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I. MAXMIMUM OF WAVES IN THE CONSTANT MUTATION RATE MODEL

To obtain some analytical an understanding of the scaling of the maxima in the constant mutation model, we start
by considering the equations of susceptible and infections which read

Ṡ = −(β0 + µt)SI, (S1)

İ = (β0 + µt)SI − γI, (S2)

(S3)

where the recovered R follow from S + I +R = 1. Redefining the time variable t′ = (β0 + µt) yields

µṠ = −t′SI, (S4)

µİ = t′SI − γI, (S5)

(S6)

where the dot now denotes derivatives with respect to t′. Maxima can be found using İ = 0, which is explicity

S∗t′∗ = γ (S7)

where S∗ are the susceptible at the maximum and t′∗ is the time at which the maximum appears. Taking a derivate
of S∗ with respect to t′∗ gives

Ṡ∗ = − γ

(t′∗)2
, (S8)

which is only valid between maxima. Since the susceptible decay monotonically in time, we assume that the S∗ also
decays monotonically with

Ṡ∗ ∼ −t′∗I∗, (S9)

where I∗ are the infected a the maximum. Using Eq. (S8) and Eq (S9) then yields the scaling

I∗ ∼ µ

(β + µt′∗)2
. (S10)

II. MATHEMATICAL ANALYSIS OF PHASE DIAGRAM IN BEYOND CONSTANT MUTATION
RATE APPROACH

The dynamical equations of our model which goes beyond a constant mutation rate are given by

Ṡ = −βSI, (S11)

İ = βSI − γI, (S12)

β̇ = λI, (S13)

(S14)
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where R follows from S + I +R = 1. Dividing Eq. (S11)-(S12) by Eq. (S13) gives

dS

dβ
= −βS

λ
, (S15)

dI

dβ
=
βS

λ
− γ

λ
, (S16)

where β reparameterises time. Equation (S15) is solved by

S = S0e
β2
0−β2

2λ , (S17)

with initial susceptible S0 and initial infection rate β0. Equation (S16) can be rewritten as

dI =
βS

λ
dβ − γ

λ
dβ (S18)

= −dS − γ

λ
dβ, (S19)

where we used Eq. (S15). Integrating then yields

I − I0 = S0 − S −
γ

λ
(β − β0) (S20)

To obtain the phase diagram shown in the main text, we need to look for the extrema of the infections. Extrema of
I are given by the condition İ = 0 which explicitly read

S∗β∗ − γ = 0, (S21)

where S∗ are the susceptible at the extremum and β∗ is the infection rate at the extremum. Using Eq. (S17) gives

γ

β∗
= S0e

β2
0−(β∗)2

2λ , (S22)

which is solved by

β∗ = −i
√
λ

(
W

(
− γ2

λS2
0

e−
β2
0
λ

))1/2

(S23)

where W (∗) is the Lambert function. The argument in the Lambert function of Eq (S23) is smaller than zero. This
gives rise to two solutions, implying two extrema of the infections. Explicitly the extrema I∗ can be found by using

I∗ = I0 + S0 −
γ

β∗
− γ

λ
(β∗ − β0) , (S24)

together with Eq (S23). Furtermore, to determine maxima and minima we can use

Ï|S∗β∗=γ = (I∗)2S∗(λ− (β∗)2) (S25)

such that the sign of (λ− (β∗)2) decides between minimum and maximum.

III. CRITICAL SHORT TIME BEHAVIOR IN BEYOND CONSTANT MUTATION RATE APPROACH

At small times we can approximate the number of susceptible people by S ≈ 1, which gives the set of equations

İ = β[I]I − γI, (S26)

β̇ = λI, (S27)

with the initial condition β(0) = β0. By changing the initial condition of Eq.(S27) to β(0) = β0 − γ we can rewrite
Eq.(S26) as

dlnI

dt
= S0β[I]. (S28)
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We now use the transformation ω = lnI, giving

dω

dt
= S0β [eω] (S29)

β̇ = λeω. (S30)

Taking a derivatite of Eq.(S29), gives

d2ω

dt2
= S0β̇ = S0λe

ω, (S31)

which has initial conditions ω(0) = ln(I(0)) and ω̇(0) = β − γ and can be solved explicitly. Putting back the
transformation, we arrived at the following expression for the number of infected people

I(t) = − δ1

λ
[
1 + cosh

(
2 ln δ2 + t

√
δ1
)] , (S32)

with δ1 = −2I0λ+ (γ − S0β0)
2

and δ2 = −
√
γ−S0β0+

√
δ1√

−γ+S0β0+
√
δ1

. Equation (S32) has poles at

tc =
−2 log(δ2) + iπ(2k − 1)√

δ1
, (S33)

where k is an integer and the physically relevant critical time tc is given by k yielding the smallest positive tc.
Expanding Eq. (S32) around the critical time tc gives

I(t) =
2

λ

1

(t− tc)2
. (S34)

IV. INDEPENDENT PARAMETERS OF COARSE GRAINED MSIR MODEL

The equations of our constant mutation rate coarse grained model are

Ṡ = −βSI, (S35)

İ = βSI − γI, (S36)

β̇ = µ. (S37)

From the condition S + I +R = 1 it then follows that R(t = 0) = 1− I0−S0, such that we have three parameters I0,
S0 and β0 for the initial condition. Additionally, we have the parameters µ and γ, making our parameter space five
dimensional.

We continue considering the units of each parameter and variable which are [S] = 1, [I] = 1, [β] = 1/time,
[β0] = 1/time, [γ] = 1/time and [µ] = 1/time2. By nondimensionalizing Eq.(S35)-(S37) we find

Ṡ = −βSI, (S38)

İ = βSI − I, (S39)

β̇ = µ/β2
0 . (S40)

with S = Sβ0/γ, and I = Iβ0/γ. The parameter space then reduces to three dimensions where the nondimensional
parameters are the initial infected I0, the basic reproduction number S0β0/γ and the mutation rate µ/β2

0 . The
calculation for our model that goes beyond a constant mutation rate is analogous, with the resulting nondimensional
mutation rate λ/β2

0 .


