
Supplementary Material

6 Modeling of variable susceptibility and infectivity
In this section we discuss how to properly set up an equation system that captures the dynamics between a population
with variable susceptibility and infectivity. We thus divide the susceptibles S into a number of subgroups S1, . . . , SJ and
the infectives I into subgroups I1, . . . , IK where J,K can be any integers. To our knowledge, there is no correlation
between infectivity and susceptibility, but if such existed it could be taken into account. For simplicity, we do not include
this complexity in the model we now present. Also, to fix ideas we restrict attention to K = J = 3 since it is a simple
exercise to generalize the below argument to the more general situation.

Given a certain amount of super-spreaders I1(t) at generation (t), these will have a certain amount of contacts with the
susceptible groups S1-S3, which will be distributed in proportion to the amount of members in the respective groups. More
precisely, if wj = Sj(0)/N is the fraction in each group and a as before denotes the total amount of potentially infectious
contacts of one infectee, then the average amount of such contacts from an infective in group I1 (the super-spreaders)
becomes awjI1(t). When super-susceptibles and super-spreaders meet, we can speculate that every contact leads to a new
infection, whereas 98% of contacts with S2 leads to infection, and so on. By the same logic as in previous sections, the
amount of new infections from the interactions of I1 and S1 is thus aS1(t)I1(t)/N , the amount of new infections from
the interactions of I1 and S2 becomes 0.98aS2(t)I1(t)/N etc. Continuing like this, we can speculate that the interactions
between average spreaders I2 with well-protected leads to almost no new infections, maybe 0.01aS3(t)I2(t)/N . (Thus,
here S1 denotes the group of super-susceptibles instead of S3 as in §2.2.) Denoting ν1, ν2 and ν3 the amount of new
infected in groups S1, S2 and S3 respectively, we see that the relationship corresponding to (6) becomes as follows ν1(t)

ν2(t)
ν3(t)

 =
a

N

 S1(t) 0 0
0 S2(t) 0
0 0 S3(t)

 1 0.50 0.04
0.98 0.15 0
0.9 0.01 0

 I1(t)
I2(t)
I3(t)

 (14)

where we invented numbers to flesh out the picture. The updates for susceptibles become S1(t+ 1)
S2(t+ 1)
S3(t+ 1)

 =

 S1(t)
S2(t)
S3(t)

−
 ν1(t)
ν2(t)
ν3(t)

 (15)

whereas, and this is important, the updates for I1, . . . , I3 look a bit different: I1(t+ 1)
I2(t+ 1)
I3(t+ 1)

 =

 v1
v2
v3

 (ν1(t) + ν2(t) + ν3(t)), (16)

where vj = Ij(0)/N is the fraction in each respective group. The reason being that the newly infected naturally will
distribute over super-spreaders, average and low-spreaders according to their respective proportion of the population.
Finally we also have R(t+ 1) = R(t) + I1(t) + I2(t) + I3(t) since the time to recover is one week for all groups, in this
simplified model.

The reader may now feel that this is completely useless, since we are clearly making these numbers up and there would
be no way to measure them in practice (again, welcome to mathematical epidemiology). This is where the beauty of Theo-
rem 4.1 becomes clear, because as long as we believe that such a model would be a good model for accurately forecasting
disease spread, the Theorem states that we can instead run a basic SIR-model with only two unknown parameters, which
are easily fitted to real data. Hence we do not need to know the actual transmission probabilities. Moreover, the above
equation system is interesting from a theoretical standpoint since the central matrix is not symmetric, in opposition to all
previously derived models for SARS-CoV-2 that we have come across. This means that one could have hoped to find a
more unexpected behavior than the look-alike curves produced in Section 2.1 and 2.2. The below proposition annihilates
such a hope, showing that this model actually reduces to S-SIR.

In order to introduce a continuous time (ODE) version of (14)-(16), we let S = (S1, . . . , SJ)
T be a vector such that

S =
∑J
j=1 Sj is the total amount of susceptibles. The symbol T is for transpose, which is a mathematical operation

that turns a row-vector into a column-vector. (All vectors considered here are to be column-vectors for the matrix vector
formalism to function.) Similarly I = (I1, . . . , IK)T will represent the various compartments of I where I =

∑K
k=1 Ik.

Hence S(t) and I(t) continue to denote the total amount of susceptible and infectives at time t, whereas I and S contain
the amount in respective compartment (for variable infectivity/susceptibility). Note that there is no need to introduce
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various compartments for R, since once you recover neither infectivity level nor susceptibility level is important. Let
diagS denote the diagonal matrix with S(t) on the diagonal, as in (14), and let MP denote the matrix with probability of
transmission between the various groups per encounter, i.e. the generalization of the second matrix on the right in (14).
Our equation for the vector version of ν then becomes

ν =
a

N
diagSMP I (17)

where a now has to be interpreted as the daily amount of potentially infectious contacts by an average infective (in the
main manuscript the time interval was a week, not a day). If we let vT = (v1, . . . , vK) denote the fraction of the total
population in the various compartments for infectivity level, then the corresponding SIR-equation system becomes S′ = −ν

I′ = νv − σI
R′ = σI(t)

(18)

where ν =
∑J
j=1 νj (so it is not a misprint that one is bold and the other not, compare with (15)-(16)). Here σ =

1/Tgeneration which we here take to be 7 days (we measure the time in days throughout the supplementary material). The
initial conditions become  S(0) = wN

I(0) = vn
R(0) = 0

(19)

where w = (w1, . . . , wJ)
T is the fraction of the population in the respective susceptibility group.

Proposition 6.1. Given any solution (S, I, R) to the system (17)-(19), the triple (S, I, R) solves the system

ν =
a

N
p · SI (20) S′ = −ν

I ′ = ν − σI
R′ = σI(t)

(21)

 S(0) = wN
I(0) = n
R(0) = 0

(22)

where · denotes componentwise multiplication and p =MPv. Moreover, R0 = awTMPv = a〈w,p〉.

Proof. Let (S, I, R) be given and let ν be defined by (17). Given a scalar solution to the equation i′ = ν − σi, i(0) = n,
it follows that Ij(t) = vji(t) is a solution to the corresponding row in the equation I′ = νv − σI, and hence we see that
I(t) = vi(t). Hence, since I denotes the sum of I, we see that i = I . With p = MPv it is easy to see that (17) reduces
to (20), and that the equation for I in (18) reduces to the middle equation of (21). At t = 0 we have S/N = w so this
equation then reads I ′(0) = a〈w,p〉I − σI , which gives the desired formula for R0.

Note that the numbers in p are between 0 and 1 and can be interpreted as transmission probabilities just as in Section
2.2.

7 Motivation of Theorem 4.1
We now motivate Theorem 4.1 in the more general setting of continuous time (ODE) SIR, which in its simplest incarnation
looks as follows  S′ = −ν

I ′ = ν − σI
R′ = σI

(23)

where ν(t) is the rate of new infections at time t given by

ν =
α

N
SI (24)

12



and N is the population size. Again, we now measure time in days and set σ = 1/Tgeneration = 1/7. Let ω = 1− θ be
a level of initially susceptible in the population, and assume that n additional infective individuals are introduced at time
t = 0. The initial conditions then become  S(0) = ωN

I(0) = n
R(0) = 0

(25)

To even state a proper version of Theorem 4.1 is a non-trivial task, not to mention making a theorem out of it. We first
introduce some notation and explain the intuition behind the formulas (9)-(10) for ω and α.

Given a solution (S0, I0, R0) to (23)-(25) we introduce the normalized functions s0(t) = S0(t)/N , i0(t) = I0(t)/N ,
r0(t) = R0(t)/N . These functions solve the system s′ = −αsi

i′ = αsi− σi
r′ = σi

(26)

with s(0) = ω, i(0) = n/N =: ε and r(0) = 0. Note that s0(t) + i0(t) + r0(t) = ω + ε. Next, we reduce (26) by
using the well-known fact that t can be replaced by r as the independent variable. Let s̃0 and ı̃0 be functions defined via
s0(t) = s̃0(r0(t)) and i0(t) = ı̃0(r0(t)). By the chain rule the functions (s̃0, ı̃0) are solutions to the system{

ds/dr = −αs/σ
di/dr = αs/σ − 1

(27)

which is easily solved. Since r0(0) = 0 we have that s̃0(0) = s0(0) = S0(0)/N = ω, by which we infer that

s̃0(r) = s̃0(0)e
−αr/σ = ωe−αr/σ =

σ

α
f0(r) (28)

where f0(r) := αω
σ e
−αr/σ = R0e

−R0r/ω. Returning to (27) we see that

dı̃0
dr

=
αs̃0
σ
− 1 = f0 − 1.

Integrating both sides and using the initial condition ı̃0(0) = i0(0) = ε gives the solution

ı̃0(r) = ε+ F0(r)− r, (29)

where F0(r) =
∫
f0 = ω(1− e−R0r/ω). See Figure 5 for an illustration.

We now solve the equation for r0(t) in (26), which is separable and can be written

dr0/dt

σı̃0(r0(t))
= 1.

Integrating both sides with respect to t and making the change of variables x = r0(t) gives∫ r0(t)

0

dx

σı̃0(x)
= t.

Letting t0 be the primitive function of 1/(σı̃0) satisfying t0(0) = 0 we thus obtain the implicit solution t0(r0(t)) = t.
Hence, t0 is also the inverse of r0 (which exists since r′0(t) > 0 for all t > 0), and so

r0(t) = t−10 (t), t0(r) :=

∫ r

0

dx

σı̃0(x)
. (30)

Let r∞ be the positive solution of the equation ı̃0(r) = 0, which is unique by concavity of ı̃. By standard calculus this
is a non-integrable singularity and hence limr→r∞ t0(r) = ∞. Since r0 is the inverse of t0, we see that r∞ equals the
limit limt→∞ r0(t), known as the final size of the pandemic. We therefore refer to this number simply as r0(∞) in what
follows. Summing up, t0 is only defined for values of r in [0, r0(∞)). Note also that as a consequence we also obtain

lim
t→∞

i0(t) = 0 (31)

since i0(t) = ı̃0(r0(t)) so the above limit becomes ı̃0(r0(∞)) = 0.
Applying the same arguments to (20)–(22) we obtain first a system in terms of normalized variables
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Figure 5: ı̃1 (black) for the same example as in
Fig 1 and ı̃0 (blue) using the choice of α and ω
stipulated in Theorem 4.1.


s′j = −apjsji 1 ≤ j ≤ J
i′ =

∑J
j=1 apjsji− σi

r′ = σi

(32)

and then an equivalent reduced system of the form{
dsj/dr = −apjsj/σ 1 ≤ j ≤ J
di1/dr =

∑J
j=1 apjsj/σ − 1.

(33)

Let (s̃1, . . . , s̃J , ı̃1) be a solution to (33) with ı̃1(0) = ε and s̃j(0) =
Sj(0)/N = wj for j = 1, . . . , J . Similarly, we will write r1(t) to
denote the function described by (30) with ı̃0 swapped for ı̃1. As in
(28)–(29) we obtain the solutions

s̃j(r) = wje
−apjr/σ 1 ≤ j ≤ J (34)

ı̃1(r) = ε+

J∑
j=1

wj(1− e−apjr/σ)− r (35)

See Figure 5 (black curve) for an illustration using the same values as
in Section 2.2, in particular note that it meets the x-axis at the final size
of the pandemic r1(∞), which is seen slightly above 0.3 for the pink
graph in Figure 1 (the slight overshooting is due to the discretization).

The philosophy behind Theorem 4.1 is that we want to pick the
parameters α and ω so that (29) becomes approximately equal to (35). (We do not care about the relationship between s0
and (s1, . . . , sJ).) Then, due to (30) we will have r1(t) approximately equal to r0(t) and therefore i1(r1(t)) approximately
equal to i0(r0(t)). Now, by Taylor’s formula we have

ı̃0(r) = ε− r + ω

(
α

σ
r − 1

2

α2

σ2
r2 +O(r3)

)
and

ĩ1(r) = ε− r +
J∑
j=1

wj

(
apj
σ
r − 1

2

(apj)
2

σ2
r2 +O(r3)

)
where O is the big O notation of Bachman-Landau. Comparing Taylor coefficients we set ωα =

∑J
j=1 wjapj and

ωα2 =
∑J
j=1 wj(apj)

2 so that the Taylor polynomials of order two of ı̃0 and ı̃1 coincide. This gives

α = a

∑J
j=1 wjp

2
j∑J

j=1 wjpj
, ω =

(∑J
j=1 wjpj

)2∑J
j=1 wjp

2
j

, (36)

which generalizes (9) and (10).
Note here that ω < 1. In fact, since

∑J
j=1 wj = 1 and 0 < wj , pj ≤ 1 for all j it follows that

∑
j wjpj ≤ 1, which

implies that
J∑
j=1

wjp
2
j >

J∑
j=1

wjpj ≥
( J∑
j=1

wjpj

)2

⇐⇒ 1 >
(
∑J
j=1 wjpj)

2∑J
j=1 wjp

2
j

= ω (37)

(with strict inequality since at least one pj is strictly less than one). These formulas can be put in somewhat neater
form by introducing R1 = a/σ, i.e. the R0-value one would have at the beginning of the pandemic if everyone were a
super-susceptible. We then get

R0 =
ωα

σ
=
a
∑J
j=1 wjpj

σ
= R1

J∑
j=1

wjpj .

Introducing f1(r) = R1

∑J
j=1 wjpje

−R1pjr and F1 =
∫
f1 =

∑J
j=1 wj(1− e−R1pjr), we can write

ı̃1(r) = ε+ F1(r)− r, (38)
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which should be compared with (29). Note that F1 is engineered to have same first three Taylor coefficients as F0.
Moreover, introducing

t1(r) :=

∫ r

0

dx

σı̃1(x)
, (39)

we obtain r1 as t−11 and subsequently r′1 = σi1.
To summarize this section, we argue that if F0 ≈ F1 and r0 ≈ r1, then it should follow that i0 ≈ i1 since ij(t) =

ı̃j(rj(t)), j = 0, 1, and ı̃0 and ı̃1 are given by (29) and (38), respectively. To formalize this statement a bit, consider now
the more general ODE

r′(t) = G(r(t), δ), r(0) = 0, (40)

where
G(r, δ) = σ(ε+ (1− δ)F0(r) + δF1(r)− r), δ ∈ R.

Then r0(t) is the unique solution to (40) for δ = 0, while r1(t) is the unique solution to (40) for δ = 1. It is well-known
that since G(x, δ) is independent of t and continuous in δ for every fixed x, it follows that the solution r(t) = r(t, δ) of
(40) is continuous in δ, uniformly in t ∈ [0, T ] for any T > 0, see for example [2] and the references therein. We collect
these observations in the following theorem.

Theorem 7.1. Let r(t, δ) be the unique solution of (40). Then for any T > 0, the solution r(t, δ) is a continuous function
of δ, uniformly in t ∈ [0, T ]. Moreover, we have r(t, 0) = r0(t) and r(t, 1) = r1(t).

Our numerical simulations have confirmed that indeed, the difference between i0 and i1 is small, but we have been
unable to prove a strict mathematical version. In the coming section, we offer some partial results and a conjecture.

7.1 A conjecture

Figure 6: Line between pairs (i0(t), r0(t)) and
(i1(t), r1(t)) for a grid of t-values, using the
same parameters as in Fig. 1. Note that the inner
and outer envelope is given by ı̃0 and ı̃1 (cf. Fig.
5).

It remains to establish proper estimates proving that the resulting solu-
tion (i0, r0) is near (i1, r1). We first establish the following important
inequality, which is the explanation behind that the black curve (from
S-SIR) always seems to be a bit higher than the blue one (from SIR).

Proposition 7.2. It holds that f1 ≥ f0. Consequently F1 ≥ F0, ı̃1 ≥
ı̃0 and dı̃1/dr ≥ dı̃0/dr.

Proof. The choice of ω and α is designed so that f1(0) = f0(0) and
f ′1(0) = f ′0(0). Moreover we have

f1(r)− f0(r) =
1

σ

 J∑
j=1

wjapje
−apjr/σ − ωαe−αr/σ

 .

Multiplying with eαr/σ we obtain
∑J
j=1 wjapje

(α−apj)r/σ − ωα
which is a strictly convex function (unless α = apj for all j, which
means that all probabilities are the same and the model collapses to
the standard SIR model, and there is nothing to prove) that in ad-
dition equals zero and has derivative zero at r = 0 by construc-
tion. By convexity it follows that the function is non-negative, giving
dı̃1/dr ≥ dı̃0/dr with strict inequality for r > 0. Convexity also im-
plies that the function and its derivative are increasing. The desired
inequality follows by integrating dı̃1/dr ≥ dı̃0/dr, keeping in mind
that ı̃1(0) = ı̃0(0).

Proposition 7.3. Let r0 be the solution to (26) and r1 the solution to
(32). Then r1 ≥ r0.

Proof. Let g(x) = σı̃0(x). Then r′0(t) = g(r0(t)) while r′1(t) ≥ g(r1(t)) by Proposition 7.2. Since r1(0) = r0(0),
standard theory of ordinary differential equations then dictates that r1(t) ≥ r0(t) for t ≥ 0.

We have not been able to prove the following observation:
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Figure 7: Left: SEIR with R0 = 1.66 and Tgeneration = 7, SIR with the same parameters and finally SIR with a
1% lower R0, same Tgeneration and a lower initial condition. Right: Age-activity stratified SEIR with R0 = 1.66 and
Tgeneration = 7 (blue); SIR using the same Tgeneration but a pre-immunity of 25% and different transmission parameters
(red).

Conjecture 7.4. We have i1 ≥ i0 and furthermore, s0 −
∑J
j=1 sj is an increasing function.

Recall that the final size of the pandemic solves ı̃j(rj(∞)) = 0, j = 1, 2, and that these two points tend to be quite
close, see for example Fig. 5 where the difference is around 0.02 or 2%. Since s0−

∑J
j=1 sj = ω−1+(i1+r1)−(i0+r0)

and r1(∞)−r0(∞) is the limit of (i1+r1)−(i0+r0) as t→∞, the conjecture implies that both the difference r1(t)−r0(t)
as well as i1(t)− i0(t) are bounded by r1(∞)− r0(∞).

8 Extension to more general models
The argument in Section 7 does not extend to the more commonly used SEIR-model. However, for a disease like COVID-
19, with a short incubation period followed by an even shorter infectious period, there is almost no difference between
modeling using SIR or using SEIR, and hence we believe that the key conclusions of this paper extend to this model as
well.

Similarly, we find that more advanced SEIR-models taking variable age and activity levels into account, behave just
like SIR if we allow for pre-immunity. We leave the formal verification of these observations as an open conjecture for
the mathematical community.

8.1 SEIR
SEIR has two key parameters apart fromR0, namely Tinfectious and Tincubation, where the former is the average time that
a person is infectious and the latter is the time from when a person becomes infected until he or she becomes infectious.3

Estimates for these vary, we here follow Britton et. al. [4] and set Tincubation = 4 and Tinfectious = 3. It then follows
that the generation time equals

Tgeneration = Tinfectious + Tinfective = 7,

where the generation time is the average time it takes from that a person gets infected until that person infects others (see
equation (5) in [7]). Note that this is consistent with the choice of σ in previous sections.

The reason why SEIR and SIR give almost identical output for COVID-19 is that both are primarily determined by the
values of Tgeneration and R0. To wit, during a major outbreak, it does not matter if a person is sick for 7 days and infect
R0 people during those 7 days, or if he undergoes incubation for 4 days and then infect R0 people during the remaining
3 days. In fact, one may consider even more accurate models taking age of infection into account, and designing a
transmission profile to COVID-19. This was done in Section 5 of [7], where it was shown that the transmission profile

3See the supplementary material of [7] for a fuller discussion of how to setup SEIR and its parameters
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has a marginal effect on the corresponding curves, which are determined by R0 and Tgeneration. In the interest of keeping
this supplementary section at reasonable length, we do not develop these ideas further, but content ourselves with showing
an example, see Fig. 7, left. Just like in Fig. 3, we get a good fit by choosing parameters in accordance with the general
philosophy, and an almost perfect overlap by allowing free parameters. Since these parameters are unknown in reality, we
argue that it is irrelevant whether one uses SIR or SEIR. Therefore, the observations of this paper should extend to SEIR
as well.

8.2 Heterogeneous models
Variable susceptibility is not the only type of population heterogeneity which could manifest itself as pre-immunity on a
macro level. In [4] the authors develop a heterogeneous SEIR model taking variable interaction pattern between different
age-groups into account, as well as the fact that people in each age-group have varying amount of contacts. We imple-
mented their model and then sought parameters for SIR, allowing for pre-immunity, that would yield a similar output. The
result is seen in Figure 7, right. Again, the difference is so fine that it would be impossible to spot in practice. Henceforth,
what appears as pre-immunity in mathematical models may in fact be a mix of various population heterogeneities, in
which variable susceptibility is only one ingredient.

This begs the following question: Could it then be that the seeming pre-immunity could be only attributed to variation
in age and social patterns? We believe that the answer is no. The model by Britton et. al. [4] is analyzed in depth in
Section 6 of [7], where it is shown that the variable activity levels are chosen with such high variability that R0 would
drop by close to 50% if the highly active group would cut the amount of daily contacts by half, which seems unrealistic.
Furthermore, as seen in the above figure, even if we accept the large activity-variation in their model, it only accounts for
25% pre-immunity in a simple SIR model. However, to accurately model Stockholm County, it is shown in [8] that we
need around 60% pre-immunity, which seems impossible to reach with activity and age variation alone. That being said,
both factors clearly pull in the same direction, and hence how much of these 60% to attribute to activity-variation and how
much to attribute to variation in susceptibility, will probably never be fully known.
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