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Abstract 

Objectives: Although high altitude training has been increasingly popular in endurance 

athletes, the molecular and cellular bases of this adaptation remain poorly understood. We aimed to 

define the underlying physiological changes and screen for potential biomarkers of adaptation using 

transcriptional profiling of whole blood. More generally, we aimed to evaluate the utility of blood 

RNA sequencing as a modern and sensitive method of athlete’s health monitoring.  

Methods: Seven elite female speed skaters were profiled before and after 1h intense 

exercise, on the 18th day of Live High, Train High (LHTH) training programme. Whole blood RNA 

sequencing (RNA-seq) with globin depletion was used to measure gene expression changes 

associated with high intensity exercise at high altitude. Eight public microarray datasets were used 

to identify genes uniquely regulated at high altitude. Gene markers derived from single cell RNA-

seq data were used to evaluate the changes of individual cell types in the whole blood.  

Results: Using individual cell type signatures, we were able to deconvolute the changes of 

finely defined cell populations from the whole blood RNA-seq. We have detected the increase in 

neutrophils, platelets, erythrocytes, and CD14 monocytes, and the decrease in natural killers, CD8 

T cells, memory CD4 T cells, B cells, and plasmacytoid dendritic cells. The levels of naive CD4 T 

cells, CD16 monocytes, and myeloid dendritic cells were unchanged. Leveraging the previously 

published transcriptomic data allowed us to define the expression signature unique to high-altitude 

adaptation. Among the identified genes we highlight PHOSPHO1, which has a known role in 

erythropoiesis, and MARC1 with a proposed role in endogenic NO metabolism. Finally, we find 

that platelets and, to a lesser extent, erythrocytes are the two major cell types that uniquely respond 

to altitude exercise, while neutrophils represent a more generic marker of intense exercise.  

Conclusions: Using publicly available data from both single-cell RNA-seq atlases and 

exercise-related blood profiling dramatically increases the value of whole blood RNA-seq for 

dynamic evaluation of physiological changes in an athlete's body. In addition to the measurement 

of individual gene expression changes, our approach allowed us to estimate changes of blood cell 

type counts from a small peripheral blood sample, without sorting or other expensive and unfeasible 

equipment. We also discuss a surprising parallel of hypoxia and increased thrombosis, and 

hypothesize about the role exercise can play in COVID-19 outcomes.  
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Introduction 

Systemic effects of exercise have drawn substantial interest from researchers in medical, 

public health, and athletic fields for over a century (Gjevestad, Holven, and Ulven 2015; Nieman 

and Pence 2020; Nieman and Wentz 2019). In one of the earliest publications on the subject, 

Larrabee in 1902 described leukocytosis (a decrease in white blood cell count) in runners tested 

after The Boston Marathon (Larrabee 1902). With medical advances of the 20th century, it quickly 

became apparent that physical activity and sufficient exercise is the single most significant predictor 

of general population health and wellbeing (Bull et al. 2020). At the same time, biological reasons 

for this remained elusive, and key molecular drivers of adaptation to physical exercise are yet to be 

defined on the systemic level. The worldwide epidemic of obesity, and general shift towards 

sedentary lifestyle, especially aggravated during the current SARS-CoV-2 pandemic, make these 

goals ever more important (Bull et al. 2020). With an onslaught of the omics methods of the 21st 

century we gained access to incredibly valuable genome-wide datasets, characterizing gene 

expression, proteome, and metabolic changes associated with exercise. However, as it often happens 

with revolutionary methods, our understanding of the data still lags far behind.  

Among the omics approaches used to characterize the effect of physical exertion on the 

human body, gene expression measurement has become the most popular. This happened for several 

reasons. Since first microarray experiments, and then with RNA sequencing (RNA-seq), gene 

expression methods have reached relative maturity, currently allowing the measurement of all 

expressed human genes in a particular tissue with high accuracy and reproducibility (Z. Wang, 

Gerstein, and Snyder 2009; C. Wang et al. 2014). They require a modest amount of biological 

material that can be effectively preserved without freezing, which becomes critical in many 

environments. Finally, both microarray and RNA-seq experiments can be done at a reasonable cost, 

making them accessible to many laboratories. Not all of these criteria are satisfied in case of 

unbiased proteomic or metabolomic profiling, both of which are still in the phase of active method 

development (Timp and Timp 2020; Zhang et al. 2020).  

The choice of the profiled tissue is often defined by the biological questions posed. While 

obesity-focused studies have often used adipose tissue biopsies (Fabre et al. 2018), studies in 

athletes preferably profiled muscle tissue (Gustafsson et al. 1999; Hawley et al. 2018; Terry et al. 

2018). Both of these approaches, however, include relatively traumatic biopsies, making them hard 

to perform outside of medical facilities. Peripheral blood sampling, on the other hand, has many 

advantages - such as well-established collection, storage, and transportation protocols, relatively 

minor effects on the subject’s well-being, and presence of many valuable biomarkers. Blood also 

represents a very diverse mixture of cells, giving access to an intriguing interface between metabolic 
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and immune functions. Indeed, it is well documented that blood composition dynamically reacts to 

both physical and immunological challenges (Lewis et al. 2010). Because of these factors, gene 

expression of peripheral blood is used extremely widely, currently listing thousands of published 

studies. Depending on the study goals, researchers have profiled whole blood, white blood cells 

(WBCs), peripheral blood mononuclear cells (PBMCs), or sorted sub-populations of leukocytes 

(Donohue et al. 2019). 

More specifically, the effects of short- and long-term exercise on peripheral blood gene 

expression have been reported in over 50 different studies, with 20+ using whole-transcriptome 

profiling methods reviewed in (Gjevestad, Holven, and Ulven 2015). Vast majority of the published 

blood whole-transcriptome datasets were generated using microarray technology. The experimental 

designs vary substantially; time of study changes from immediately after a bout of moderate or 

strenuous exercise to weeks or months of regular activity; the participants also varied in level of 

preparation, age, and sex. We have summarized all the relevant datasets available in the literature 

in Supplementary Table S1, only including the studies for which the data are openly available via 

databases like Gene Expression Omnibus (GEO) or ArrayExpress. It is worth noting that no RNA 

sequencing datasets were available at the time of our search, and no studies involved high altitude 

adaptation.  

In our study, we applied whole blood RNA-seq to seven elite female skaters, in order to 

assess the immunological and metabolic effects of high-altitude adaptation. To our knowledge, this 

is the first such attempt. We also put our results in the context of the previously published gene 

expression studies, and identified candidate genes driving the adaptation, as well as general 

physiological changes inferred from gene expression.  

Material and methods  

Subjects and study protocol 

The study was conducted during the pre-season period, and each participant underwent 

medical evaluations including collection of medical history. Seven female elite speed skaters were 

enrolled and gave their informed written consent to participate in this study. All participants 

underwent medical examination and were deemed fit for training and competitive activity; none had 

a history of cardiovascular, pulmonary, or metabolic diseases. Height, weight, and several 

physiological parameters were recorded for each athlete. The average participant age was 25.0 ± 7.0 

years. All patients were of Russian ethnicity. The study was approved by the Saint Petersburg State 

University Ethics Review Board for human studies (decision #40 from 07.03.2012) and was 
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performed in accordance to the Declaration of Helsinki. 

Physiological measurements and sample collections were carried out during an altitude 

training camp that was carried out 1850 meters above the sea level (Font Romeu, France, 1850 

meters above sea level, 21 days of stay). The study was conducted during the period after the first 

part of adaptation period (after 18 days from the beginning of the altitude exposure). Pre- and post-

exercise data collections were carried out in the morning between 08:00 and 11:00. Key 

physiological and biochemical parameters are given in Supplementary Table S2. 

Blood sample collection and RNA isolation 

For each participant, 2.5 mL whole blood sample was collected before and after the exercise 

using the RNAgard Blood Tubes (Biomatrica, USA) according to the manufacturer’s protocol and 

then stored at −20 °C until further processing. Total RNA was extracted from blood using PureLink 

RNA Mini Kit (Thermo Fisher Scientific, Inc.) and «BioMaxi™ Precipitation Buffer» (Biomatrica, 

USA), according to the manufacturer’s protocol. RNA concentration was measured using Quantus 

Fluorometer TM with QuantiFluor RNA System kit (Promega, USA). RNA quality control was 

performed using capillary gel electrophoresis on a QIAxcel Advanced System (Qiagen, Germany). 

Total RNA was depleted of globin mRNA with GLOBINclear - Human Kit (Invitrogen, USA) 

according to the manufacturer’s protocol. 

Library preparation and Illumina RNA sequencing 

Fourteen samples of globin-depleted whole blood (seven skaters, before and after exercise) 

were sequenced using strand-specific RNA-seq with polyA selection. Libraries were prepared using 

TruSeq Stranded mRNA Library Prep Kit (Illumina, Inc., USA) according to the TruSeq Stranded 

mRNA Sample Preparation Guide # 15031047 E (Illumina, USA). Validation of the libraries was 

performed on the QIAxcel Advanced System (Qiagen, Germany). Library quantification was 

performed using Quantus Fluorometer with QuantiFluor dsDNA System kit (Promega, USA). 

Paired-end sequencing of the libraries was performed on HiSeq 4000 System with a reading length 

of 2x150 bp using HiSeq 3000/4000 PE Cluster Kit and HiSeq 3000/4000 SBS Kit (300 cycle) 

(Illumina, USA). The number of reads obtained per sample varied from 12.4 to 40.8 M reads, with 

mean of 31.3 M, and median of 32.2 M reads per sample. Raw reads and processed data were 

deposited in Gene Expression Omnibus database under study ID GSE164890.  

Alignment and quantification  

Assessment of raw read quality was done using FastQC v0.11.6. Paired-end reads were 

aligned using STAR v2.5.3a (Dobin et al. 2013) to the primary assembly of the human genome 
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(version GRCh38.p10), with GENCODE v26 annotation (Frankish et al. 2019) with 

pseudoautosomal (PAR) gene copies removed. STAR options “--outSAMtype BAM 

SortedByCoordinate --quantMode TranscriptomeSAM” were enabled, thus generating alignments 

to both genome and transcriptome. Overall, 94.5 - 98.6 % reads (median 96.0%) were successfully 

aligned, with 2.5 - 11.5% overall reads (median 2.7%) aligning to rRNA.  Genome BAM files were 

used to generate TDF files using igvtools v2.3.93, and visualized using IGV v2.4.11 

(Thorvaldsdottir, Robinson, and Mesirov 2013). Transcriptomic BAM files were used for 

quantification with RSEM v1.2.31 (Li and Dewey 2011), with “--strandedness reverse” option 

enabled, according to the strand-specific library preparation type, and generating expression tables 

in raw counts, TPM, and FPKM on a transcript and gene level. After quantification, 67.6 - 82.5% 

(median 81.9%) of the original reads were successfully assigned to the genes present in Gencode 

v26 annotation. Detailed pipeline for read quality control, alignment, and quantification is available 

at https://github.com/apredeus/rnaquant. 

Differential expression and pathway enrichment analysis  

Differential expression and overrepresentation pathway enrichment analysis, as well as all 

other bioinformatic analysis from this section on, was done in R v4.0.4. Per-gene expression table 

generated by RSEM was used for differential gene expression with DESeq2 R package v1.18.1 

(Love, Huber, and Anders 2014), retaining genes with FDR < 0.1. Variance-stabilizing rlog 

transformation from the DESeq2 package was used to normalize the expression data for diagnostic 

plotting. Donor effect correction was done on rlog-transformed matrix using the comBat function 

from the sva R package (Leek et al. 2012). Pathway enrichment was done using hallmark (H) and 

canonical (CP) gene set collections from MsigDB (A. Liberzon et al. 2011; Arthur Liberzon et al. 

2015) and the clusterProfiler package (Yu et al. 2012).  

Public single cell RNA-seq dataset processing  

Publicly available single cell RNA-seq datasets (GSE149938 and 10k PBMC cells from 10X 

Genomics) were downloaded locally and processed using the Seurat package (Stuart et al. 2019). 

Each dataset was filtered, normalized, clustered to generate coarse-grained cellular populations, and 

markers defining each cell type were generated.  

Microarray dataset reanalysis 

Eight selected microarray studies were uniformly re-processed using the GEOquery (Davis 

and Meltzer 2007) and limma (Ritchie et al. 2015) packages. Each dataset was visualized 
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(Supplementary Figures S2-S9), and a list of differentially expressed genes was generated using a 

pairwise limma linear model that included both donor and exercise.  

Reproducible analysis 

Detailed scripts for all performed analysis and figure generation are freely available at 

https://github.com/apredeus/skater_rnaseq. All the data files needed to reproduce every analysis 

done in the paper are available in the repository. Raw reads and processed data were deposited in 

Gene Expression Omnibus database under study ID GSE164890. 

Results and discussion 

Blood panel and physiological measurements 

Biochemical blood parameters (see Supplementary Table S2 for the full list) and 

physiological measurements (fat mass and percentage, muscle mass and percentage, total fluid, 

phase angle, tHb-mass, total circulating blood volume (TCBV), hemoglobin, hematocrit, and 

percent recovery index in each microcycle) were measured throughout the adaptation period and 

were found to be in line with previously reported values. Due to logistic restrictions, daily 

physiological measurements detailing the adaptation process were not performed; instead, testing 

was done on several select days. At the same time, many reports detailing biochemical and 

physiological adaptation to high altitude have been published previously, and were not the aim of 

this study (Horscroft et al. 2017; Moore 2017).  

Whole blood gene expression was measured in samples collected before and after a morning 

bout of strenuous exercise on day 18 of adaptation. The mean running time in the exercise tests was 

39.0 ± 14.8 min. Heart rate was 182 ± 3 bpm at the end of the exercise. At the end of the exercise, 

lactate concentrations were significantly increased (3.4 ± 0.7 vs. 1.1 ± 0.2 mmol/l; t-test p < 0.05). 

Biochemical parameters immediately before and after the exercise were taken for 6 markers: total 

phosphate, cortisol, growth hormone, total testosterone, total T4 hormone, and CPK. Using paired 

Wilcoxon test we have evaluated the significance of the observed changes. We have found that 

cortisol and phosphate significantly decreased after the exercise, while CPK and growth hormone 

have increased; total T4 and testosterone remained unchanged (Supplementary Figure S2).  

Differential gene expression analysis 

After read alignment and quantification (see Methods), we have performed the initial 

evaluation of the dataset. Using 18,000 most expressed genes and principal components analysis 
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(PCA) plot (Figure 1A), we have assessed the difference between samples collected before and after 

exercise. A clear donor effect was visible from the plot, with samples belonging to the same donor 

being closer to each other than to samples of the same group. Thus, we have applied linear donor 

correction using the comBat function of the sva R package. The PCA plot after the correction (Figure 

1B) has shown much clearer separation of groups. This is common in studies of human blood in 

particular, because blood composition varies notably between individuals. From this analysis, we 

conclude that it is beneficial to include donor covariate in all subsequent analyses.  

 

Figure 1. Overall assessment and differential expression analysis of whole blood RNA-seq from 7 
altitude-adapted female skaters before and after exercise. Differential expression analysis was done using 
DESeq2 and “donor + exercise” design. Differentially expressed genes were reported at 10% FDR. “Up-
regulated” indicates genes which expression increased after the exercise. (A, B) PCA plot of the 14 studied 
samples, before and after donor-effect correction using comBat. Top 18,000 genes were used. Read counts 
were normalized using the rlog function from the DESeq2 package. (C) Log ratio - mean expression (MA) 
plot, with marked differentially expressed genes. (D) Number of differentially expressed genes depending 
on mean expression cutoff; TPM, transcripts per million. (D) Volcano plot of differentially expressed genes. 
Point size is scaled proportionally to mean gene expression. 

Differential expression analysis has uncovered substantial changes in gene expression, with 

2,516 genes up- and 1,542 down-regulated (see Supplementary Table S3 for a full list of genes). 

The difference between the up- and down-regulated gene numbers becomes more pronounced when 

looking at highly expressed genes; for example, when only genes with mean TPM of 100 or more 

were considered, 582 up-regulated and 55 down-regulated genes remained (Figure 1D). For most 

differentially expressed genes, expression change magnitude was modest (Figure 1C, 1E): only 104 

up-regulated and 58 down-regulated genes changed their expression more than twofold.  

Pathway and functional category analysis  
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After initial assessment of differentially expressed genes, we aimed to dissect the functional 

and molecular pathways regulated by the exercise. To this end, we used the molecular signature 

database (MsigDB) pathway collection of annotated pathways relevant to human biology, 

immunology, metabolism, and disease (A. Liberzon et al. 2011; Arthur Liberzon et al. 2015). We 

used overrepresentation analysis with hallmark (H) and canonical pathways (CP) gene set 

collections to define the major biological categories of interest. Figures 2A-C show top 10 

representative pathways ranked by significance. Overall, inflammatory and immune pathways 

dominated the observed changes, with TNFa/Nf-Kb, complement, interferon, IL6/JAK/STAT3 and 

other pathways showing strong up-regulation. On a cellular level, neutrophil degranulation and 

platelet activation account for a substantial fraction of up-regulated genes. Finally, hypoxia-related 

genes, and angiogenesis via VEGFA/EGFR2 are also strongly up-regulated in response to exercise.  

Among the down-regulated genes, only one hallmark gene set (HALLMARK MYC 

TARGETS V2) was determined to be significant. MYC is a well-known blood oncogene that is 

particularly important in lymphomas (Cai et al. 2015), and has a crucial influence on cell survival 

and proliferation. MYC gene itself was also significantly down-regulated after the exercise 

(Supplementary Table S3). Together with the up-regulation of apoptosis pathway (Figure 2A), we 

can hypothesize that a fraction of blood cells undergoes apoptosis in response to vigorous exercise, 

which has been described before (Mooren et al. 2002). The majority of other pathways enriched 

among the down-regulated genes were related to ribosomal proteins and other components of 

transcriptional and translational machinery (Figure 2C). An interesting standout is the DNA repair 

pathway, which also appears to be down-regulated alongside its most famous member, TP53.  

Since most of the observed gene expression changes were modest, gene set enrichment 

analysis (GSEA) may have offered additional insights, potentially highlighting metabolic processes 

obscured by more pronounced immune gene changes (Subramanian et al. 2005). To our surprise, 

however, GSEA analysis results were in exceptional agreement with the simple overrepresentation 

analysis (Figures 2D-F). Inclusion of broader reference gene sets, such as C2 or C7, also contributed 

little new biological information that was not discovered using H or CP pathways (Supplementary 

Table S4).  
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Figure 2. Gene overrepresentation and gene set enrichment (GSEA) analysis of the differentially 
expressed genes. Molecular signature database (MsigDB) H and CP collections were used to functionally 
characterize expression changes. (A-C) Top 10 significantly up- and down-regulated pathways, according to 
Fisher’s exact test, calculated with clusterProfiler. Down-regulated hallmark pathways only included one 
significant gene set (HALLMARK MYC TARGETS V2), and were omitted from the plot. (D-F) Top 10 
significantly up- and down-regulated pathways according to GSEA, calculated with fGSEA. Down-regulated 
hallmark pathways only included one significant gene set (HALLMARK MYC TARGETS V2), and were 
omitted from the plot. Gene overlap indicates the number of genes in the leading edge. 

Analysis of cell type composition changes based on expression signatures 

While whole blood is a very rich source of metabolic and immune markers, it represents a 

complex tissue that is composed of numerous cell types. It is thus hard to separate effects of changes 

of blood cellular composition and gene expression changes within the individual cell types, both of 

which influence the observed differential gene expression in the bulk sample. In order to separate 

the two effects, we decided to leverage publicly available single cell RNA-seq datasets, generating 

unique expression signatures for main cell types present in whole blood. Many published datasets 

use human peripheral blood mononuclear cells (PBMCs). These cells, however, represent only a 

minor fraction of whole blood, which contains a large number of erythrocytes, platelets, and 

granulocytes.   
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Figure 3. Using single cell markers to infer changes of the cell types from the whole blood RNA-seq 
data. Twenty markers specific to the 12 listed coarse-grained blood cell types were derived using two public 
single cell RNA-seq datasets (Methods). Donor-corrected, rlog-transformed expression matrix was used for 
all heatmap plots. (A) Observed gene expression of 20 cell type markers in all 7 profiled donors. (B) Cell 
types that did not display concerted change in markers: CD4+ naive T cells, CD16+ monocytes, and myeloid 
dendritic cells. (C) Cell types that increase after the exercise: neutrophils, CD14+ monocytes, platelets, and 
erythrocytes. (D) Cell types that decrease after the exercise: CD4+ memory T cells, CD8+ T cells, natural 
killer cells, B cells, and plasmacytoid dendritic cells.  

Thus, we have used a publicly available scRNA-seq dataset that profiled whole blood, 

GSE149938 (Xie et al. 2021), to define unique cell type markers for erythrocytes and neutrophils. 

Additionally, we have used the 10k PBMC cells dataset from 10X Genomics (Zheng et al. 2017) to 

define cell type markers of coarse-grained immune cell populations. Overall, we have defined 

markers of 12 cell types: erythrocytes, platelets, neutrophils, natural killer cells, plasmacytoid and 

myeloid dendritic cells, B cells, CD4+ memory T cells, CD4+ naive T cells, CD8+ (cytotoxic) T 

cells, CD14+ monocytes, and CD16+ monocytes. We have then leveraged the top 20 most 

discriminating markers of each cell type as a proxy allowing us to estimate the changes in particular 
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cell type population from bulk RNA-seq expression profile (Figure 3). Full list of all markers is 

available in Supplementary Table S5.  

The approach was surprisingly successful, clearly identifying putative changes in individual 

cell type populations. Three cell types remained relatively constant: non-classical (CD16+) 

monocytes, naive CD4+ T cells, and myeloid dendritic cells (Figure 3B). Populations of memory 

CD4+ T cells, cytotoxic CD8+ T cells, natural killer (NK), B cells, and plasmacytoid dendritic cells 

(pDC) were decreased, albeit the latter could be defined with the least confidence due to the extreme 

rarity of pDCs in peripheral blood. On the other hand, populations of neutrophils, CD14+ 

monocytes, erythrocytes, and platelets notably increased after exercise. This agrees with neutrophil 

and platelet activation pathways up-regulation in our gene set analysis (Figures 2B, 2E).  

Context of other exercise expression datasets 

In our experiments, we have compared whole blood transcriptome profiles before and after 

exercise, at the expected peak of high-altitude adaptation, 18 days since the beginning of the training 

camp. In order to assess the influence of high-altitude adaptation, it would have been necessary to 

conduct similar experiments after a similar training camp at low altitude. Unfortunately, such 

comparison could not be performed due to logistic restrictions. In order to find the genes uniquely 

regulated at high altitude, and to put our data in the context of the previously published expression 

datasets, we have compiled a collection of relevant publicly available data (Supplementary Table 

S1). The following criteria had to be satisfied for inclusion: 1) whole transcriptome profiling using 

microarray or RNA-seq; 2) dataset is publicly available; 3) whole blood, white blood cells, or 

PBMCs profiled; 4) samples from the same donor before and after a period of intense exercise were 

available. We have selected 8 such datasets (Büttner et al. 2007; Connolly et al. 2004; Mukherjee et 

al. 2014; Nakamura et al. 2010; Radom-Aizik et al. 2009a; 2009b; Tonevitsky et al. 2013; Sakharov 

et al. 2012). The full list of considered datasets is provided in Supplementary Table S1.  

We have then re-analyzed the selected datasets using the GEOquery and limma packages 

(see Methods). All but one of the reprocessed datasets have shown pronounced donor effects, which 

had to be accounted for in the fitted linear model, and significant separation of before- and after- 

exercise groups was observed after the donor correction (Supplementary Figures S1-S8). The outlier 

dataset (Tonevitsky et al. 2013) was removed from further analysis. We have then filtered the 

differentially expressed genes identified in at least one of the 7 datasets from our analysis, in order 

to identify the genes specific to the high-altitude adaptation. Taking a conservative approach, we 

removed all genes deemed significant in previous studies using the unadjusted p-value. This filtering 
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removed 65% of the differentially expressed RNA-seq genes, leaving 685 up-regulated and 795 

down-regulated genes (Figure 4A). 

 We next tested whether the genes uniquely up- or down- regulated in our dataset have a 

significant enrichment of marker genes for individual blood cell types explored in the previous 

section. We utilized Fisher's exact test to compare the proportion of cell type markers among all 

DEGs and among the uniquely regulated DEGs. We discovered a dramatic enrichment of platelet 

marker genes in the set of altitude-specific DEGs, with up to 90% of all differentially expressed 

platelet markers being uniquely regulated in our dataset (p-value = 4 * 10-22) (Figure 4B). 

Erythrocytes were the only other cell type that showed a significant enrichment, though to a much 

lower extent (p-value = 4 * 10-12). Neutrophil marker genes, on the other hand, were not enriched 

among the unique DEGs despite a very strong enrichment of neutrophil markers among all DEGs 

(Figure 4B). These results suggest that platelets and (to a lesser extent) erythrocytes are the two 

major cell types that uniquely respond to altitude exercise, while neutrophils are a more generic 

marker of intense exercise.  

All of the used published transcriptomic datasets were microarray experiments, which are 

known to have lower dynamic range and sensitivity than RNA-seq (C. Wang et al. 2014). Thus, to 

reliably define a gene signature of exercise in high-altitude adaptation and provide an additional 

validation of enrichment results, we have additionally prioritized differential genes by expression 

(TPM ≥ 10) and magnitude of regulation (absolute log2FC ≥ 0.5). This resulted in a list of 72 genes 

(53 up- and 19 down-regulated). We were satisfied to discover that gene expression of cell-specific 

markers perfectly segregated with directions of cell populations changes defined above (Figure 3). 

Concordantly with our earlier observations, platelet marker genes (including the canonical PPBP 

marker) were also significantly enriched among the highly expressed altitude-specific DEGs (p-

value = 2 * 10-4). In addition to platelets, the biggest cell-type specific changes were associated with 

increases in neutrophils, CD14+ macrophages, and decrease in natural killer cells (Figure 4C). Aside 

from these, 27 genes (18 up- and 9 down-regulated) were not directly attributable to any specific 

cell type.  
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Figure 4. Analysis of genes uniquely up- or down-regulated in our dataset, as compared to 7 public 
microarray datasets. Full list of datasets is given in Supplementary Table S1. (A) Volcano plot of genes 
uniquely regulated in the whole blood of altitude-adapted skaters. Light blue points indicate differentially 
expressed genes previously seen in at least one other exercise dataset. Point size is scaled proportionally to 
mean gene expression. (B) A circle plot representing the enrichment of cell type markers among all 
differentially expressed genes and altitude-specific differentially expressed genes. The size of the circle is 
proportional to the percentage of marker genes in the target set, and the fill of the circle corresponds to the 
significance levels of Fisher’s exact test. (C) Heatmap of highly expressed (TPM > 10) and regulated 
(absolute log fold change > 0.5) genes unique to our dataset. Breakdown by cell type is done based on single 
cell markers defined earlier. Rows are sorted by cell type and then by log fold change.  

Several genes specific to high-altitude exercise (Figure 4C) stand out upon closer 

examination of available literature. One of the most up-regulated genes, MARC1, is a mitochondrial 

enzyme catalyzing the reduction of N-oxygenated molecules (Kubitza et al. 2018) that was 

postulated to influence the levels of endogenous nitric oxide (NO) (Kotthaus et al. 2011). Given the 

extremely broad and important role of NO in cardiovascular physiology in general (Loscalzo and 

Welch 1995), and in erythrocyte adaptation to hypoxia specifically (Zhao et al. 2018), it seems very 

possible that this gene plays a key role in high altitude adaptation. Human protein atlas 

(proteinatlas.org, (Thul and Lindskog 2018)) shows that MARC1 mRNA is enriched in sorted 

granulocytes and monocytes. Thus, since up-regulation of this gene was never detected in previously 

published exercise studies, we can hypothesize that increased MARC1 expression in these cell 
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types, together with general increase in granulocyte and CD14+ monocyte populations, can serve 

as a basis for physiological adaptation at high altitude.  

Another gene of great interest is PHOSPHO1, a phosphatase which is expressed in 

neutrophils and eosinophils according to the Human Protein Atlas, and in neutrophils and 

erythrocytes according to the markers we derived from scRNAseq. Transcription of PHOSPHO1, 

which mediates the hydrolysis of phosphocholine to choline, was recently shown to be strongly 

upregulated during the terminal stages of erythropoiesis (Huang et al. 2018). Up-regulation of 

PHOSPHO1 caused the increased catabolism of phosphatidylcholine and phosphocholine during 

the terminal erythropoiesis, and its depletion caused impaired differentiation of fetal mouse and 

human erythroblasts. The fact that up-regulation of this gene was never detected in previous studies 

makes it an excellent candidate to be a key dynamic regulator of high-altitude adaptation to hypoxia.  

Conclusions 

Sports medicine has historically been conservative and lagged behind mainstream medicine 

in translation of scientific findings, often relying on “coach wisdom” or similar practices instead. 

This, however, has changed dramatically during the last several decades (Pujalte and Maynard 

2020). There is currently a great interest in applying modern analytical techniques to athlete health 

surveillance, training guidance (Tanisawa et al. 2020), and even prohibited substances use 

monitoring (G. Wang et al. 2017). One of the debated questions is training at high elevation. There 

are currently numerous strategies, such as “live high, train high” (LHTH), “live high, train low” 

(LHTL), and many others; however, the molecular basis of this adaptation is far from understood.  

In this study we have evaluated the results of whole blood RNA sequencing of elite female 

athletes and identified a significant number (over 4,000) genes that are up- or down-regulated as a 

result of vigorous exercise after high-altitude adaptation. Given the complex cellular composition 

of the whole blood, biological and physiological interpretation of such profound expression changes 

presents a formidable task. At the same time, the progress of modern gene expression profiling 

methods together with the growing culture of open data sharing has allowed us to make significant 

strides in the interpretation of the observed changes on a cellular level. The results demonstrate that 

the major changes associated with altitude exercise are related to innate immune response 

(inflammation), hypoxic stress response, and platelet activity. Using the marker genes of different 

blood cell types derived from public single-cell RNA sequencing data we dissected the alterations 

in blood cell composition, and discovered that the proportions of neutrophils, erythrocytes, CD14+ 

monocytes, and platelets are increased in response to exercise at altitude.  
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We have also leveraged a rich collection of exercise-related blood expression profiling 

experiments from public sources to define genes that were uniquely up- and down-regulated in our 

dataset. We find several notable genes that are highly expressed in blood cells and could serve as 

key regulatory elements responding to exercise in hypoxic conditions. These genes include 

PHOSPHO1, MARC1, and a number of others, including several platelet marker genes. Our 

analysis suggests that the majority of such platelet markers are uniquely associated with altitude 

exercise and are not differentially expressed in any other conditions according to published studies.  

Our results provide a potential molecular link between hypoxia, platelet activity, and 

thrombosis. It has been long known that prolonged stay at high elevations is associated with an 

increased risk of thrombosis (Gupta, Zhao, and Evans 2019). Perhaps the most surprising parallel 

here could be related to COVID-19, which is also associated with both hypoxia and increased risk 

of thrombosis. It has recently been shown that physical activity influences the outcome of COVID-

19 (Sallis et al. 2021). Given that thromboses are one of the dominant causes of death in COVID-

19 patients, it can be hypothesized that physical activity, especially at high altitude, may serve as 

the pre-conditioning factor that might alleviate the relative effects of COVID-19 and prevent the 

negative systemic impact of platelet hyperactivity. 
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