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A joint spatial model for dengue and severe dengue in Medellin, Colombia. 

Supplementary Material 

 

 
Figure S1. Distribution of dengue cases notified in Medellin in 2013. Kernel density of overall and severe 

dengue cases using a 5 Km bandwidth. Label indicates the number of overall and severe cases per 5 Km2. 

 

1. Spatial point process model:  

 

A log-Gaussian Cox point process model assesses the distribution of the individual location of the 

outcome points (dengue cases) in a spatial structure, and it is used in order to consider both, 

observed and unobserved variation in the assessment of such distribution1. It estimates the spatial 

distribution of the individual cases as a function of a continuous latent Gaussian random field, 

assuming conditional independence of the points presented on the field. This indicates that 

conditional on the latent field, the distribution of the point pattern (dengue cases), follows a 

Poisson process1-3. This analysis uses individual level information and allows covariates at the 

spatial level to vary according to the random field. Thus, providing information about the presence 

and degree of clustering within the spatial structure, while considering simultaneously the spatial 

autocorrelation between and within spatial units4.  
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A Marked log-Gaussian Cox point process model uses an individual characteristic of the point, the 

‘mark’, to assess the individual distribution of an event given such specific characteristic. In our 

case, each point represents an individual case, and the “mark” is the presence/absence of severity 

for each dengue case. Thus, the information about the “mark” is used to estimate two aspects 

simultaneously: 1) the overall distribution of the point pattern (i..e: all points/cases) and 2) the 

distribution of the point pattern given the mark (i.e: severe cases). The model could also be 

considered a “labeling” of the Poisson process, where the ‘marks’ work also as a response variable 

2. This approach is intended to identify whether there is an underlying mechanism leading to a 

differential distribution of severe cases, with the added advantage of modelling simultaneously an 

individual feature of the point (the severity) and the spatial distribution, while accounting for its 

dependence2,3.   

 

To conduct a point process analysis, it is necessary to consider each case-location as 𝑥𝑖: 𝑖 =

1, . . . n, where,  𝑥 indicates the location and 𝑖 indicates the dengue case identifier that in theory 

could have occurred in any location inside a given spatial region A ⊂  2 1. Likewise, it is 

important to accept two main structural assumptions: i) that the function of the Cox-Process is a 

stochastic non-negative process  =  {  (x): x ∈  2} , and ii) that conditional on the realization 

(x)  =  λ(x): x ∈  2, the point process is an inhomogeneous Poisson process with intensity 

λ(x).   Also, it is necessary to consider the distribution of dengue cases as a phenomenon S(x) that 

is incompletely observed and spatially continuous, given that S =  {S(x) ∶  x ∈  2} is a Gaussian 

stochastic process and that S determines λ(x), which is the intensity of the distribution; λ(x)  =

 exp{S(x)}1,3. To analyze this intensity, it is necessary to approximate the spatially continuous 

random field to a constructed grid 1,3,5. Then, considering {𝑦𝑖} the observed number of points in 

the neighborhood, we assume that the number of points (cases) in a grid-cell/neighborhood 𝑖 

follows a Poisson distribution conditional on a first latent field,  𝜂𝑖
(1)

: 

 

𝑦𝑖|𝜂𝑖
(1)

~ 𝑃𝑜(𝐸𝑖 𝜂𝑖
(1)

), Equation (S.1)  
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The offset of the pattern 𝐸𝑖 is specified as the expected count of cases in each neighborhood 

and obtained via indirect standardization6. To model the marked point process, we add to 

equation 1, the analysis of the marks (severe or not severe). For that we let 𝑚𝑖 be the number of 

patients with severe dengue in each spatial unit 𝑖 . Then, conditional on the value of a second 

latent field 𝜂𝑖
(2)

 in the same neighborhood, 𝑚𝑖  follows a binomial distribution: 

 

𝑚𝑖|𝜂𝑖𝑗
(2)

 ~ 𝐵𝑖𝑛(𝑦𝑖 , 𝑝𝑖𝑗), Equation (S.2)  

 

where 𝑝𝑖𝑗 = 𝑒𝑥𝑝( 𝜂𝑖𝑗
(2)

)/(1 + exp ( 𝜂𝑖𝑗
(2)

)) is the probability of individual 𝑗 being a severe case in 

a given neighborhood 𝑖 while 𝑦𝑖 is the total number of cases of dengue in neighborhood 𝑖. This, 

constituting a matrix outcome of two links (i.e: Poisson for overall point patterns, and Binomial for 

severity), each one on a separate latent field 𝜂, that are jointly analyzed in relation to a vector of 

sociodemographic covariates 2. We constructed the final model for each latent field  𝜂𝑖
(1)

 and  𝜂𝑖𝑗
(2)

, 

including empirical covariates for neighborhood level and individual level as fixed effects, and 

spatial structures as random effects as follows: 

 

𝑙𝑜𝑔( 𝜂𝑖
(1)

) = 𝛽0
(1)

+ 𝛽1
(1)

𝐼𝐵(𝑠𝑖) + 𝛽2
(1)

𝑈𝑁𝐷𝐸𝑅20(𝑠𝑖) + 𝛽3
(1)

𝑃. 𝐹𝐸𝑀𝐴𝐿𝐸(𝑠𝑖) + 𝛽4
(1)

𝑆𝐸𝑆(𝑠𝑖) +

𝑓𝑠
𝑗(𝑠𝑖) + 𝑢(𝑠𝑖), Equation (S.3) 

 

𝑙𝑜𝑔𝑖𝑡(𝜂𝑖𝑗
(2)

) = 𝛽0
(2)

+ 𝛽1
(2)

𝐴𝐺𝐸(𝑠𝑖𝑗) + 𝛽2
(2)

𝑆𝐸𝑋(𝑠𝑖𝑗) + 𝛽3
(2)

𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸(𝑠𝑖𝑗) +

𝛽4
(2)

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝐾𝑚(𝑠𝑖𝑗)  + 𝑔𝑠
𝑗(𝑠𝑖) + 𝑣(𝑠𝑖), Equation (S.4) 

 

𝛽0
(1)

 and𝛽0
(2)

 are the pattern and marks intercepts. 𝛽1
(1)

…  𝛽4
(1)

 are the coefficients associated to 

the empirical covariates for the distribution of cases at the neighborhood level; and 𝛽1
(2)

…  𝛽4
(2)

  

are the coefficients associated to the empirical covariates for severity at the individual level, as 

described in the main text. 𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝐾𝑚(𝑠𝑖𝑗)  is the standardized minimum nearest-neighbor 

Euclidean distance between overall and severe cases, parameterized as a continuous variable. The 
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components 𝑓𝑠
𝑗
(𝑠𝑖𝑗) and 𝑔𝑠

𝑗
(𝑠𝑖𝑗) are the Gaussian Markov Random Field (GMRF), reflecting 

separately the spatial autocorrelation in the latent field, working as spatially structured effects for 

the pattern and the marks, respectively.  𝑢(𝑠𝑖)is the spatially unstructured random effect for the 

pattern and 𝑣(𝑠𝑖)  is the spatially unstructured random effect for the marks. To express the 

dependence between the pattern and the marks, we used a single (common) random field 

replacing equation (4) as follows: 

 

𝑙𝑜𝑔𝑖𝑡(𝜂𝑖𝑗
(2)

) = 𝛽0
(2)

+ 𝛽1
(2)

𝐴𝐺𝐸(𝑠𝑖𝑗) + 𝛽2
(2)

𝑆𝐸𝑋(𝑠𝑖𝑗) + 𝛽3
(2)

𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸(𝑠𝑖𝑗) +

𝛽4
(2)

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝐾𝑚(𝑠𝑖𝑗)  + 𝛽𝑠𝑓𝑠
𝑖(𝑠𝑖) + 𝑣(𝑠𝑖), Equation (S.5)  

 

which makes the spatial effect for the severity proportional to the spatial effect of the pattern of 

case distribution 2. The spatially structured and unstructured effects were modeled following the 

Besag-York-Mollie (BYM) specification7; where after adjusting for the fixed effects,  the structured 

component is modeled using an intrinsic conditional autoregressive structure (iCAR) and the 

unstructured effect is modeled using an independent prior6,8,9.  

 

1.1 Fitting separated models for each random field 

 

Table S1a. Posterior mean of the Incidence Rate Ratio and 95% credible intervals for covariates 

(fixed effects) on the single-separated model for overall dengue cases in Medellin, 2013 

 

Characteristic IRR 2.5% 97.5% 

(Intercept) 0.78 0.60 0.42 

Proportion of Female cases 1.07 1.01 1.12 

Proportion of cases <20 years old 1.06 1.01 1.12 

Medium Breteau Index 1.10 0.84 1.44 

Low SES 0.43 0.33 0.56 

High SES 0.77 0.55 1.07 
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Proportion of female cases and proportion of cases under 20 years old indicate 10% increase in 

the proportion of cases per neighborhood. SES reference group = Medium SES; Breteau Index 

reference group = Low. 

 

Table S1b. Posterior mean and 95% credible intervals of Hyperparameters: 

 

Parameter Mean SD 2.5% 97.5% mode 

Precision for 𝑓𝑠
𝑗
(𝑠𝑖𝑗) + 𝑢(𝑠𝑖𝑗) 1.69 0.26 1.23 2.28 1.63 

Phi for 𝑢(𝑠𝑖𝑗) 0.38 0.14 0.13 0.68 0.34 

 

Table S2a. Posterior mean of the Odds Ratio and 95% credible intervals for covariates (fixed 

effects) on the single-separated model for severe dengue cases in Medellin, 2013 

 

Characteristic OR 2.5% 97.5% 

Age     

15-34 Years 1.09 0.78 1.55 

35-54 Years 1.08 0.74 1.59 

>55 Years 1.49 0.98 2.27 

Sex (Female) 0.92 0.72 1.19 

Contributory Insurance 0.86 0.66 1.12 

Distance to Severe cases (Km) 0.50 0.27 0.89 

Age group reference= <15 years of age; Sex reference= Male; Health Insurance reference is 

Subsidized scheme. 

 

Table S2b. Posterior mean and 95% credible intervals of Hyperparameter: 

Parameter Mean SD 2.5% 97.5% mode 

Precision 𝑔𝑠
𝑗
(𝑠𝑖𝑗) + 𝑣(𝑠𝑖𝑗) 514.20 3018.98 12.39 3360.07 26.67 

Phi for 𝑣(𝑠𝑖𝑗) 0.31 0.26 0.01 0.90 0.02 
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1.2 Sensitivity Analyses: Joint models  

In addition to the full model, we fitted other joint models including a model without the SES 

covariate and the full joint model using a different spatial effect for severity. Models were 

examined using Deviation Information Criteria (DIC) and are summarized in Table S3 and results 

are presented in Table S4 and S5 respectively.  

 

Table S3. Summary of Deviance Information Criterion (DIC) values and specification for joint 

models of overall (pattern) and severe (marks) dengue cases. 

 

Model Model Components DIC 

Full without the 
SES covariate.  

𝑙𝑜𝑔 ( 𝜂𝑖
(1)

) = 𝛽0
(1)

+ 𝛽1
(1)

𝐼𝐵(𝑠𝑖) + 𝛽2
(1)

𝑈𝑁𝐷𝐸𝑅20(𝑠𝑖) +

𝛽3
(1)

𝑃. 𝐹𝐸𝑀𝐴𝐿𝐸(𝑠𝑖) + 𝑓𝑠
𝑗(𝑠𝑖) + 𝑢(𝑠𝑖);  

 

𝑙𝑜𝑔𝑖𝑡 (𝜂𝑖
(2)

) = 𝛽0
(2)

+ 𝛽1
(2)

𝐴𝐺𝐸(𝑠𝑖) + 𝛽2
(2)

𝑆𝐸𝑋(𝑠𝑖) + 𝛽3
(2)

𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸(𝑠𝑖)

+ 𝛽4
(2)

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝐾𝑚(𝑠𝑖)  + 𝛽𝑠𝑓𝑠
𝑖(𝑠𝑖) + 𝑣(𝑠𝑖),    

2849.2 

Full model with 
two separate 

spatial 
structures.  

𝑙𝑜𝑔 ( 𝜂𝑖
(1)

) = 𝛽0
(1)

+ 𝛽1
(1)

𝐼𝐵(𝑠𝑖) + 𝛽2
(1)

𝑈𝑁𝐷𝐸𝑅20(𝑠𝑖) +

𝛽3
(1)

𝑃. 𝐹𝐸𝑀𝐴𝐿𝐸(𝑠𝑖) + 𝛽4
(1)

𝑆𝐸𝑆(𝑠𝑖) + 𝑓𝑠
𝑗 (𝑠𝑖) + 𝑢(𝑠𝑖);  

 

𝑙𝑜𝑔𝑖𝑡 (𝜂𝑖
(2)

) = 𝛽0
(2)

+ 𝛽1
(2)

𝐴𝐺𝐸(𝑠𝑖) + 𝛽2
(2)

𝑆𝐸𝑋(𝑠𝑖) + 𝛽3
(2)

𝐼𝑁𝑆𝑈𝑅𝐴𝑁𝐶𝐸(𝑠𝑖)

+ 𝛽4
(2)

𝐷𝐼𝑆𝑇𝐴𝑁𝐶𝐸𝐾𝑚(𝑠𝑖)   + 𝑔𝑠
(2)(𝑠𝑖) + 𝑣(𝑠𝑖) 

 
2868.1 
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Table S4a. Incidence Rate Ratio (IRR), Odds Ratios (OR) and 95% credible intervals of covariates 

(fixed effects) for the model without the SES covariates. 

Fixed Effects Estimates and 95% Credible intervals 

Overall Cases (Pattern) 

 IRR 2.5% 97.5% 

Intercept (Pattern) 0.60 0.46 0.78 

Proportion of Female Cases 1.04 1..00 1.09 

Proportion of <20 years old 1.04 0.99 1.09 

Breteau Index (Medium) 1.05 0.83 1.33 

Severity (Marks) 

 OR 2.5% 97.5% 

Sex (Female) 0.88 0.68 1.14 

Age    

15-34 Years 0.97 0.69 1.38 

35-54 Years 1.07 0.73 1.58 

>55 Years 1.52 0.99 2.33 

Contributory Insurance 1.00 0.77 1.31 

Proportion of woman and cases under 20 years old indicate 10% increase. Breteau Index reference 

group = Low; Age group reference= <15 years of age; Sex reference= Male; Health Insurance 

reference is Subsidized scheme. 

 

Table S4b. Posterior mean and 95% credible intervals of hyperparameters for the model without 

the SES covariates. 

Parameter mean SD 2.5% 97.5% mode 

Precision for 𝑓𝑠
𝑗(𝑠𝑖) + 𝑢(𝑠𝑖) 1.39 0.21 1.03 1.84 1.35 

Phi for 𝑢(𝑠𝑖) 0.41 0.14 0.17 0.69 0.39 

𝛽 Coefficient for Severity for 𝑔𝑠
𝑗
(𝑠𝑖𝑗)  -0.31 0.11 -0.53 -0.09 -0.32 
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Table S5a. Incidence Rate Ratio (IRR), Odds Ratios (OR) and 95% credible intervals of covariates 

(fixed effects) for the model with two separate spatial structures. 

Fixed Effects Posterior mean and 95% Credible intervals 

Overall Cases (Pattern) 

 IRR 2.5% 97.5% 

Intercept (Pattern) 0.78 0.60 1.01 

Proportion of Female cases  1.05 1.01 1.10 

Proportion of cases <20 years old 1.06 1.01 1.11 

Socio Economic Status (SES)    

Low SES 0.43 0.33 0.60 

High SES 0.77 0.50 1.10 

Breteau Index (Medium) 1.12 0.89 1.40 

Severity (Marks) 

 OR 2.5% 97.5% 

Sex (Female) 0.92 0.70 1.20 

Age    

15-34 Years 1.05 0.70 1.50 

35-54 Years 1.13 0.76 1.70 

>55 Years 1.53 0.98 2.40 

Contributory Insurance 0.89 0.67 1.20 

Proportion of woman and cases under 20 years old indicate 10% increase. SES reference group = 

Medium SES Level; Breteau Index reference group = Low; Age group reference= <15 years of age; 

Sex reference= Male; Health Insurance reference is Subsidized scheme 

 

Table S5b. Posterior mean and 95% credible intervals of hyperparameters for the model with 

two separate spatial structures 

Parameter mean sd 2.5% 97.5% mode 

Precision for 𝑓𝑠
𝑗(𝑠𝑖) + 𝑢(𝑠𝑖) 1.69 0.26 1.24 2.26 1.63 

Phi for 𝑢(𝑠𝑖) 0.38 0.14 0.13 0.68 0.35 

Precision for 𝑔𝑠
(2)(𝑠𝑖) + 𝑣(𝑠𝑖) 2.02 0.59 1.13 3.43 1.75 

Phi for 𝑣(𝑠𝑖) 0.09 0.09 0.00 0.35 0.01 
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1.3 Posterior density of fixed and random effects of the final joint model using a single spatial 

component. 
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i.spat1= Spatial Effect for overall cases; i.spat2= Spatial effect for severe cases 
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