compute 95% confidence intervals (CI). 
 
Study question 3.1: Assessing which patient, provider, and environmental factors are associated 
with alert adoption 
  
To assess the impact on alert response of patient presentation and history, unit and alert 
environment factors, and provider characteristics on alert response, we measured the 
association between these factors and whether or not a patient evaluation was entered within 
three hours after the alert. Specific factors that might affect alert response were identified based 
on clinical feedback from emergency department, intensive care unit, and general ward 
providers actively using the tool and who had experience managing sepsis patients (Table 1). 
Patient factors included age, chronic complexity as measured by age and the Charlson 
Comorbidity Index (CCI)66, and acute severity as measured by the Simplified Acute Physiology 
Score (SAPS) II (Table 1). We also accounted for presence of sepsis-related symptoms, an 
alternative diagnosis that may complicate sepsis diagnosis, and the presence of chronic 
condition(s), such as COPD, CHF, or CKD, that may make a provider hesitant to follow the 
sepsis bundle guidelines for giving high-volume fluids. We characterized environmental factors 
based on the shift during which the alert occurs, the TREWS alert burden in the unit, computed 
as the number of alerts that occurred in that unit in the past 24 hours, and the admit volume 
computed as the number of new patients admitted to that unit in the past 3 hours. Provider 
factors included prior experience with TREWS and location of care provision (emergency 
department vs inpatient). Due to the low number of inpatient alerts, we were unable to further 
divide inpatient providers into medical and surgical providers. 
  
For each factor, we estimated the adjusted and unadjusted risk ratio using a logistic regression 
model67. The adjusted model included all listed patient presentation, environmental, and 
provider factors (Table 1). We used nonparametric bootstrap resampling with 100 bootstrap 
replicates to estimate percentile-based 95% CIs. All statistical analyses were done in Python 
(version 3.7.6). 
 
Study question 3.2: Assessing which patient, provider, and environmental factors are associated 
with alert dismissal on sepsis patients 
  
To assess which patient, provider, and environmental presentation factors are associated with a 
provider’s decision to dismiss an alert on a patient later identified as having sepsis, we 
estimated the association between these factors and the evaluation entered for sepsis patients 
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with an alert entered within three hours. As before, we excluded all patients who received an 
antibiotic order prior to the alert and also excluded patients with no evaluation within three 
hours. Since this question examines factors related to incorrect dismissal, we chose to use a 
more conservative inclusion criteria and restricted the study population to only the sepsis 
patients who received a substantial antibiotic course, namely four consecutive days of 
antibiotics or antibiotics up until the time of in-hospital death, discharge to hospice, or transfer to 
another acute care facility. Antibiotics included any of the antibiotics listed in the CMS SEP-1 
core measure. We refer to this criteria going forward as having “4+ qualifying antibiotic days”. 
We assessed all previously described patient factors and adjusted for all patient, provider, and 
environmental factors. Adjusted risk ratios and associated confidence intervals were estimated 
as above. 
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FIGURE LEGENDS 
 
Figure 1. Included Study Population by Study Question: The flowchart shows the included 
population for each study question. Study Question 1 included 469,419 screened patients. 
Study Questions 2 and 3.1 included 3,775 patients with sepsis and an alert who had no 
antibiotic orders prior to the alert, but received antibiotics within 24 hours after the alert. Study 
Question 3.2 included the 2,463 of these who had an evaluation entered within 3 hours of the 
alert and also received a substantial antibiotics course.  
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Table 1. Potential Influencers of Provider Response 

Factor Definition Rationale for Inclusion 

Patient Presentation Factors 

Absence of 
Key Sepsis 
Symptoms 

True if no more than one of the 
following are met prior to the alert: 
lactate > 2.0 mmol/L, WBC > 12 mu/L 
or WBC < 4 mu/L, and temperature > 
38.0oC or temperature < 36.0oC 

These three criteria are commonly 
associated with infection and 
sepsis. Providers may be more 
willing to dismiss alerts that 
present without multiple of these 
symptoms  

Alternative 
Diagnosis 

True if any of the following diagnoses 
were made during the patient’s stay 
based on the presence of ICD-10 
codes: myocardial infarction, stroke, 
acute respiratory failure 

Presence of an alternative 
diagnosis may increase the 
complexity of the diagnostic 
process by masking sepsis 
symptoms  

Condition at 
Risk for Fluid 
Overload 

True if any of the following chronic 
conditions were present based on the 
presence of ICD-10 codes: chronic 
obstructive pulmonary disorder 
(COPD), chronic kidney disease 
(CKD), congestive heart failure (CHF) 

Confirming the alert is related to 
initiation of the sepsis bundle. 
Providers may dismiss the alert 
on patients who are at risk for 
fluid overload because they do 
not want to initiate the sepsis 
bundle fluid requirement 

Acute 
General 
Severity 

The adjustment used the raw 
Simplified Acute Physiology Score 
(SAPS) II score. For the effect 
estimation, this feature was true if 
SAPS II was above the observed 
median 

Patients with higher SAPS II may 
be more complex and have other 
conditions that mask sepsis 
symptoms 

Chronic 
Complexity 

The adjustment used the raw Charlson 
Comorbidity Index (CCI) computed 
without age as a factor, since age is 
included as a separate factor. For the 
effect estimation, this feature was true 
if CCI excluding age, was above the 
observed median CCI in the population 

Providers may have a higher 
threshold for dismissing an alert 
on a patient with more 
comorbidities because they are at 
a higher risk of deterioration 

Advanced 
Age 

Age > 70 years Providers may have a higher 
threshold for dismissing an alert 
on an older patient because they 
are at a higher risk of 
deterioration 
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Environmental Factors 

High Alert 
Level 

True if the total number of TREWS 
alerts in the past 24 hours in that unit 
exceeded the median for that unit and 
is greater than 2 alerts in the past 24 
hours 

Providers may have alert fatigue if 
there have been a lot of alerts in 
the past day and be less likely to 
respond to new alerts 

High Admit 
Volume 

True if the total number of admissions 
in the past 3 hours in that unit 
exceeded the median for that unit and 
the number of new admissions is 
greater than 2 

Providers are more busy when 
there are many new admissions 
to the unit and may be less likely 
to respond to alerts in a timely 
way 

Alert 
Occurred 
7am-3pm 

True if alert occurs between 7am and 
3pm 

This corresponds to the 
morning/early afternoon hospital 
shift, which tends to have fewer 
new admissions in most units 

Alert 
Occurred 
3pm-11pm 

True if alert occurs between 3pm and 
11pm 

This corresponds to the late 
afternoon/evening shift, which 
tends to have increased rates of 
new admissions and buildup of 
volume in the ED 

Alert 
Occurred 
11pm-7am 

True if alert occurs between 11pm and 
7am 

This corresponds to the overnight 
shift, which tends to have higher 
total patient volume in the ED 
from buildup through the day, 
sparser provider coverage, and 
fewer new admissions 

Provider Factors 

ED provider True if provider caring for the patient at 
the time of the alert was an ED 
provider 

ED providers interact with patients 
earlier in their stay when there is 
more uncertainty and have a 
higher patient load per hour 

Provider 
Experience w/ 
Alert 

True if provider evaluated a previous 
alert within the past 30 days 

Providers who are more familiar 
with the alert, may be more aware 
of the alert and be more likely to 
respond again 
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Table 2. Provider Engagement with Alerts inside the TREWS Page 

 
 

Alerts with provider evaluation 
entered  

(N=31,591) 

Alerts on Sepsis Cases*  
(% of alerts on sepsis cases, 

N=8,033) 

Time from alert 
to response 

All Alerts 
(% of alerts) 

Confirmed 
Alerts  

(% of alerts) 

All Alerts 
(% of alerts on 
sepsis cases) 

Confirmed 
Alerts 

(% of evaluated 
alerts on sepsis 

cases) 

Within 1 hour  16,768 (53%) 6,184 (37%) 4,343 (54%) 3,162 (73%) 

Within 3 hours 22,982 (73%) 8,587 (37%) 5,943 (74%) 4,311 (73%) 

Within 6 hours 25,020 (79%) 9,337 (37%) 6,485 (81%) 4,680 (72%) 

Ever 28,243 (89%) 10,644 (38%) 7,603 (95%) 5,388 (71%) 
*Identified retrospectively 
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Table 3. Association of Provider Response and the Difference in Hours from Alert to Antibiotics 

Difference between Response A 
vs B 

Unadjusted median 
difference, hours 

(95% CI) 

Adjusted median 
difference, hours (95% 

CI) 

Evaluation entered w/in 3 hrs vs  
No Evaluation entered w/in 3 hrs 

-1.28 (-1.50, -1.02) -1.12 (-1.30, -0.87) 

Alert Confirmed w/in 3 hrs vs  
Not Confirmed w/in 3 hrs  

-1.90 (-2.02, -1.74) -1.85 (-2.00, -1.66) 
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Table 4. Association of factors with Evaluation of Alerts on Sepsis Patients 

Factor Unadjusted risk ratio 
(95% CI) 

Adjusted risk ratio  
(95% CI) 

Patient Presentation Factors 

Absence of Key Sepsis 
Symptoms 

1.01 (0.98 - 1.04) 0.99 (0.96 - 1.03) 

Alternative Diagnosis 0.99 (0.96 - 1.02) 1.00 (0.97 - 1.03) 

Condition at Risk for Fluid 
Overload 

1.02 (1.00 - 1.04) 1.01 (0.98 - 1.04) 

Acute General Severity 0.98 (0.96 - 1.01) 0.97 (0.94 - 1.01) 

Chronic Complexity 1.04 (1.00 - 1.08) 1.02 (0.97 - 1.08) 

Advanced Age 1.05 (1.02 - 1.10) 1.06 (1.03 - 1.10) 

Environmental Factors 

High Alert Level 0.96 (0.93 - 0.99) 0.94 (0.91 - 0.96) 

High Admit Volume 1.01 (0.98 - 1.05) 0.99 (0.96 - 1.03) 

Alert Occurred 7am-3pm 1.06 (1.04 - 1.09) 1.03 (1.01 - 1.06) 

Alert Occurred 3pm-11pm 0.94 (0.92 - 0.97) 0.98 (0.95 - 1.00) 

Alert Occurred 11pm-7am 1.00 (0.95 - 1.03) 1.01 (0.97 - 1.04) 

Provider Factors 

ED provider 1.35 (1.24 - 1.49) 1.22 (1.14 - 1.32) 

Provider Experience w/ alert 1.25 (1.21 - 1.29) 1.22 (1.19 - 1.26) 
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Table 5. Association of factors with Dismissal of Evaluated Alerts on Sepsis Patients 

Factor Unadjusted risk ratio 
(95% CI) 

Adjusted risk ratio 
(95% CI) 

Patient Presentation Factors 

Absence of Key Sepsis Symptoms 1.01 (0.86 - 1.19) 1.28 (1.06 - 1.45) 

Alternative Diagnosis 1.27 (1.14 - 1.42) 1.11 (0.97 - 1.32) 

Condition at Risk for Fluid Overload 1.10 (0.97 - 1.21) 1.08 (0.97 - 1.22) 

Acute General Severity 1.39 (1.23 - 1.56) 1.46 (1.28 - 1.66) 

Chronic Complexity 0.87 (0.76 - 0.98) 0.90 (0.75 - 1.05) 

Advanced Age 0.74 (0.65 - 0.81) 0.69 (0.60 - 0.75) 

Environmental Factors 

High Alert Level 0.91 (0.80 - 1.01) 1.01 (0.90 - 1.13) 

High Admit Volume 0.83 (0.73 - 0.94) 0.98 (0.86 - 1.12) 

Alert Occurred 7am-3pm  0.87 (0.74 - 0.99) 1.12 (0.99 - 1.28) 

Alert Occurred 3pm-11pm 1.04 (0.92 - 1.16) 1.20 (1.09 - 1.33) 

Alert Occurred 11pm-7am 1.15 (1.03 - 1.29) 1.19 (1.07 - 1.36) 

Provider Factors 

ED provider 0.39 (0.34 - 0.43) 0.47 (0.40 - 0.54) 

Provider Experience w/ alert 0.58 (0.48 - 0.64) 0.66 (0.56 - 0.73) 
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