Title. Genome-wide polygenic risk score method for diabetic kidney disease in patients with type 2 diabetes

Author Block. Ha My T. Vy, PhD1,2; Sergio Dellepiane, MD,3,4; Kumardeep Chaudhary, PhD1,2,5; Alexander Blair, MD4; Benjamin S Glicksberg, PhD3,6,7; Steven G Coca, DO, MS4, Lili Chan, MD1,3,4,5, MSCR, John Cijiang He, MD, PhD4; Ron Do1,2,5*, PhD, Girish N Nadkarni1,3,4,5,6,7*, MD, MPH

1. The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
2. Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
3. The Division of Data-Driven and Digital Medicine (D3M), Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
4. Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
5. BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
6. The Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
7. The Mount Sinai Clinical Intelligence Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
* These authors jointly supervised this work

Short Title: Polygenic risk score for diabetic kidney disease

Corresponding Authors:
Girish N Nadkarni, M.D., M.P.H., C.P.H.
Icahn School of Medicine at Mount Sinai,
One Gustave L Levy Place, Box 1243,
New York, NY-10029
Telephone number: (212) 241-1385
Fax number: (212) 849-2643
Email Address: girish.nadkarni@mountsinai.org
ABSTRACT

Diabetic kidney disease (DKD) is considered partially hereditary, but the genetic factors underlying disease remain largely unknown. A key barrier to our understanding stems from its heterogeneity, and likely polygenic etiology. Proteinuric and non-proteinuric DKD are two sub-classes of DKD, defined by high urinary albumin-to-creatinine ratio (UACR) and low creatinine estimated glomerular filtration rate (eGFR). Prior genome-wide association studies (GWAS) have identified multiple loci associated with eGFR and UACR. We aimed to combine summary statistics from previous GWAS' for eGFR and UACR in one prediction model and associate it with DKD prevalence. We then tested this using genetic data from 18,841 individuals diagnosed with type 2 diabetes in UK Biobank. We computed two genome-wide polygenic risk scores (GPS) aggregating effects of common variants associated with the two measurements, eGFR and UACR. We show that including both GPS' in a single model confers significant improvement in comparison with the single GPS model generated from GWAS summary statistics for DKD. We also find in replication analysis in 5,389 individuals in the multi-ethnic BioMe Biobank, that although the combined model had consistent direction of association, the lowest performance was in individuals with recent African ancestry. In summary, we show that joint modeling of polygenic associations of eGFR and UACR is more significantly associated with DKD than individual modeling as well as a GPS comprised of only DKD summary statistics and may be used to gain insights into biology and progression. However, efforts should be made to develop and validate polygenic approaches in diverse populations.
Key words: genetics, genome-wide polygenic score, genome-wide sequencing,
diabetic kidney disease, risk, prediction
INTRODUCTION.

Diabetes is the most common cause of kidney disease in the United States.
Approximately 25-40% of patients with type 2 diabetes (T2D) will develop kidney disease, termed as diabetic kidney disease (DKD). The incidence of DKD is increasing, and thus better approaches to understanding, risk stratifying and prognosticating DKD are needed.

DKD is a heritable disease as indicated by different incidence in certain groups, familial aggregation and a significant heritability index. These point towards a relevant genetic component of DKD; however, no single mutation or gene has been identified to have a large impact on disease development. Thus, progress towards understanding DKD at a genetic level will need to consider the polygenic nature of this complex disease.

A genome-wide polygenic risk score (GPS), an index that aggregates the cumulative effects of millions of common variants across the genome, has ability to identifies individuals with high risk for diseases with polygenic pathogenesis. In several multifactorial disorders (e.g. coronary artery disease, atrial fibrillation, and type 2 diabetes) GPS scores are as predictive of disease incidence as Mendelian mutations, but can identify much larger groups of individuals. However, unlike other polygenic diseases, efforts in using GPS to estimate DKD risk have shown very limited success. The cardinal features of DKD are urinary albumin-to-creatinine ratio (UACR) ≥30mg/g or estimated glomerular filtration rate (eGFR) <60ml/min/1.73m² in patients with diabetes and without other causes of renal injury. While albuminuria was once considered a key feature of DKD; up to 30% of DKD patients with disease progression do not have
proteinuria and do not respond to antiproteinuric therapy,\(^1\) suggesting distinct disease pathways and, likely, different genetic causes. As such, several authors prefer to distinguish between proteinuric (pDKD) and non proteinuric DKD (npDKD).

However, the categorization of DKD based upon a threshold for eGFR and/or UACR, combined with the small sample size of available studies, has resulted in small effect sizes for the majority of risk variants reported for DKD.\(^{11-14}\) In contrast, GWAS for eGFR and UACR, as continuous traits, have been conducted for much larger samples and multiple significant associations with modest effect sizes have been uncovered.\(^{15,16}\)

We hypothesized that incorporating genetic information from those studies and jointly incorporating GPS from both eGFR and UACR may improve the association with DKD. We developed a model combining information from two GPSs for two relevant quantitative phenotypes, eGFR and UACR in individuals with T2D and tested the performance of these scores using the UK Biobank (UKBB), a predominantly European cohort, and further evaluated the performance of the model in different ethnicities using BioMe Biobank, a diverse clinical biobank cohort in the United States. Finally, we compared the association of this joint modeling approach vs. that of model consisting of only GWAS significant hits for DKD.
METHODS.

The overall study workflow is shown in Figure 1.

Description of Cohorts

The UKBB is a large prospective population-based cohort study of approximately 500,000 individuals aged between 39-73 who were recruited from 22 assessment centers across the United Kingdom between 2006-2010.17,18 Genotyping was performed on the Affymetrix Axiom UK Biobank array (~450,000 individuals) or the UK BiLEVE array (~50,000 individuals) and then imputed using the Haplotype Reference Consortium (HRC) combined with UK10K haplotype resource. 84% of the cohort (409,703 individuals) is of European ancestry, distributed across the United Kingdom.

The BioMe Biobank is an EHR-linked clinical care biobank cohort comprised of over 45,000 participants from diverse ancestries (African, Hispanic/Latino, European and Other ancestries), with accompanying genome-wide genotyping data for 32,595 participants. Along with the genetic information, BioMe is linked to a wide array of biomedical traits, originating from Mount Sinai’s system-wide electronic health record (EHR). Enrollment of participants is predominantly through ambulatory care practices; and as a whole are representative of the larger patient population served by the Mount Sinai Health System.2 Genotyping data of 32,595 participants was performed on the Illumina Global Screening Array (GSA) platform. Quality control and imputation of genotyping data are described in the supplementary appendix.

Identification of T2D case/control status
Statistical analyses in this study were restricted to patients with T2D. In UKBB, T2D was defined by International Classification of Diseases (ICD-9 250.00, 250.10; ICD-10 E11) codes or self-reported illness codes (1223) through verbal interview. In BioMe, T2D was identified based on the case and control selection algorithm developed by the eMERGE consortium (https://emerge-network.org/) which takes into account ICD codes for T1D and T2D, lab values, and physician entered diagnosis.

Statistical Analyses

a. Generation of GPSs:

GPS measures the cumulative impact of common variants on the risk of certain disorders or diseases. We assumed the impact of independent variants to be additive. Thus, for each individual, we computed GPS by taking the sum of the dosage of the effective allele at each single nucleotide polymorphic site (SNP) weighted by their effect on the outcome under consideration.

For eGFR, weights were assigned based on GWAS summary statistics generated from 113,814 European ancestry (EA) individuals. For UACR, GWAS summary statistics generated from 54,450 European ancestry individuals was used. A GPS for DKD was also generated for comparison, using summary statistic from a GWAS on 5,717 samples. To account for linkage disequilibrium, we implemented the LDpred computational algorithm to generate adjusted GWAS summary statistics based on a linkage disequilibrium reference panel of 503 Europeans from 1000 Genome phase 3 version 5. For each phenotype, nine adjusted GWAS summary statistics corresponding to nine given values of the fraction of causal variants ($\rho = 1.0,$...
0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 0.0003, and 0.0001) were generated from the original GWAS. A candidate polygenic score was then generated for each adjusted GWAS using the PRSice software20 with an option to remove all polymorphic sites with ambiguous strands (A/T or C/G).

b. Testing of GPSs:

The associations between npDKD, pDKD, and corresponding GPSs were tested using a simple logistic regression model adjusted for age, sex, assessment center, genotype measurement batch, and the first ten genetic principal components (PCs). Out of the nine candidate GPSs for each phenotype, the score with the strongest odds ratio and the corresponding lowest P-value was chosen for subsequent analysis.

c. Association of GPS\textsubscript{eGFR} and GPS\textsubscript{UACR} with composite DKD:

Composite DKD cases were defined as individuals with either eGFR <60 mL/min/1.73m2 and/or UACR \geq30 mg/g. The association between composite DKD and GPSs were tested using a single polygenic score model which tested for each GPS separately, and a multi-polygenic score model, which combined two polygenic scores into one logistic regression model. Covariates included age, sex, BMI, systolic blood pressure (SBP), assessment center, genotype measurement batch and the first 10 PCs.

d. Validation in multiple ethnicities

Two genome-wide polygenic score, GPS\textsubscript{eGFR} and GPS\textsubscript{UACR}, were generated for each individual in the BioMe data set using the same GWAS summary statistics used for computing GPSs in UKBB. The associations between GPSs and composite DKD were then tested in European American, Hispanic American, and African American
cohorts separately using a multi-polygenic score model adjusted for age, sex, SBP, BMI and the first ten PCs.
RESULTS.

Of the 18,841 individuals with T2D in UKBB, 3,498 cases (20%) had DKD. Of those with DKD, 781 cases had renal dysfunction (eGFR <60 ml/min/1.73 m²) without proteinuria (UACR <30 mg/g), and 2,717 cases had proteinuria (UACR ≥30 mg/g).

Individuals with DKD had higher age, BMI, and SBP than individuals without DKD on average (Table 1).

Table 1. Baseline characteristics of 18,841 participants with T2D in UK Biobank cohort

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Participants with T2D</th>
<th>Participants with DKD</th>
<th>Participants without DKD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample size</td>
<td>18841</td>
<td>3498</td>
<td>13889</td>
</tr>
<tr>
<td>Age in years</td>
<td>60.45 (6.73)</td>
<td>61.48 (6.50)</td>
<td>60.21(6.76)</td>
</tr>
<tr>
<td>Female</td>
<td>7111 (38)</td>
<td>1250 (36)</td>
<td>5245 (38)</td>
</tr>
<tr>
<td>Creatinine (umol/L)</td>
<td>76 (26)</td>
<td>92 (49)</td>
<td>73 (14)</td>
</tr>
<tr>
<td>Microalbumin (mg/L)</td>
<td>36 (169)</td>
<td>143 (369)</td>
<td>11 (8.5)</td>
</tr>
<tr>
<td>Body Mass Index in kg/m²</td>
<td>32 (6)</td>
<td>32 (6)</td>
<td>31 (5.6)</td>
</tr>
<tr>
<td>Systolic Blood Pressure in mm of Hg</td>
<td>145 (19)</td>
<td>148 (22)</td>
<td>144 (18.26)</td>
</tr>
</tbody>
</table>

All categorical values are in n (%) and continuous values are in mean (SD)

Performance of each GPS

GPS_{eGFR} corresponding to 1% of causal variants ($p=0.01$) was the best predictor of npDKD (p-value=3.33×10^{-26}; $R^2=0.07$) (Table S1). For pDKD, GPS_{UACR} corresponding to 0.3% of causal variants ($p=0.003$) had the best performance (p-
value=1.8×10⁻⁴; \(R^2 = 0.006 \) (Table S2). We therefore brought forward these two GPSs for inclusion in the multi-polygenic score model.

We observed that increased GPS was associated with increased risk of DKD (Figure 2). The prevalence of DKD increased proportionally with GPS\(_{eGFR}\) and GPS\(_{UACR}\), with an approximate 7% increase in npDKD from the lowest decile to the highest decile of GPS\(_{eGFR}\) (Figure 2A) and 5% increase in pDKD from the lowest decile to the highest decile of GPS\(_{UACR}\) (Figure 2B). The median of GPS decile score was 6 for individuals with DKD cases versus 5 for individuals without DKD (Figure 2C and D).

Joint prediction of GPS\(_{eGFR}\) and GPS\(_{UACR}\)

Although the two GPSs are independent (Pearson correlation (GPS\(_{eGFR}\), GPS\(_{UACR}\)) = -0.05), results from logistic regression test using multi polygenic score model showed strong associations between both GPSs and DKD (p-value 1.1×10^-8 and 1.5×10^-⁴ for GPS\(_{eGFR}\) and GPS\(_{UACR}\) respectively; Table 2). The contribution of each GPS to DKD risk stratification was modest, evidenced by odds ratio of 1.13 for GPS\(_{eGFR}\) and 1.08 for GPS\(_{UACR}\). However, in comparison with the single GPS model which uses GPS generated from GWAS summary statistic for DKD (Table 2), the multi-polygenic score model showed a significant improvement.

Table 2. Performance of joint GPS model and single GPS model in predicting DKD.

<table>
<thead>
<tr>
<th>Model</th>
<th>Predictor</th>
<th>Odds ratio</th>
<th>2.5% CI</th>
<th>97.5% CI</th>
<th>P-value</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint GPS</td>
<td>GPS(_{eGFR})</td>
<td>1.13</td>
<td>1.09</td>
<td>1.18</td>
<td>1.08×10⁻⁸</td>
<td>0.22</td>
</tr>
<tr>
<td></td>
<td>GPS(_{UACR})</td>
<td>1.08</td>
<td>1.04</td>
<td>1.13</td>
<td>1.47×10⁻⁴</td>
<td></td>
</tr>
</tbody>
</table>
We next explored whether there was any significant clinical difference between individuals at the high extreme distribution of polygenic score distributions compared to individuals at the low extreme distribution. We observed an increasing strength of association between higher polygenic scores and DKD compared to those with lower polygenic scores (Table 3). A particularly strong enrichment in DKD was observed in individuals belonging to the highest 10% of both GPS$_{eGFR}$ and GPS$_{UACR}$ distributions, with > two-fold adjusted odds of DKD diagnosis (OR 2.15, 95% CI 1.02-4.68; p=0.04).

Table 3. Joint GPSs stratification analysis

<table>
<thead>
<tr>
<th>Sample grouping based on GPSs</th>
<th>OR</th>
<th>2.5% CI</th>
<th>97.5% CI</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top 50% vs bottom 50%</td>
<td>1.35</td>
<td>1.21</td>
<td>1.51</td>
<td>1.9×10^{-7}</td>
</tr>
<tr>
<td>Top 40% vs bottom 40%</td>
<td>1.45</td>
<td>1.26</td>
<td>1.68</td>
<td>3.5×10^{-7}</td>
</tr>
<tr>
<td>Top 30% vs bottom 30%</td>
<td>1.68</td>
<td>1.38</td>
<td>2.06</td>
<td>3.1×10^{-7}</td>
</tr>
<tr>
<td>Top 20% vs bottom 20%</td>
<td>1.69</td>
<td>1.24</td>
<td>2.31</td>
<td>8.7×10^{-4}</td>
</tr>
<tr>
<td>Top 10% vs bottom 10%</td>
<td>2.15</td>
<td>1.02</td>
<td>4.68</td>
<td>4.7×10^{-2}</td>
</tr>
</tbody>
</table>

Performance of GPS$_{eGFR}$ and GPS$_{UACR}$ in different ethnic groups

We assessed the performance of the multi polygenic score model in three different ethnic groups in BioMe: 1,855 African American (AA); 2,684 Hispanic American (HA); and 850 European American (EA, Table 4). Logistic regression tests between DKD and GPSs showed only one significant association between DKD and GPS$_{eGFR}$ in
the HA group, possibly because this is the group with largest sample size, however, we observed consistent direction of association (OR>1). Observed R^2 is highest for EA group and lowest for AA group, indicating that our GPSs perform better in European and European admixed ethnicities.

Table 4. Performance of the two GPSs in multiple ethnic groups

<table>
<thead>
<tr>
<th>Race</th>
<th>Sample size</th>
<th>Predictor</th>
<th>OR</th>
<th>2.5% CI</th>
<th>97.5% CI</th>
<th>P-value</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>European</td>
<td>850</td>
<td>GPS$_{UACR}$</td>
<td>1.09</td>
<td>0.95</td>
<td>1.25</td>
<td>0.21</td>
<td>0.27</td>
</tr>
<tr>
<td>American</td>
<td></td>
<td>GPS$_{eGFR}$</td>
<td>1.18</td>
<td>1.01</td>
<td>1.38</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>2684</td>
<td>GPS$_{UACR}$</td>
<td>1.01</td>
<td>0.93</td>
<td>1.08</td>
<td>0.96</td>
<td>0.15</td>
</tr>
<tr>
<td>American</td>
<td></td>
<td>GPS$_{eGFR}$</td>
<td>1.22</td>
<td>1.11</td>
<td>1.35</td>
<td>7.4×10^{-5}</td>
<td></td>
</tr>
<tr>
<td>African</td>
<td>1855</td>
<td>GPS$_{UACR}$</td>
<td>1.01</td>
<td>0.90</td>
<td>1.14</td>
<td>0.82</td>
<td>0.10</td>
</tr>
<tr>
<td>American</td>
<td></td>
<td>GPS$_{eGFR}$</td>
<td>1.04</td>
<td>0.90</td>
<td>1.20</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>
DISCUSSION.

In this study we developed a polygenic approach which combined genetic information from two genome-wide polygenic information from two DKD defining traits—UACR and eGFR. First, we show that in UKBB patients with T2D, individuals belonging to the top deciles of the two GPSs were at more than two-fold increased odds of DKD relative to those in the bottom deciles. Second, we show that combining information from both eGFR and UACR, has superior association with DKD compared to using GWAS significant hits from DKD alone. Finally, we show that the performance of this joint modeling is significantly worse in African Americans compared to European Americans, highlighting the need for improved diversity in these studies.

Although GPS have been developed and validated for many complex diseases including T2D21,22 and chronic kidney disease (CKD),23,24 previously, only one study has been published that generated and validated GPS for kidney disease in T2D. Liao et al 20199 used a polygenic score in Han Chinese patients with T2D and found that adding genetic factors to the clinical factors can improve risk prediction, however their GPS was comprised of only seven DKD susceptibility SNPs with a sample size of less than 1000 individuals. This study, on the other hand, explored the summed effect of millions of SNPs. Moreover, instead of using one single GPS, we utilized genetic information from two independent GPSs for cardinal quantitative traits of DKD (eGFR and UACR)

Both reduced eGFR and albuminuria are clinical markers of diabetic nephropathy and have a distinctive underlying genetic basis. Clinically significant albuminuria is prevalent in certain populations with diabetes, and progression to higher levels of
Albumin loss in the urine varies among ethnicities.25,26 In addition, albuminuria is highly heritable among families with diabetes and hypertension,27 and progressive albuminuria is also associated with significant reductions in eGFR. Similarly, eGFR decline is heritable28 and variations in glomerular filtration is a risk factor for CKD among diabetics.29 Previous studies have shown that combination of changes in both eGFR and UACR is a better predictor of major kidney events than when the two are assessed separately.30 Our study further demonstrates that combining genetic information from two independent GPSs for the two quantitative traits associates with DKD more strongly than just using genome wide significant hits for DKD (Table 2).

The risk for developing DKD has been shown to be partially due to genetic factors, yet we know very little about its genetic architecture. Although a major effort has been made to discover variants and genes with large effect on DKD in type 1 or type 2 diabetes, only a few variants, without robust statistical power or independent validation, have been reported.31 While the lack of compelling evidence for large effect mutation and gene is attributable to small number of patients in those studies, it also suggests that DKD is likely polygenic and patient susceptibility may result from the summative effects of numerous common variants with individually small effects. Associations of GPSs with DKD in our study support this argument, as the optimal GPS corresponds to a fraction of 1\% (~18,000) causal variants for npDKD and 0.3\% (~5,400) causal variants for pDKD (Table S1-2). In fact, GWAS studies for eGFR and UACR have discovered some of the genome-wide significance variants to be part of biologically interesting pathways which include and are not limited to glucose homeostasis, regulatory function in the kidney, reduced reuptake of albumin, decreased vesicular trafficking of albumin.
and alteration of glomerular basement membrane proteins.32-35 Moreover, kidney
dysfunction in diabetes may be a result of not only primary injury to the nephron from
hyperglycemia, but also as a consequence of secondary processes such as age, and
systolic blood pressure. These biological pathways are complex and comprise
thousands of SNPs, suggesting a future direction of DKD studies to focus on the
polygenic nature of the disease and investigate pathways regulated by multiple genetic
variants.

There are several limitations in this study. First, it is unclear whether the subset
of patients identified with higher polygenic risk scores will develop more severe DKD, as
longitudinal data is currently not publicly available from the databases used. Second,
how GPS performs compared to traditional risk factors in DKD prediction is still to be
determined and may require a more longitudinal study before disease onset. Third,
replication analysis in varying ethnicities in the BioMe database, particularly AA and HA
yielded poor results, suggesting that further studies with larger sample size and GWAS
conducted for samples from different ethnicities would be necessary to generate more
statistically robust validation.

Regardless of these limitations, this study serves as a proof of principle that
jointly modeling polygenic contributions of eGFR and UACR can improve association
with DKD. It underscores the polygenic nature of DKD and verifies that genetic
information accumulated in GPSs is an important risk predictor that could be
implemented in prediction models.
ACKNOWLEDGMENTS.

The BioMe healthcare delivery cohort at Mount Sinai was founded and maintained with a generous gift from the Andrea and Charles Bronfman Philanthropies. The authors thank the individuals who were involved in the quality control and/or file handling for the exome sequencing and genome-wide genotyping data, including Aayushee Jain, Kumardeep Chaudhary, Lisheng Zhou, Michael Preuss, Quingbin Song, Stephane Wenric, and Steve Ellis. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award numbers S10OD018522 and S10OD026880. This study has been conducted using the UK Biobank Resource under Application Number ‘16218’. Iain S. Forrest was supported by T32GM007280, the Medical Scientist Training Program Training Grant from the National Institute of General Medical Sciences of the National Institutes of Health. Ron Do is supported by R35GM124836 from the National Institute of General Medical Sciences of the National Institutes of Health, and R01HL155915 and R01HL139865 from the National Heart, Lung, and Blood Institute of the National Institutes of Health. Girish Nadkarni is supported by R01DK127139 from the National Institute of Diabetes and Digestive and Kidney Disease and by R01HL155915 from the National Heart, Lung, and Blood Institute of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
DISCLOSURES.

GNN, JCH and SGC receive financial compensation as consultants and advisory board members for Renalytix, and own equity in Renalytix. In the past 3 years, SGC has also received consulting fees from CHF Solutions, Takeda Pharmaceuticals, Re lypsa, Bayer, Goldfinch Bio, Boehringer-Ingelheim, and inRegen. In the past 3 years GNN has also received consulting fees from AstraZeneca, Reata, GLG Consulting, BioVie, Variant Bio, and grant support from Goldfinch Bio and Renalytix. GNN is also a scientific cofounder and equity holder for Pensieve Health. LC receives financial compensation as a consultant for Vifor Pharma, INC and honorarium from Fresenius Medical Care. Ron Do reported receiving grants from AstraZeneca, grants and nonfinancial support from Goldfinch Bio, being a scientific cofounder and equity holder for Pensieve Health and being a consultant for Variant Bio.
REFERENCES

FIGURE LEGENDS

Figure 1. Overall Workflow and Flowchart for the Study.
Using two recent GWASs for two phenotypes, eGFR and UACR, two independent GPSs were derived. A prediction model of DKD incorporating the two GPSs was then tested in 18,841 individuals of European ancestry with T2D from UKBB and subsequently validated in other ethnicities using BioMe Biobank.

Figure 2. Association with prevalent DKD increases with increasing genome-wide polygenic scores.
Top row: proportion of DKD incidents in each GPS decile. npDKD is defined by eGFR <6060ml/min/1.73m² (A); pDKD is defined by UACR<30mg/g (B).
Bottom row: GPS decile among DKD cases versus controls. Each boxplot reflects the decile range from first to third quartiles and the horizontal line in the middle indicates decile mean.
Fig 1. Work flow

Association statistics from genome-wide association study of eGFR

Genome-wide polygenic score for eGFR

Association statistics from genome-wide association study of UACR

Genome-wide polygenic score for UACR

Test if combination of genome-wide polygenic scores for UACR and eGFR improves the prediction of DKD outcome (eGFR<60 or UACR>30) in 18,841 type 2 diabetes patients in UK BioBank

Test the association in BioMe to examine the performance of combined GPSs in other ethnicities
A

Proportion of npDKD (%)

Decile of GPS_eGFR

B

Proportion of pDKD (%)

Decile of GPS_UACR

C

GPS_eGFR decile

DKD Control DKD Case

D

GPS_UACR decile

DKD Control DKD Case

CC-BY-NC-ND 4.0 International license

The copyright holder for this preprint this version posted July 10, 2021.; https://doi.org/10.1101/2021.07.09.21260114
doi: medRxiv preprint