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BACKGROUND 

Let ℳ represent a set of medical records 

|ℳ| = 	𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦	𝑜𝑓	ℳ 

Let 𝓂 ∈ℳ, represent a medical record chosen from ℳ 



A medical record 𝓂 consists of one patient and all of their interactions or encounters with 
University of Utah hospitals and clinics. Each encounter consists of a date and a list of medical 
terms. 

A medical term 𝓉 can represent any diagnosis, procedure, or medication. Let 𝒯𝓂 represent the 
set of terms in all encounters in 𝓂. 

𝒯𝓂 = {𝓉 ∈ 𝓂} 

Let 𝒯 represent the set of all terms in all encounters in ℳ and 𝓉 ∈ 𝒯, represent a term chosen 
from 𝒯,  

𝒯 = 7𝓉8 ∃
𝓂∈ℳ

: 𝓉 ∈ 𝒯𝓂; 

Let ℳ𝓉  denote the set of all medical records containing 𝓉 

ℳ𝓉 =	 7𝓂8 ∃
𝓂∈ℳ

: 𝓉 ∈ 𝓂; 

𝓂𝓉 = 𝑎𝑛		𝓂		𝑐ℎ𝑜𝑠𝑒𝑛	𝑓𝑟𝑜𝑚	ℳ𝓉  

Let ℳ𝓉%,𝓉'	represent the set of medical records containing terms 𝓉1 and 𝓉2 

ℳ𝓉%,𝓉' =	 7𝓂8 ∃
𝓂∈ℳ

: {𝓉1, 𝓉2} ⊆ 𝓂; 

𝓂𝓉%,𝓉' = 𝑎𝑛		𝓂		𝑐ℎ𝑜𝑠𝑒𝑛	𝑓𝑟𝑜𝑚	ℳ𝓉%,𝓉' 

Let 𝓉1 → 𝓉2 indicate that 𝓉1 occurs before 𝓉2. 

ℳ𝓉%→𝓉' =	 D𝓂E ∃
𝓂∈ℳ𝓉",𝓉$	

: 𝓉1 → 𝓉2F, i.e. set of records where 𝓉1 occurs before 𝓉2 

Let 𝑊 represent a window (i.e. a time interval) measured in days, within which two terms are 
considered “co-occurring”. If two terms are “co-occurring” within the time interval 𝑊 we write: 

𝓉1
)
~𝓉2. If two terms are present in a medical record but not co-occurring in 𝑊 then we write: 

𝓉1
)
≁𝓉2. Similarly, 𝓉1

)
→ 𝓉2 indicates that term 1 occurs at least 𝑊 days before term 2. Thus, 

we can define: 

ℳ
𝓉%

&
~𝓉'

=	 D𝓂E ∃
𝓂∈ℳ𝓉",𝓉$	

: 𝓉1
)
~𝓉2F, 

i.e. set of records where 𝓉1 and 𝓉2 occur within 𝑊, and  

ℳ
𝓉%

&
+,𝓉'

= D𝓂E ∃
𝓂∈ℳ𝓉"→𝓉$	

: 𝓉1
)
→ 𝓉2F, 



i.e. set of records where 𝓉1 occurs more than 𝑊days before 𝓉2 

LOGISTIC REGRESSION TO DETERMINE PER PERSON TERM PROBABILITIES 

NOTATION 

For brevity we introduce the following notation: 

𝑃𝓉𝓂 = 𝑃𝓉∈𝓂  

𝑃𝓉%,𝓉'𝓂 = 𝑃{𝓉%,𝓉'}⊆𝓂  

DESCRIPTION OF LOGISTIC REGRESSION MODELING 

For each 𝓉 in ℳ, we use logistic regression to determine a best fit equation for the probability 
of seeing 𝓉 in 𝓂 based on the following parameters: (1) age of 𝓂 at last visit; (2) length of 
medical history for 𝓂; (3) number of visits, |𝒱𝓂|; (4) number of terms in 𝓂; (5) gender of 𝓂; 
(6) race of 𝓂; (7) ethnicity of 𝓂; (8) financial class of 𝓂. The outcome is an equation for each 
term 𝓉, which predicts the probability of	𝓉 in 𝓂. In the equation below, 𝑥% through 𝑥0 
represent the features of 𝓂 as listed above. 

𝑃𝓉𝓂 =
1

1 + 𝑒𝑥𝑝O−(𝛽1 + 𝛽%𝑥% +⋯+ 𝛽0𝑥0)U
 

L2 penalized logistic regression approach minimizes the following cost function using a 
coordinate descent [1]: 

min
2,3

1
2
‖𝛽‖' + 𝐶	[𝑙𝑜𝑔 ]𝑒𝑥𝑝 ]−𝑦4(𝑋45𝛽 + 𝑐)_ + 1_

6
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The value of 𝐶 represents the inverse of regularization strength. Smaller values represent 
stronger regularization. Regularization is the application of a penalty when increasing the effect 
of input features on output probability, in order to reduce overfitting. 

We sought to determine the optimal C-value empirically. We did so using stratified 3-fold cross-
validation. By stratified, we mean that the average number of positive cases |ℳ𝓉| in each fold is 
approximately equal. We cross validate using each of the C-values in the set 
{108%9, 108%:, 108%', . . . , 10%', 10%:, 10%9} to determine the C-value that optimizes our chosen 
score function. 



CHOOSING A CROSS VALIDATION SCORE FUNCTION AND OPTIMIZING “C” 

The score function generally used by cross-validation to evaluate the performance of the 
trained model on the left-out test data is mean accuracy. However, for our dataset, mean 
accuracy entirely fails to discriminate among competing logistic regression models. To explain 
why, consider rarity of medical terms. For instance, in our data |ℳ| ≅ 	1.7	𝑚𝑖𝑙𝑙𝑖𝑜𝑛 and 
|ℳ;<=>?3<@AB4B| = 206. The probability of any given person having tuberculosis is small, but 
might be several orders of magnitude different than another person’s probability based on age, 
gender, race, etc. Since even the most at-risk population has probabilities close to zero, logistic 
regression models always classify individuals as unaffected.  

We considered a variety of standard and custom score functions as described in the next 
section. Instead of scoring based on correct or incorrect classification (0 or 1) – “continuous” 
score functions score as the difference between the correct classification and the predicted 
probability from logistic regression. Instead of using 50% predicted probability as the threshold 
for classification, “cutoff” score functions use the threshold value that leads to a number of 
positive classifications equal to that found in the training data.  

Below is a graph showing the distribution of 3-fold cross-validation scores using various scoring 
functions. Each column represents 2784 logistic regression cross validation scores, carried out 
for each of 2784 CCS procedure or CCS diagnosis codes and RXNorm medication codes. Each 
logistic regression includes 1.6 million medical records from the University of Utah. 

Yellow lines represent the median, the boxes extend from the lower quartile to the upper 
quartile of the data, whiskers extend to 1.5 times the interquartile range beyond the box. Red 
dot represents the mean of the data. Outliers are black with a transparency of 0.5.  

With the exception of log loss, a value of 1 indicates a perfectly accurate prediction. For log 
loss, zero indicates a perfect prediction. Score functions with a mean near one or zero each 
suffer from the same problem explained above in relation to mean accuracy - the true positives 
signal is lost amidst the abundance of negative outcomes. This also applies to log loss. 



 

DESCRIPTION OF SCORE FUNCTIONS EVALUATED FOR USE WITH CROSS VALIDATION 

𝑓𝓉,𝓂 = 𝑓𝑜𝑟𝑐𝑎𝑠𝑡	𝑜𝑟	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑡𝑒𝑟𝑚	𝓉	𝑖𝑛	𝑚𝑒𝑑𝑖𝑐𝑎𝑙	𝑟𝑒𝑐𝑜𝑟𝑑	𝓂	
𝑜𝓉,𝓂 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑤ℎ𝑒𝑡ℎ𝑒𝑟	𝑡𝑒𝑟𝑚	𝓉 ∈ 𝓂, 𝑡𝑎𝑘𝑒𝑠	𝑎	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	0	𝑜𝑟	1	
𝑇𝑃 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	
𝑇𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠	
𝐹𝑃 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	
𝐹𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠	

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁	
(𝑎𝑘𝑎. 𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒; 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦; 𝑜𝑟	𝑟𝑒𝑐𝑎𝑙𝑙) 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃	
(𝑎𝑘𝑎. 𝑡𝑟𝑢𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑟𝑎𝑡𝑒; 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦; 𝑜𝑟	𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦)	

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃	
(𝑎𝑘𝑎. 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝑣𝑎𝑙𝑢𝑒; 𝑜𝑟	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)	

𝐽 = 𝑖𝑛𝑓𝑜𝑟𝑚𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1 = TPR + TNR − 1		
																												(𝑎𝑘𝑎. YoudenCs	J	statistic) 

𝑎𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁	
(𝑎𝑘𝑎. 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)	

𝑚𝑎𝑟𝑘𝑒𝑑𝑛𝑒𝑠𝑠 = 𝑃𝑃𝑉 + 𝑁𝑃𝑉 − 1	



𝑓1 = 𝐻𝑀𝑃𝑅 = 2 ∙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 = 2 ∙

𝑃𝑃𝑉 ∙ 𝑇𝑃𝑅
𝑃𝑃𝑉 + 𝑇𝑃𝑅		

																											(𝑎𝑘𝑎. ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐	𝑚𝑒𝑎𝑛	𝑜𝑓	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑎𝑛𝑑	𝑟𝑒𝑐𝑎𝑙𝑙)	

𝐴𝑀𝑃𝑅 =
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

2 =
𝑃𝑃𝑉 + 𝑇𝑃𝑅

2 		

																									(𝑎𝑘𝑎. 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐	𝑚𝑒𝑎𝑛	𝑜𝑓	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑎𝑛𝑑	𝑟𝑒𝑐𝑎𝑙𝑙)	

𝐵𝑆𝓉 = 𝑏𝑟𝑖𝑒𝑟	𝑠𝑐𝑜𝑟𝑒 =
1
|ℳ|[O𝑓𝓉,𝓂 − 𝑜𝓉,𝓂U

'
ℳ

𝓂

,	

𝑔𝑎𝑖𝑛𝓉 =
1
|ℳ|[𝑓𝓉,𝓂 − 𝑜𝓉,𝓂

ℳ

𝓂

	

	𝐿𝐿𝓉 = 𝑙𝑜𝑔_𝑙𝑜𝑠𝑠 = −
1
|ℳ|[𝑜𝓉,𝓂 ∙ 𝑙𝑜𝑔 𝑓𝓉,D + O1 − 𝑜𝓉,𝓂U ∙ 𝑙𝑜𝑔O1 − 𝑓𝓉,DU	

ℳ

𝓂

, 

𝜌 = 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛C𝑠	𝑟𝑎𝑛𝑘	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	
									𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑠	𝑎	𝑣𝑎𝑙𝑢𝑒	𝑜𝑓	1.0	𝑤ℎ𝑒𝑛	𝑎𝑙𝑙	𝑜𝓉,𝓂 = 0	𝑝𝑟𝑒𝑐𝑒𝑑𝑒	𝑜𝓉,𝓂 = 1	𝑎𝑓𝑡𝑒𝑟	𝑠𝑜𝑟𝑡𝑖𝑛𝑔	𝑏𝑦	𝑓𝓉,𝓂 

SELECTING A SCORE FUNCTION 

A score function that spreads out the scores for different logistic regression models has the 
most power to distinguish informative from uninformative models. Thus, entropy was chosen 
as the metric for selecting a score function for later use with cross validation. As shown in figure 
above, the 3 functions with the highest entropy were J cutoff, AMPR, and AMPR cont. Below is 
a plot of the distribution of C-values for each per-term logistic regression, for each score 
function: 



Many of the score functions evaluated suffer from a large outlier at the lowest tested C-value of 
1e-14. This C-value effectively turns off regression entirely, setting coefficients to zero. Of the 
aforementioned high entropy score functions under consideration, AMPR and AMPR cont suffer 
from a large outlier at 1e-14. Therefore, we chose J cutoff as our preferred score function for 
optimizing C. 

VARIANCE FOR LOGISTIC REGRESSION PROBABILITY PREDICTIONS 

A limitation of standard logistic regression is that the probabilities produced by the decision 
function do not include a confidence interval. We overcame this limitation by training multiple 
logistic regression models on non-overlapping subsets of the data and calculating sample 
variance from the results of multiple decision functions. The result is a separate variance on the 
prediction of each term occurring in each person. 

For each term we stratify the data into 6 subsets with equal representation of the term. We 
train 6 logistic regression models using the predetermined optimal C value. We calculate 
unbiased sample variance using the 6 values of 𝑃𝓉𝓂 produced by 6 logistic regression models: 



𝑠E𝓉𝓂
' = 𝑈𝑛𝑏𝑖𝑎𝑠𝑒𝑑𝑆𝑎𝑚𝑝𝑙𝑒𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑃𝓉𝓂	) =

1
𝑛 − 1[

(𝑃𝓉𝓂	)4 − 𝑃𝓉𝓂	�����'
F

47%

 

NORMALIZATION OF LOGISTIC REGRESSION PROBABILITIES 

Logistic regression models are used to calculate the probability that a given patient has a given 
term in his or her medical record. It is often the case that the probabilities output by the 
trained model do not sum up to the total number of patients with the given term in their 
medical record. When logistic regression models exhibit this bias, we apply a bias correction 
factor to each patient probability: 

𝑃�𝓉𝓂 = 𝑃𝓉𝓂 ∗
|ℳ𝓉|
∑ 𝑃𝓉𝓂ℳ
𝓂

 

such that the new probabilities sum to equal the actual term count: 

[𝑃�𝓉𝓂 ≡	
ℳ

𝓂

|ℳ𝓉| 

For clarity below, we omit the accent mark, but in practice we always use 𝑃�𝓉𝓂 rather than 𝑃𝓉𝓂. 

CO-OCCURANCE P-VALUES 

The goal of this analysis is to determine which medical terms occur together more often than 
expected. To this end, we calculate a co-occurrence p-value for every pair of medical diagnoses, 
procedures, and medications. This involves calculating expected value and variance from a 
Poisson-binomial distribution. 

CALCULATION OF PAIRWISE EXPECTATION AND VARIANCE 

The probability of two independent terms co-occurring in 𝓂 is simply: 

𝑃𝓉%,𝓉'𝓂 = 𝑃𝓉%𝓂 ∙ 𝑃𝓉'𝓂 

Our goal is to test whether this assumption of independence holds true. Since the observation 
of 𝓉% and 𝓉' co-occurring in 𝓂 is a Bernoulli trial, the variance on 𝑃𝓉%,𝓉'𝓂 is expressed as: 

𝜎E𝓉",𝓉$𝓂
' = 𝑉𝑎𝑟O𝑃𝓉%,𝓉'𝓂 U = 𝑃𝓉%,𝓉'𝓂 O1 − 𝑃𝓉%,𝓉'𝓂 U 

and each 𝓂 has a different 𝑃𝓉%,𝓉'𝓂 , the number of records in ℳ that have terms 𝓉% and 𝓉' is 
modeled using a Poisson-Binomial distribution. If 𝜋 represents the vector of probabilities 𝑃𝓉%,𝓉'𝓂  
for all 𝓂, then: 



�ℳ𝓉%,𝓉'�~𝑃𝑜𝑖𝐵𝑖𝑛(	𝜋) 

The expected value for the number of records in ℳ that have terms 𝓉1 and 𝓉2: 

𝜇Gℳ𝓉",𝓉$G = 𝐸O�ℳ𝓉%,𝓉'�U = [ 𝑃𝓉%,𝓉'𝓂

𝓂∈ℳ

 

The variance for the expected number of records in ℳ that have terms 𝓉1 and 𝓉2: 

𝜎Gℳ𝓉",𝓉$G
' = 𝑉𝑎𝑟O�ℳ𝓉%,𝓉'�U = [ 𝜎E𝓉",𝓉$𝓂

'

𝓂∈ℳ

 

INCORPORATION OF VARIANCE FROM LOGISTIC REGRESSION 

The variance of a Poisson binomial distribution is augmented with the logistic regression 
variances described in previously. One can think of these variances as measurement error for 
𝑃𝓉%𝓂and 𝑃𝓉'𝓂 and they are larger for rare terms. The product rule allows us to calculate the 
Logistic Regression sample variance for 𝑃𝓉%,𝓉'𝓂 : 

𝑠E𝓉",𝓉$𝓂
' = (𝑃𝓉%𝓂)'𝑠E𝓉$𝓂

' + (𝑃𝓉'𝓂)'𝑠E𝓉"𝓂
' + 𝑠E𝓉"𝓂

' 𝑠E𝓉$𝓂
'  

The law of total variance allows us to calculate the Poisson binomial variance augmented by the 
Logistic regression sample variance:  

𝜎Gℳ𝓉",𝓉$G
' = 𝑉𝑎𝑟O�ℳ𝓉%,𝓉'�U = [ 𝜎E𝓉",𝓉$𝓂

' + 𝑠E𝓉",𝓉$𝓂
'

𝓂∈ℳ

 

DIRECTION P-VALUES 

We calculate direction p-values in two ways – the first way considers only the subset of medical 
records containing terms 𝓉% and 𝓉', ℳ;%,;'. We call these conditional direction p-values. Only if 
the co-occurrence p-value is significant are these p-values meaningful. We also calculate 
direction p-values using the complete set of medical records. 

CALCULATION OF CONDITIONAL EXPECTATION AND VARIANCE 

Given that a person’s medical record 𝓂 has terms 𝓉% and 𝓉', the likelihood that 𝓉% occurs 
before 𝓉' in 𝓂𝓉%,𝓉' (assuming the direction is random) is a function of each term’s separate 
probability. 

𝑃𝓉%→	𝓉'
𝓂𝓉",𝓉$

	
= 𝑃𝓉%→	𝓉'|{𝓉%,𝓉'}⊆𝓂

𝓂 =
𝑃𝓉%𝓂

𝑃𝓉%𝓂 + 𝑃𝓉'𝓂
 



* Note on notation: We remind the reader that 𝑃𝓉%,𝓉'𝓂  represents the probability that 𝓉1 and 𝓉2 
are in medical record 𝓂, whereas 𝑃𝓉%→	𝓉'

𝓂𝓉",𝓉$
	
is conditioned on 𝓉1 and 𝓉2 being present in medical 

record 𝓂, i.e. 𝑃𝓉%,𝓉'𝓂 = 1. 

Given a direction window size 𝑊, a patient 𝓂, and the length of 𝓂’s medical history as 
𝑆𝑝𝑎𝑛𝓂, the probability terms 𝓉% and 𝓉'occur within 𝑊, given 𝓉% and 𝓉' occur in 𝓂 is: 
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&
~𝓉'

𝓂𝓉",𝓉$ = 𝑃
𝓉%

&
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𝑊
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�2 −
𝑊

𝑆𝑝𝑎𝑛𝓂
� , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

The proof for the above comes from calculating the fraction of the square below that is shaded: 

 

In the above square, the area of the square is 𝑆' and the area of either triangle is %
'
(𝑆 −𝑊)'. 

The percent of the square that is shaded is 
%8'∗"$(L8))$

L$
 and algebra reduces this to the above 

stated equation.  

The probability that 𝓉1 and 𝓉2 occur outside of 𝑊 is: 
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&
≁𝓉'

𝓂𝓉",𝓉$ = 1 − 𝑃
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&
~𝓉'

𝓂𝓉",𝓉$ 	

 

The probability that term 𝓉1 occurs within 𝑊 days before 𝓉2 is a function of the frequency of 
the terms in the EDW.  
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The probability that term 𝓉1 occurs at least  𝑊 days before 𝓉2 is a function of the frequency of 
the terms in the EDW.  
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Since the above probabilities differ for each 𝓂, a Poisson-Binomial distribution can be used to 

calculate p-values. Let 8ℳ
𝓉%

&
~𝓉'

8 represent the number of medical records with terms 𝓉% and 𝓉' 

occuring within 𝑊. The expectation for number of times 𝓉% and 𝓉' occur in 𝑊 observed over 
ℳ𝓉%,𝓉' is the sum of the probabilities for each 𝓂: 
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The variance for the above expectation is: 
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The expected number of times 𝓉1 occurs within 𝑊days before 𝓉2 in ℳ𝓉%,𝓉', and the variance 
for this expectation are: 
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The expected number of times 𝓉1 occurs more than 𝑊days before 𝓉2 in ℳ𝓉%,𝓉', and the 
variance for this expectation are: 
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Conditional direction p-values are calculated using the normal approximation for the CDF of a 
Poisson binomial distribution as described above. 



CALCULATION OF DIRECTION EXPECTATION AND VARIANCE 

The previous section derived conditional probabilities for two terms occurring together or one 
before the other in a person’s medical record, given the person has the two terms in their 
medical record. We can combine these conditional probabilities with the probability of the 
person having both terms in their medical record to obtain the overall probabilities of a person 
having a pair of terms in window or one before the other: 
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