Appendix A

Details on propensity score matching

To mimic a situation with quasi-experimental as-if random distribution of vaccines we constructed an unvaccinated comparison group using the propensity score matching method. We matched each health care worker (HCW) vaccinated with AstraZeneca to two unvaccinated (as of March11th, 2021) HCW. The propensity scores were created via a logit model that estimated the likelihood of receiving the AstraZeneca vaccine, imitating a randomized distribution of vaccines, using the following covariates: age (treated as a categorical variable); sex; the county in which the main employment was registered; occupation categories; and industrial categories (see appendix of Molvik et al. for exact definitions). We also controlled for utilization of primary (consultations and outpatient hospital contacts) and specialist (inpatient hospital contact) health care in November and December 2020, defined as number of weeks with at least one contact. This allowed us to balance the pre-trend in the control and treatment groups, without using post-treatment information.

Following convention, we used the nearest-neighbor (NN) method to balance the treatment and comparison groups. ²⁰ The algorithm minimizes the absolute difference between the propensity scores of the vaccinated individual and its two controls. To further increase the quality of our matches, we matched using replacement. This implies that individuals in the target set could be matched to treated individuals more than one time. Duplicates in the comparison group means that the data is no longer independent. We adjusted for the dependency in our data using clustered standard errors in the main analysis.

Supplementary tables

Table A-A1: Impact of the information shock by age and sex

	Primary care						tient spec		
	Period after March 11 th	β	St. err	% Relative diff (β)	Relative diff (St. err.)	β	St. err	% Relative diff (β)	Relative diff (St. err.)
Women									
Age 18-44	First week	1.14***	0.054	83	3.3	0.03	0.024	16	12.7
	Second week	1.13***	0.084	82	3.7	0.07*	0.035	40	15.1
Age 45-67	First week	0.65***	0.057	49	3.7	0.04**	0.022	49	21.1
_	Second week	0.62***	0.086	47	4.2	0.09***	0.032	98	24.9
Men									
Age 18-44	First week	0.44***	0.08	71	10.8	0.02	0.021	40	64.5
•	Second week	0.2*	0.121	32	12.9	0.01	0.032	15	63.8
Age 45-67	First week	0.43***	0.117	44	10.5	-0.08	0.069	-72	52.8
_	Second week	0.23	0.172	24	11.6	0.16**	0.08	152	45.1

Notes: Differences-in-differences estimates (in percentage points) for the change in health care use for different health care services before and after March 11th for individuals vaccinated/hypothetically vaccinated the last 14 days. Standard errors (St. err.) are clustered on individuals. The pre-period (health care utilization after vaccination the 2 weeks prior to March 11th) is reference period in all regressions. In addition to the presentation of results as absolute differences in percentage points, we also presented relative differences (i.e. in percent) by dividing the absolute estimate (and corresponding standard error) for each of the post periods by the health care use rate of the comparison group in the pre period (and multiplying with 100).

Significance levels: * <0.1; ** <0.05; *** <0.01)

Table A-A2: Impact of information shock on health care use after vaccination by occupational group

-		Primary	care			Inpatien			
	Period after	β	St.	% Relative diff	Relative diff	β	St. err	% Relative diff	Relative diff
	March 11 th		err	(β)	(St.err.)			(β)	(St. err.)
Physicians	First week	0.21*	0.113	33	17.5	0.06	0.051	39	33.6
	Second week	0.28*	0.165	43	25.4	0.17***	0.055	113	36.4
Health	First week	0.81***	0.063	64	4.9	0	0.027	4	21
professionals	Second week	0.81***	0.107	64	8.4	0	0.038	3	29.2
Health	First week	0.76***	0.16	69	14.6	-0.05	0.065	-59	80.8
associate professionals	Second week	1.08***	0.303	98	27.5	-0.08	0.072	-104	89.2
Personal	First week	0.87***	0.046	65	3.4	0.03*	0.019	28	16.5
care workers	Second week	0.76***	0.066	57	4.9	0.1***	0.028	84	24.1
Cleaners	First week	1.03***	0.328	103	32.6	0.15	0.116	123	93.9
	Second week	0.4	0.449	40	44.8	0.39*	0.213	314	171.7

Notes: Differences-in-differences estimates (in percentage points) for the change in health care use for different health care services before and after March 11th for individuals vaccinated/hypothetically vaccinated the last 14 days. All models control for age and sex. Standard errors (St. err.) are clustered on individuals. The pre-period (health care utilization after vaccination the 2 weeks prior to March 11th) is reference period in all regressions. In addition to the presentation of results as absolute differences in percentage points, we also presented relative differences (i.e. in percent) by dividing the absolute estimate (and corresponding standard error) for each of the post periods by the health care use rate of the comparison group in the pre period (and multiplying with 100).

Significance levels: *<0.1; **<0.05; ***<0.01)