Tocilizumab and sarilumab alone or in combination with corticosteroids for COVID-19: A systematic review and network meta-analysis

Dena Zeraatkar, methodologist
Department of Biomedical Informatics, Harvard Medical School
Department of Health Research Methods, Evidence, and Impact, McMaster University

Ellen Cusano, internist
Cumming School of Medicine, University of Calgary

Juan Pablo Díaz Martinez, methodologist
Department of Health Research Methods, Evidence, and Impact, McMaster University

Anila Qasim, methodologist
Department of Health Research Methods, Evidence, and Impact, McMaster University

Sophia O. Mangala, methodologist
Department of Health Research Methods, Evidence, and Impact, McMaster University

Elena Kum, methodologist
Department of Health Research Methods, Evidence, and Impact, McMaster University

Jessica J. Bartoszko, methodologist
Department of Health Research Methods, Evidence, and Impact, McMaster University

Tahira Devji, methodologist
Department of Health Research Methods, Evidence, and Impact, McMaster University

Thomas Agoritsas, internist, methodologist
Department of Health Research Methods, Evidence, and Impact, McMaster University
Division of General Internal Medicine & Division of Clinical Epidemiology, University Hospitals of Geneva, Geneva
MAGIC Evidence Ecosystem Foundation, Oslo

Francois Lamontagne, critical care physician, methodologist
Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec
Centre de recherche du CHU University of Sherbrooke, Sherbrooke, Quebec

Bram Rochwerg, critical care physician, methodologist
Department of Health Research Methods, Evidence, and Impact, McMaster University
Department of Medicine, McMaster University

Per O Vandvik, internist, methodologist

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
MAGIC Evidence Ecosystem Foundation, Oslo
Department of Health Economics and Health Management, Institute for Health and Society, University of Oslo, Oslo

Romina Brignardello-Petersen, methodologist
Department of Health Research Methods, Evidence, and Impact, McMaster University

Reed Siemieniuk*, internist, methodologist
Department of Health Research Methods, Evidence, and Impact, McMaster University

*Corresponding author: Reed Siemieniuk (reed.siemieniuk@medportal.ca)

Disclaimers: None

Funding: This project is supported by two CIHR Operating Grants (VR4- 172738; MM1- 174897).

Data: Data is available in the supplementary materials.

Authors’ Contributions: DZ, BR, FL, TA, POV, RBP, and RS conceived the study. JB identified studies. DZ, EC, and EK collected the data. AQ and JPDM analyzed the data. TD and RBP assessed the certainty of evidence. DZ drafted the first version of this manuscript.

Word count: 2,580
Abstract

Objective: To compare the effects of interleukin-6 (IL-6) receptor blockers, with or without corticosteroids, on mortality in patients with COVID-19.

Design: Systematic review and network meta-analysis

Data sources: WHO COVID-19 database, a comprehensive multilingual source of global covid-19 literature, and two prospective meta-analyses

Study selection: Trials in which people with suspected, probable, or confirmed COVID-19 were randomized to IL-6 receptor blockers (with or without corticosteroids), corticosteroids, placebo, or standard care.

Results: We assessed the risk of bias of included trials using a modification of the Cochrane risk of bias 2.0 tool. We performed a Bayesian fixed effect network meta-analysis and assessed the certainty of evidence using the GRADE approach.

We identified 45 eligible trials (20,650 patients), 36 (19,350 patients) of which could be included in the network meta-analysis. 27 of 36 trials were rated at high risk of bias, primarily due to lack of blinding. Tocilizumab (20 more per 1000, 15 fewer to 59 more; low certainty) and sarilumab (11 more per 1000, 38 fewer to 55 more; low certainty) alone may not reduce the risk of death. Tocilizumab, in combination with corticosteroids, probably reduces the risk of death compared to corticosteroids alone (35 fewer per 1000, 52 fewer to 18 more; moderate certainty) and sarilumab, in combination with corticosteroids, may reduce the risk of death compared to corticosteroids alone (43 fewer, 73 fewer to 12 more; low certainty). Tocilizumab and sarilumab, both in combination with corticosteroids, may have similar effects (8 more per 1000, 20 fewer to 35 more; low certainty).

Conclusion: IL-6 receptor blockers, when added to standard care that includes corticosteroids, in patients with severe or critical COVID-19, probably reduce mortality. Tocilizumab and sarilumab may have similar effectiveness.

Systematic review registration: NA
What is already known on this topic?
- IL-6 receptor blockers have immunosuppressive effects that may be important in COVID-19 patients with immune system dysfunction and inflammation
- Corticosteroids reduce the risk of death in patients with severe or critical COVID-19

What this study adds
- Our systematic review and network meta-analysis provides a comprehensive review of the evidence addressing the effects of IL-6 receptor blockers, alone or in combination with corticosteroids, in COVID-19
- IL-6 receptor blockers when added to a standard care that includes corticosteroids, in patients with severe or critical COVID-19, probably reduce mortality.
- Tocilizumab and sarilumab in combination with corticosteroids may have similar effectiveness for reducing mortality.
Background
As of June 2021, there have been more than 180 million cumulative cases of coronavirus disease 19 (COVID-19) worldwide and nearly four million deaths (1). In an attempt to improve outcomes for patients with COVID-19, several drugs have been repurposed with varying results (2). Corticosteroids are the only medication so far to have reduced mortality in patients with severe and critical disease (2). Tocilizumab, an interleukin-6 (IL-6) receptor blocker may also reduce mortality, but whether sarilumab (another IL-6 receptor blocker) reduces mortality is uncertain.

IL-6 receptor blockers have immunosuppressive effects that may be important in COVID-19 patients with immune system dysfunction and inflammation (3-5). The RECOVERY trial found that tocilizumab reduces mortality and ventilation, particularly among patients receiving corticosteroids (6) and REMAP-CAP showed tocilizumab and sarilumab to reduce mortality and improve organ-support free days (7). Results across other trials, however, have not been consistent (8-10). A prospective meta-analysis also found that tocilizumab reduces mortality (11), but whether sarilumab reduces mortality compared to no IL-6 receptor blocker, and its effect relative to tocilizumab is unclear.

Tocilizumab is an expensive drug to which patients with COVID-19 currently have access—in settings where it is available, tocilizumab is often used in only a minority of patients who might benefit from it (12). If sarilumab is a comparable alternative to tocilizumab, it would increase availability for patients with COVID-19 who would not have otherwise have access to IL-6 receptor blocker.

Here we report a systematic review and network meta-analysis addressing the effectiveness of IL-6 receptor blockers, alone or in combination with corticosteroids, for COVID-19. This review capitalizes on the methods and data of our living systematic review and network meta-analysis of drug therapies for COVID-19 (2). This evidence synthesis is part of the BMJ Rapid Recommendations project, to inform World Health Organization (WHO) Living Guidelines on drugs for treatment of COVID-19 (13).

Methods
A protocol of our methods is contained as a supplement to our living systematic review and network meta-analysis (SRNMA) of drug therapies for COVID-19 (2).

Search
Our study uses the search strategy of our living SRNMA that includes daily searches in the World Health Organization (WHO) COVID-19 database—a comprehensive multilingual source of global published and preprint literature on COVID-19 (https://search.bvsalud.org/global-literature-on-novel-coronavirus-2019-
ncov/). Prior to its merge with the WHO COVID-19 database on 9 October 2020, we searched the US Centers for Disease Control and Prevention (CDC) COVID-19 Research Articles Downloadable Database. The database includes, but is not limited to the following bibliographic and grey literature sources: Medline (Ovid and PubMed), PubMed Central, Embase, CAB Abstracts, Global Health, PsycInfo, Cochrane Library, Scopus, Academic Search Complete, Africa Wide Information, CINAHL, ProQuest Central, SciFinder, the Virtual Health Library, LitCovid, WHO covid-19 website, CDC covid-19 website, Eurosurveillance, China CDC Weekly, Homeland Security Digital Library, ClinicalTrials.gov, bioRxiv (preprints), medRxiv (preprints), chemRxiv (preprints), and SSRN (preprints). Our search also includes six Chinese databases: Wanfang, Chinese Biomedical Literature, China National Knowledge Infrastructure, VIP, Chinese Medical Journal Net (preprints), and ChinaXiv (preprints). A validated machine learning model facilitates efficient identification of randomized trials (14). We searched WHO information sources from 1 December 2019 to 9 June 2021 and the Chinese literature from conception of the databases to 20 February 2021.

Our search is supplemented by ongoing surveillance of living evidence retrieval services, including the Living Overview of the Evidence (L-OVE) COVID-19 platform by the Epistemonikos Foundation (https://app.iloveevidence.com/loves/5e6fdb9669c00e4ac072701d) and the Systematic and Living Map on COVID-19 Evidence by the Norwegian Institute of Public Health (https://www.fhi.no/en/qk/systematic-reviews-hta/map/).

In addition, we include data directly from trialists via two WHO-sponsored prospective meta-analyses (11, 15). We report our full strategy as a supplement to our drug therapy publication (2).

Study selection

As part of the living SRNMA, pairs of reviewers, following calibration exercises, worked independently and in duplicate to screen titles and abstracts of search records and subsequently the full texts of records determined potentially eligible at the title and abstract screening stage and to link preprint reports with their subsequent publications based on trial registration numbers, authors, and other trial characteristics. Reviewers resolved discrepancies by discussion, and when necessary, by adjudication with a third-party reviewer.

We included preprint and peer reviewed reports of trials that compared IL-6 receptor blockers with standard care, placebo, or corticosteroids or that compared corticosteroids with standard care or placebo in patients with suspected, probable, or confirmed COVID-19. There were no restrictions on severity of illness, setting, or language of publication.
Data collection
As part of the living SRNMA, for each eligible trial, pairs of reviewers, following training and calibration exercises, independently extracted trial characteristics (trial registration, publication status, study design), patient characteristics (country, age, sex, type of care, severity of COVID-19 symptoms), and outcomes of interest (means or medians and measures of variability for continuous outcomes and the number of participants analyzed and the number of participants who experienced an event for dichotomous outcomes) using a standardized, pilot tested data extraction form. Reviewers resolved discrepancies by discussion and, when necessary, with adjudication by a third party. We updated our data when a study preprint becomes available as a peer reviewed publication. For this review, we focus on all-cause mortality closest to 90 days.

To assess risk of bias, reviewers, following training and calibration exercises, use a revision of the Cochrane tool for assessing risk of bias in randomized trials (RoB 2.0) (16). We present our modified risk of bias tool as a supplement to our drug therapy publication (2). Reviewers resolved discrepancies by discussion and, when necessary, by adjudication with a third party.

Analysis
We performed network meta-analysis using a Bayesian framework to compare tocilizumab with and without corticosteroids, sarilumab with and without corticosteroids, corticosteroids without IL-6 receptor blockers, and standard care or placebo. We used a plausible prior for the variance parameter and a uniform prior for the effect parameter (17). We used three Markov chains with 100,000 iterations after an initial burn-in of 10,000 and a thinning of 10. We used node splitting models to assess local incoherence and to obtain indirect estimates. All network meta-analyses were performed using the gemtc package of R version 3.6.3 (RStudio, Boston, MA) and all pairwise meta-analyses using the bayesmeta package. We produced network plots using the network map command of Stata version 17.0 (StataCorp, College Station, TX) with nodes weighted by the number of studies evaluating each treatment and edges weighted by the inverse variance of the direct estimate (18).

We present fixed-effect meta-analyses as the primary analysis and random-effects meta-analyses as sensitivity analysis because we found the estimates from random-effects to have credible intervals that were implausibly wide due to the uncertainty around the heterogeneity estimate.

We summarized the effect of interventions on mortality using odds ratios and corresponding 95% credible interval.
Certainty of evidence

To facilitate interpretation of the results, we calculated absolute effects for mortality using data from the CDC on patients who were hospitalized for COVID-19 (19, 20). For duration of ventilation, we used baseline risks from the International Severe Acute Respiratory and Emerging Infection COVID-19 database (21).

We assessed the certainty of evidence using GRADE approach for network meta-analysis, using a minimally contextualized approach, with a null effect as the threshold of importance (22-25). The minimally contextualized approach considers only whether credible intervals include the null effect and thus does not consider whether plausible effects, captured by credible intervals, include both important and trivial effects. To evaluate certainty of no benefit (or no effect), we used a 1% risk difference threshold of the 95% credible interval for mortality. We decided on this preliminary threshold based on a survey of the authors.

Two reviewers with experience in applying the GRADE approach rated each domain for each comparison separately and resolved discrepancies by consensus. We rated the certainty for each comparison and outcome as high, moderate, low, or very low, based on considerations of risk of bias, inconsistency, indirectness, publication bias, intransitivity, incoherence (difference between direct and indirect effects), and imprecision. We rated down for risk of bias if the interpretation of the effect would change if only studies at low risk of bias would have been considered. For example, if the credible interval of the pooled effect from studies at low risk of bias would have crossed the threshold for imprecision, we rated down for risk of bias.

Patient and public involvement

Patients were involved in outcome selection, interpretation of results, and the generation of parallel recommendations, as part of the WHO Rapid Recommendations initiative, in partnership with The BMJ and MAGIC Evidence Ecosystem Foundation.

Results

Study characteristics

We screened 45,854 titles and abstracts and 884 full-texts and identified 45 eligible trials, including 20,650 patients (6, 26-48). Figure 1 presents details about study selection. Twenty-one of these trials were published, four were available as preprints, and 20 were unpublished and were retrieved from two prospective meta-analyses (11, 49).
Table 1 presents trial characteristics. Twenty trials (7,608 patients) compared tocilizumab with standard care or placebo, (6, 26-34) seven trials (2,756 patients) sarilumab with standard care or placebo with or without corticosteroids,(35, 36) three trials (366 patients) compared IL-6 receptor blockers with corticosteroids (48), and 14 trials (8,102 patients) corticosteroids with standard care or placebo (37-47).

One trial, REMAP-CAP (7), randomized patients to tocilizumab or standard care (among centres with access to tocilizumab) or to sarilumab or standard care (among centres with access to sarilumab). Randomization to standard care was halted midway through the trial when an interim analysis showed efficacy of tocilizumab and sarilumab after which patients were randomized to either tocilizumab or sarilumab, with both groups receiving corticosteroids. We treated REMAP-CAP as three separate trials in our analyses (i.e., tocilizumab versus standard care; sarilumab versus standard care; tocilizumab versus sarilumab). We used 90-day mortality for the comparisons of tocilizumab and sarilumab with standard care and obtained data on in-hospital mortality from the investigators of the trial on the comparison of tocilizumab and sarilumab.

Another trial, Sarilumab-COVID-19, was conducted in two phases (35). Phase three underwent two protocol amendments involving patient eligibility and dose. The trial was thus treated as four separate trials.

Patient characteristics
Table 1 presents characteristics of patients included in the trial. Trials included a median of 129 [IQR: 47 to 354] participants. The mean age of patients in trials ranged between 42.1 to 69.8. About half of all patients were recruited from the United Kingdom. All but one trial reported on inpatients. Almost all trials reported on patients with severe to critical disease and most patients were receiving some form of supplementary oxygen.

Risk of bias
Figure 3 presents risk of bias assessments for the trials that were included in the analysis. Nine trials (including 3801 participants) were rated as low risk of bias the remainder (27 trials; 15,549 participants) were at high risk of bias—primarily due to lack of blinding.

Mortality
We included 36 trials, with 19,350 patients and 5,269 deaths, in our network comparing tocilizumab and sarilumab, with or without corticosteroids, and corticosteroids in comparison with standard care or placebo (6, 26-28, 30, 31, 34, 35, 37-40, 42-46, 48). Nine trials could not be included in the analysis because they did not report outcome data, or, for trials that compared IL-6 receptor blockers with standard care...
or placebo, we could not retrieve subgroup data based on concomitant treatment with corticosteroids (29, 32, 33, 36, 41, 47). Figure 2 presents the network plot. Supplementary 1 contains data for the network meta-analysis.

Table 2 presents results from the network meta-analysis. Tocilizumab and sarilumab alone may not reduce mortality compared to standard care and corticosteroids probably reduce the risk of death. Compared to corticosteroids alone, tocilizumab in combination with corticosteroids probably reduces mortality and sarilumab in combination with corticosteroids may reduce mortality. In combination with corticosteroids, sarilumab may have similar effects to tocilizumab in reducing mortality. Supplementary 2 presents all direct and indirect comparisons and their certainty of evidence.

Supplementary 3 presents results from the random-effects model. Results from the random-effects model were largely consistent with results from the fixed-effects model—though the random-effects model produced effect estimates that were more imprecise due to incorporation of an additional heterogeneity parameter in the model.

Discussion

Main findings

This systematic review and network meta-analysis provides a comprehensive overview of the evidence for IL-6 receptor blockers, alone or in combination with corticosteroids. We show that IL-6 receptor blockers, when added to a standard care that includes corticosteroids, in patients with severe or critical COVID-19, probably reduce mortality. Whether or not IL-6 receptor blockers have any impact on mortality without concomitant use of corticosteroids remains uncertain. Sarilumab appears to have similar effectiveness as tocilizumab.

Findings in context

Our findings are consistent with a prospective meta-analysis (11), and the largest trials on IL-6 receptor blockers, RECOVERY and REMAP-CAP (6, 7). Though several smaller trials did not find a benefit with tocilizumab, the totality of the evidence suggests that this is probably because smaller individual trials were underpowered to detect such a modest reduction in mortality.

Our study adds to the evidence base by showing that IL-6 receptor blockers may reduce mortality when added to a standard care regimen that includes corticosteroids and that sarilumab may have a similar effect on mortality as tocilizumab. This result is largely driven by the component of the REMAP-CAP trial that directly compared sarilumab to tocilizumab.
Strengths and limitations

The strengths of this review include the comprehensive search and screening strategy. In addition to trials that we identified as part of our own search, we also included trials from two prospective meta-analyses that included an inception cohort of registered trials thereby minimizing the effects of publication bias (11, 15).

Our findings are limited by the risk of bias of the trials, the majority of which were at high risk of bias due to lack of blinding. Lack of blinding may introduce bias through differences in co-interventions between randomized groups. We took a conservative approach and rated down the certainty of evidence for risk of bias. Some, including the linked WHO guideline panel, did not consider lack of blinding to be a serious concern for mortality, because it is an objective outcome (13).

We only considered corticosteroid use at the time of randomization and some patients probably received corticosteroids after randomization, but were considered in this review not to have received concomitant corticosteroids. Whether or not IL-6 receptor blockers reduce mortality when not co-administered with corticosteroids remains uncertain.

Four trials that we included in our systematic review were only available as preprint publications. Including preprints in meta-analyses may increase the precision of estimates, allow timely dissemination, and may minimize the effects of publication bias. It may, however, reduce the credibility of evidence syntheses and risk serious errors if important differences appear in later published reports. As part of our living systematic review and network meta-analysis, we have been maintaining a comprehensive comparison of differences in key methods and results between preprints and publications. Differences between preprints and peer reviewed publications have mostly been limited to baseline patient characteristics and any changes we have observed so far would not have resulted in a meaningful change to the pooled effect estimates or certainty of evidence (2).

Conclusion

Evidence from this systematic review and network meta-analysis shows that IL-6 receptor blockers when added to a standard care that includes corticosteroids, in patients with severe or critical COVID-19, probably reduce mortality. The available evidence suggests that tocilizumab and sarilumab may be similarly effective. Our findings support linked WHO guidelines on IL-6 receptor blockers, which recommends using either tocilizumab or sarilumab for patients with severe or critical COVID-19 (13).
Table 1: Trial Characteristics

<table>
<thead>
<tr>
<th>Study</th>
<th>Publication status Registration</th>
<th>Number of participants</th>
<th>Country</th>
<th>Mean age</th>
<th>% Male</th>
<th>Type of care</th>
<th>Severity</th>
<th>Detailed ventilation (%)</th>
<th>Treatments (dose and duration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCHITECTS</td>
<td>Data from meta-analysis NCT04412772</td>
<td>21</td>
<td>United States</td>
<td>61.5</td>
<td>57.1</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>NR</td>
<td>tocilizumab placebo</td>
</tr>
<tr>
<td>CORIMUNO-TOCI-ICU</td>
<td>Data from meta-analysis NCT04331808</td>
<td>92</td>
<td>France</td>
<td>64.2</td>
<td>71.7</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>High-flow, NIV, or IV (100.0%)</td>
<td>tocilizumab standard care</td>
</tr>
<tr>
<td>COV-AID</td>
<td>Data from meta-analysis NCT04330638</td>
<td>230</td>
<td>Belgium</td>
<td>63.6</td>
<td>77.4</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>NR</td>
<td>tocilizumab siltuximab standard care</td>
</tr>
<tr>
<td>COVIDOSE2-SSA</td>
<td>Data from meta-analysis NCT04479358</td>
<td>28</td>
<td>United States</td>
<td>65</td>
<td>67.9</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>Mechanical ventilation (0.0%)</td>
<td>tocilizumab tocilizumab standard care</td>
</tr>
<tr>
<td>COVIDSTORM</td>
<td>Data from meta-analysis NCT04577534</td>
<td>39</td>
<td>Finland</td>
<td>65.7</td>
<td>53.9</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>NR</td>
<td>tocilizumab standard care</td>
</tr>
<tr>
<td>COVITOZ</td>
<td>Data from meta-analysis NCT04435717</td>
<td>26</td>
<td>Spain</td>
<td>57.5</td>
<td>65.4</td>
<td>Inpatient</td>
<td>Mild/Moderate (100%) Severe (100%)</td>
<td>NR</td>
<td>tocilizumab tocilizumab standard care</td>
</tr>
<tr>
<td>Hermine, 2021</td>
<td>Published NCT044331808</td>
<td>131</td>
<td>France</td>
<td>64</td>
<td>67.7</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>Supplemental oxygen (100.0%) NIV or IV (0.0%)</td>
<td>tocilizumab standard care</td>
</tr>
<tr>
<td>CORIMUNO-TOCI</td>
<td>Data from meta-analysis NCT04377750</td>
<td>54</td>
<td>Israel</td>
<td>63.1</td>
<td>68.5</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>NR</td>
<td>tocilizumab placebo</td>
</tr>
</tbody>
</table>

IL-6 Receptor Blocker: Tocilizumab

- **ARCHITECTS**
 - Study: ARCHITECTS
 - Number of participants: 21
 - Country: United States
 - Mean age: 61.5
 - % Male: 57.1
 - Type of care: Inpatient
 - Severity: Mild/Moderate (0%) Severe (100%)
 - Detailed ventilation (%): NR
 - Treatments (dose and duration): tocilizumab placebo

- **CORIMUNO-TOCI-ICU**
 - Study: CORIMUNO-TOCI-ICU
 - Number of participants: 92
 - Country: France
 - Mean age: 64.2
 - % Male: 71.7
 - Type of care: Inpatient
 - Severity: Mild/Moderate (0%) Severe (100%)
 - Detailed ventilation (%): High-flow, NIV, or IV (100.0%)
 - Treatments (dose and duration): tocilizumab standard care

- **COV-AID**
 - Study: COV-AID
 - Number of participants: 230
 - Country: Belgium
 - Mean age: 63.6
 - % Male: 77.4
 - Type of care: Inpatient
 - Severity: Mild/Moderate (0%) Severe (100%)
 - Detailed ventilation (%): NR
 - Treatments (dose and duration): tocilizumab siltuximab standard care

- **COVIDOSE2-SSA**
 - Study: COVIDOSE2-SSA
 - Number of participants: 28
 - Country: United States
 - Mean age: 65
 - % Male: 67.9
 - Type of care: Inpatient
 - Severity: Mild/Moderate (0%) Severe (100%)
 - Detailed ventilation (%): Mechanical ventilation (0.0%)
 - Treatments (dose and duration): tocilizumab tocilizumab standard care

- **COVIDSTORM**
 - Study: COVIDSTORM
 - Number of participants: 39
 - Country: Finland
 - Mean age: 65.7
 - % Male: 53.9
 - Type of care: Inpatient
 - Severity: Mild/Moderate (0%) Severe (100%)
 - Detailed ventilation (%): NR
 - Treatments (dose and duration): tocilizumab standard care

- **COVITOZ**
 - Study: COVITOZ
 - Number of participants: 26
 - Country: Spain
 - Mean age: 57.5
 - % Male: 65.4
 - Type of care: Inpatient
 - Severity: Mild/Moderate (100%) Severe (100%)
 - Detailed ventilation (%): NR
 - Treatments (dose and duration): tocilizumab tocilizumab standard care

- **Hermine, 2021 (26)**
 - Study: Hermine, 2021 (26)
 - Number of participants: 131
 - Country: France
 - Mean age: 64
 - % Male: 67.7
 - Type of care: Inpatient
 - Severity: Mild/Moderate (0%) Severe (100%)
 - Detailed ventilation (%): Supplemental oxygen (100.0%) NIV or IV (0.0%)
 - Treatments (dose and duration): tocilizumab standard care

- **HMO-020-0224**
 - Study: HMO-020-0224
 - Number of participants: 54
 - Country: Israel
 - Mean age: 63.1
 - % Male: 68.5
 - Type of care: Inpatient
 - Severity: Mild/Moderate (0%) Severe (100%)
 - Detailed ventilation (%): NR
 - Treatments (dose and duration): tocilizumab placebo
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Publication ID</th>
<th>Country</th>
<th>Country Details</th>
<th>Adult</th>
<th>Inpatient</th>
<th>Illness Severity</th>
<th>Treatment</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horby, 2021 (6) RECOVERY</td>
<td>Published</td>
<td>NCT04381936</td>
<td>United Kingdom</td>
<td>63.6</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>Supplemental oxygen (45.4%) High-flow or NIV (41.0%) IV (13.7%)</td>
<td>tocilizumab standard care</td>
<td></td>
</tr>
<tr>
<td>ImmCoVA</td>
<td>Data from meta-analysis</td>
<td>NCT04412291</td>
<td>Sweden</td>
<td>NR</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>IV (0.0%)</td>
<td>tocilizumab standard care</td>
<td></td>
</tr>
<tr>
<td>REMDACTA</td>
<td>Data from meta-analysis</td>
<td>NCT04409262</td>
<td>Spain, United States, Brazil, Russia</td>
<td>60.3</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>NR</td>
<td>tocilizumab placebo</td>
<td></td>
</tr>
<tr>
<td>Rosas, 2021 (27) COVACTA</td>
<td>Published</td>
<td>NCT04320615</td>
<td>Canada, Denmark, France, Germany, Italy, Netherlands, Spain, United Kingdom, United States</td>
<td>60.8</td>
<td>Inpatient</td>
<td>Intensive care (56.4%)</td>
<td>Mild/Moderate (0%) Severe (100%) Critical (0%)</td>
<td>NIV or IV (37.7%)</td>
<td>tocilizumab placebo</td>
</tr>
<tr>
<td>Rutgers, 2021 (28) PreToVid</td>
<td>Pre-print</td>
<td>NL8504</td>
<td>Netherlands</td>
<td>66.5</td>
<td>Inpatient</td>
<td>Intensive care (0.0%)</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>Supplemental oxygen (96.6%)</td>
<td>tocilizumab standard care</td>
</tr>
<tr>
<td>Study</td>
<td>Type</td>
<td>Published</td>
<td>Country</td>
<td>Participants</td>
<td>Median Age</td>
<td>Severity</td>
<td>Intensive Care</td>
<td>Oxygen Therapy</td>
<td>Treatment</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Soin, 2021 (29)</td>
<td>COVINTOC</td>
<td>Published</td>
<td>India</td>
<td>180</td>
<td>55</td>
<td>Inpatient</td>
<td>Mild/Moderate (49.2%) Severe (50.8%)</td>
<td>Supplemental oxygen (89.9%) NIV (26.8%) IV (5.0%)</td>
<td>tocilizumab standard care</td>
</tr>
<tr>
<td>Stone, 2020 (30)</td>
<td>BACC BAY</td>
<td>Published</td>
<td>United States</td>
<td>243</td>
<td>59.9</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>Supplemental oxygen (79.8%) High-flow or NIV (4.1%) IV (0.4%)</td>
<td>tocilizumab placebo</td>
</tr>
<tr>
<td>Salama, 2021 (31)</td>
<td>EMPACTA</td>
<td>Published</td>
<td>United States, Peru, Brazil, Kenya, South Africa, Mexico</td>
<td>388</td>
<td>55.9</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%) Critical (0%)</td>
<td>Mechanical ventilation (0.0%)</td>
<td>tocilizumab placebo</td>
</tr>
<tr>
<td>Salvarani, 2020 (32)</td>
<td>RCT-TCZ-COVID-19</td>
<td>Published</td>
<td>Italy</td>
<td>126</td>
<td>60</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%) Critical (0%)</td>
<td>NIV or IV (0.0%)</td>
<td>tocilizumab standard care</td>
</tr>
<tr>
<td>TOCOVID</td>
<td></td>
<td>Data from meta-analysis</td>
<td>Spain</td>
<td>270</td>
<td>53</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>NR</td>
<td>tocilizumab standard care</td>
</tr>
<tr>
<td>Talaschian, 2021 (33)</td>
<td></td>
<td>Pre-print</td>
<td>Iran</td>
<td>40</td>
<td>61.7</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%) Critical (0%)</td>
<td>Nasal cannula (50.0%) Simple mask (30.6%) Reservoir mask</td>
<td>tocilizumab standard care</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Author(s)</td>
<td>Country</td>
<td>Age</td>
<td>Setting</td>
<td>Disease Severity</td>
<td>Therapies</td>
<td>Comparator</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>---------</td>
<td>-----------------</td>
<td>------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Veiga, 2021 (34) TOCIBRAS</td>
<td>Published</td>
<td>NCT04403685</td>
<td>Brazil</td>
<td>57.5</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>Supplemental oxygen (51.9%) High-flow or NIV (31.8%) IV (16.3%)</td>
<td>tocilizumab standard care</td>
<td></td>
</tr>
<tr>
<td>CORIMUNO-SARI-1</td>
<td>Data from meta-analysis</td>
<td>NCT04324073</td>
<td>France</td>
<td>62.3</td>
<td>Intensive care</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>NR</td>
<td>sarilumab standard care</td>
<td></td>
</tr>
<tr>
<td>CORIMUNO-SARI-ICU</td>
<td>Data from meta-analysis</td>
<td>NCT04324073</td>
<td>France</td>
<td>61.6</td>
<td>Intensive care</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>NR</td>
<td>sarilumab standard care</td>
<td></td>
</tr>
<tr>
<td>SARCOVİD</td>
<td>Data from meta-analysis</td>
<td>NCT04357808</td>
<td>Spain</td>
<td>61.7</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>Mechanical ventilation (0.0%)</td>
<td>sarilumab standard care</td>
<td></td>
</tr>
<tr>
<td>SARICOR</td>
<td>Data from meta-analysis</td>
<td>EudraCT2020-001531-27</td>
<td>Spain</td>
<td>59.4</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>Mechanical ventilation (0.0%)</td>
<td>sarilumab standard care</td>
<td></td>
</tr>
<tr>
<td>SARTRE</td>
<td>Data from meta-analysis</td>
<td>EudraCT2020-002037-15</td>
<td>Spain</td>
<td>58.4</td>
<td>Intensive care</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>Mechanical ventilation (0.0%)</td>
<td>sarilumab standard care</td>
<td></td>
</tr>
<tr>
<td>Sivapalasingam, 2021 (35) (Phase 2)</td>
<td>Pre-print</td>
<td>NCT04315298</td>
<td>United States</td>
<td>58.7</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (50.5%) Critical (49.5%)</td>
<td>Supplemental oxygen (27.6%) High-flow,</td>
<td>sarilumab (200 mg) sarilumab (400 mg) placebo</td>
<td></td>
</tr>
<tr>
<td>Study Details</td>
<td>Design</td>
<td>Country</td>
<td>Intensive Care</td>
<td>Severe</td>
<td>Critical</td>
<td>IL-6 Receptor Blockers: Tocilizumab/Sarilumab</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------</td>
<td>---------</td>
<td>----------------</td>
<td>--------</td>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sarilumab-COVID-19</td>
<td>Pre-print NCT04315298</td>
<td>United States</td>
<td>Inpatient</td>
<td>61.7</td>
<td>64.5</td>
<td>NIV, or IV (49.5%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sivapalasingam, 2021 (35) (Phase 3, cohort 1) Sarilumab-COVID-19</td>
<td>1365</td>
<td>United States</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%)</td>
<td>Severe (45%)</td>
<td>Critical (55%)</td>
<td>Supplemental oxygen (27.0%)</td>
<td>IV (21.8%)</td>
<td>Sarilumab (200 mg)</td>
</tr>
<tr>
<td>Sivapalasingam, 2021 (35) (Phase 3, cohort 2) Sarilumab-COVID-19</td>
<td>31</td>
<td>United States</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%)</td>
<td>Severe (0%)</td>
<td>Critical (100%)</td>
<td>IV (100.0%)</td>
<td>Sarilumab (800 mg)</td>
<td>Placebo</td>
</tr>
<tr>
<td>Sivapalasingam, 2021 (35) (Phase 3, cohort 3) Sarilumab-COVID-19</td>
<td>8</td>
<td>United States</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%)</td>
<td>Severe (0%)</td>
<td>Critical (100%)</td>
<td>High-flow or NIV (100.0%)</td>
<td>IV (0.0%)</td>
<td>Sarilumab (800 mg)</td>
</tr>
<tr>
<td>Lescure, 2021 (36)</td>
<td>Published NCT04327388; Eudra CT (2020-001162-12), WHO (U1111-1249-6021)</td>
<td>Argentina, Brazil, Canada, Chile, France, Germany, Israel, Italy, Japan, Russia, Spain</td>
<td>Inpatient Intensive care (35.6%)</td>
<td>Mild/Moderate (0%)</td>
<td>Severe (60.6%)</td>
<td>Critical (38.9%)</td>
<td>Nasal cannula (42.1%)</td>
<td>Face mask (26.7%)</td>
<td>Nonrebreather face mask (10.5%)</td>
</tr>
<tr>
<td>Study</td>
<td>Source</td>
<td>Country</td>
<td>Size</td>
<td>Disease Severity</td>
<td>Treatment</td>
<td>Efficacy</td>
<td>Mortality</td>
<td>Interventions</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
<td>--------------------------</td>
<td>------</td>
<td>------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>Gordon, 2021 (50) REMAP-CAP</td>
<td>Published NCT02735707 798 United Kingdom, Netherlands, Australia, New Zealand, Ireland, Saudi Arabia</td>
<td>61.4 72.6 Inpatient Intensive care (100.0%) Severe (0%) Critical (100%)</td>
<td>High-flow (28.8%) NIV (41.5%) IV (29.4%) tocilizumab standard care (for tocilizumab) sarilumab standard care (for sarilumab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gordon, 2021 (50) REMAP-CAP</td>
<td>Data from authors NCT02735707 1020 United Kingdom, Netherlands, Australia, New Zealand, Ireland, Saudi Arabia</td>
<td>NR NR Inpatient Mild/Moderate (0%) Severe (0%) Critical (100%)</td>
<td>NR tocilizumab sarilumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rashad, 2021 (48)</td>
<td>Published CT04519385 (19/08/2020) 149 Egypt</td>
<td>62.5 56.9 Inpatient Intensive care (100.0%) Severe (100%) Critical (100%)</td>
<td>NIV (64.2%) IV (35.8%) dexamethasone tocilizumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SILCOR</td>
<td>Data from meta-analysis EudraCT2020-001413-20 158 Spain</td>
<td>62 65.2 Inpatient Mild/Moderate (0%) Severe (100%) Critical (0%)</td>
<td>NR siltuximab corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STORM</td>
<td>Data from meta-analysis NCT04345445 59 Malaysia</td>
<td>53.2 76.3 Inpatient Intensive care (0.0%) Mild/Moderate (100%) Severe (0%) Critical (0%) Mechanical ventilation (0.0%)</td>
<td>tocilizumab dexamethasone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study Title</td>
<td>Published</td>
<td>Country</td>
<td>Age</td>
<td>Setting</td>
<td>Severe (%)</td>
<td>Mild/Moderate (%)</td>
<td>Critical (%)</td>
<td>Treatment</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>---------</td>
<td>-----</td>
<td>---------</td>
<td>------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Angus, 2020 (37) REMAP-CAP</td>
<td>Published NCT02735707</td>
<td>Australia, Canada, Ireland, France, Netherlands, New Zealand, United Kingdom, United States</td>
<td>59.9</td>
<td>Intensive care (100.0%)</td>
<td>Mild/Moderate (0%)</td>
<td>High-flow (14.6%)</td>
<td>hydrocortisone (fixed-dose)</td>
<td>standard care</td>
<td></td>
</tr>
<tr>
<td>Corral-Gudino, 2021 (38) GLUCOCOVID</td>
<td>Published 2020-001934-37</td>
<td>Spain</td>
<td>69.8</td>
<td>Inpatient</td>
<td>Intensive care (0.0%)</td>
<td>Mechanical ventilation (0.0%)</td>
<td>methylprednisolone</td>
<td>standard care</td>
<td></td>
</tr>
<tr>
<td>Dequin, 2020 (39) CAPECOVID</td>
<td>Published NCT02517489</td>
<td>France</td>
<td>62.2</td>
<td>Intensive care (100.0%)</td>
<td>Mild/Moderate (0%)</td>
<td>Nonrebreathing mask with a reservoir bag (6.0%)</td>
<td>hydrocortisone placebo</td>
<td>standard care</td>
<td></td>
</tr>
<tr>
<td>Edalatifard, 2020 (40)</td>
<td>Published IRCT20200404046947N1</td>
<td>Iran</td>
<td>58.5</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%)</td>
<td>Nasal cannula (21.0%)</td>
<td>methylprednisolone</td>
<td>standard care</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Country</td>
<td>Hospitalization</td>
<td>Severity Distribution</td>
<td>Ventilation</td>
<td>Steroid Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farahani, 2020</td>
<td>Pre-print</td>
<td>Iran</td>
<td>64</td>
<td>Intensive care (100.0%)</td>
<td>NR</td>
<td>Methylprednisolone, prednisolone standard care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horby, 2021</td>
<td>Published</td>
<td>United Kingdom</td>
<td>67</td>
<td>Inpatient</td>
<td>NR</td>
<td>Supplemental oxygen or NIV (60.4%) IV or ECMO (15.7%) dexamethasone standard care</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jamaati, 2021</td>
<td>Published</td>
<td>Iran</td>
<td>62</td>
<td>Inpatient</td>
<td>Mild/Moderate (0%) Severe (100%)</td>
<td>NR</td>
<td>Dexamethasone standard care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeronimo, 2020</td>
<td>Published</td>
<td>Brazil</td>
<td>55</td>
<td>Intensive care (35.4%)</td>
<td>NR</td>
<td>Non-invasive oxygen (47.5%) Invasive mechanical ventilation (33.9%) methylprednisolone placebo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steroids-SARI</td>
<td>Data from meta-analysis</td>
<td>China</td>
<td>64.5</td>
<td>Intensive care (100.0%)</td>
<td>Mild/Moderate (0%) Severe (0%) Critical (100%)</td>
<td>Mechanical ventilation (57.5%)</td>
<td>Methylprednisolone standard care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEXA-COVID 19</td>
<td>Data from meta-analysis</td>
<td>Spain</td>
<td>60.7</td>
<td>NR</td>
<td>Mild/Moderate (0%) Severe (0%) Critical (100%)</td>
<td>IV (100.0%)</td>
<td>Dexamethasone standard care</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COVID STEROID</td>
<td>Data from meta-analysis</td>
<td>Denmark</td>
<td>59.4</td>
<td>NR</td>
<td>Mild/Moderate (0%) Severe (0%) Critical (100%)</td>
<td>Mechanical ventilation (51.7%)</td>
<td>Hydrocortisone placebo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study, Year (ID)</td>
<td>Published (NCT ID)</td>
<td>Country</td>
<td>Total</td>
<td>Death Rate</td>
<td>Setting</td>
<td>Intensive Care</td>
<td>Mild/Moderate</td>
<td>Severe</td>
<td>Critical</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------</td>
<td>---------</td>
<td>-------</td>
<td>------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Tang, 2021 (45)</td>
<td>Published NCT04273321</td>
<td>China</td>
<td>86</td>
<td>47.7</td>
<td>Inpatient</td>
<td>Intensive care (0.0%)</td>
<td>Mild/Moderate (0%)</td>
<td>Severe (100%)</td>
<td>Nasal cannula (70.9%)</td>
</tr>
<tr>
<td>Tomazini, 2020 (46) CoDEX</td>
<td>Published NCT04327401</td>
<td>Brazil</td>
<td>299</td>
<td>61.4</td>
<td>Inpatient</td>
<td>Intensive care (100.0%)</td>
<td>Mild/Moderate (0%)</td>
<td>Severe (0%)</td>
<td>Critical (100%)</td>
</tr>
<tr>
<td>Vaira, 2020 (47)</td>
<td>Published</td>
<td>Italy</td>
<td>18</td>
<td>42.1</td>
<td>Outpatient</td>
<td>Intensive care (0.0%)</td>
<td>Mild/Moderate (100%)</td>
<td>Severe (0%)</td>
<td>Critical (0%)</td>
</tr>
</tbody>
</table>
Table 2: Summary of findings for network meta-analysis comparing tocilizumab and sarilumab, alone or in combination with corticosteroids

<table>
<thead>
<tr>
<th>Comparison</th>
<th>OR (95% CI)</th>
<th>Absolute effect estimates</th>
<th>Certainty of the Evidence (Quality of evidence)</th>
<th>Plain text summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tocilizumab vs Standard care</td>
<td>1.12 (95% Cl: 0.91 – 1.38)</td>
<td>150 per 1,000, 130 per 1,000</td>
<td>Low (risk of bias, imprecision)</td>
<td>Tocilizumab may increase mortality compared to standard care.</td>
</tr>
<tr>
<td>Sarilumab vs Standard care</td>
<td>1.07 (95% Cl: 0.81 – 0.40)</td>
<td>141 per 1,000, 130 per 1,000</td>
<td>Low (risk of bias, imprecision)</td>
<td>Sarilumab may increase mortality compared to standard care.</td>
</tr>
<tr>
<td>Corticosteroids vs Standard care</td>
<td>0.84 (95% Cl: 0.75 – 0.93)</td>
<td>101 per 1,000, 130 per 1,000</td>
<td>Moderate (risk of bias)</td>
<td>Corticosteroids probably reduce mortality compared to standard care.</td>
</tr>
<tr>
<td>Sarilumab vs. Tocilizumab</td>
<td>0.95 (95% Cl: 0.68 – 1.35)</td>
<td>141 per 1,000, 150 per 1,000</td>
<td>Very Low (risk of bias, imprecision)</td>
<td>We are uncertain of the effects of sarilumab compared to tocilizumab.</td>
</tr>
<tr>
<td>Tocilizumab and Corticosteroids vs Corticosteroids alone</td>
<td>0.79 (95% Cl: 0.70 – 0.88)</td>
<td>66 per 1,000, 101 per 1,000</td>
<td>Moderate (risk of bias)</td>
<td>Tocilizumab, in combination with corticosteroids, probably reduces</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Sarilumab and Corticosteroids vs Corticosteroids alone</td>
<td>0.73 (95% CI: 0.58 – 0.92)</td>
<td>58 per 1,000, 101 per 1,000</td>
<td>Low (risk of bias, imprecision)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sarilumab, in combination with corticosteroids, may reduce mortality compared to corticosteroids alone</td>
<td></td>
</tr>
<tr>
<td>Difference: 42.73 fewer per 1,000 (95% CI: -72.61 to -12.00)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tocilizumab and Corticosteroids vs Sarilumab and Corticosteroids</td>
<td>1.07 (95% CI: 0.86 – 1.34)</td>
<td>66 per 1,000, 58 per 1,000</td>
<td>Low (risk of bias, imprecision)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tocilizumab, in combination with corticosteroids, may have similar effects to reduce mortality compared with sarilumab in combination with corticosteroids</td>
<td></td>
</tr>
<tr>
<td>Difference: 8.19 more per 1,000 (95% CI: -20.49 to 34.96)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As of 9 June 2021,

45718 records identified from literature search
45138 English bibliographic databases and pre-print servers
1 meta-analysis with 3 unpublished trials
580 Chinese bibliographic databases and pre-print servers

38971 records after duplicates removed

38087 records excluded for not being relevant

913 randomized trials from 884 full text articles assessed for eligibility

493 full texts excluded

174 not a randomized trial
35 randomized trial with no results
40 not infected with SARS-CoV-2
29 prophylaxis
244 wrong intervention

68 anti-SARS-CoV-2 antibody and cellular therapies
52 traditional Chinese/alternative medicine excluding specific molecules at specific doses
7 exercise/rehabilitation
9 personal protective equipment
5 psychological and educational
71 vaccine
11 oxygen delivery
3 diagnostic imaging
1 external organ support
1 nutrition and supplements
14 other
2 removed from preprint server by study authors

420 randomized trials addressing drug treatments included

45 unique randomized trials addressing IL-6 receptor blockers and/or corticosteroids
Figure 2: Network diagram (nodes are weighted according to the number of studies evaluating each treatment and edges weighted according to the precision (inverse variance) of the direct estimate for each pairwise comparison).
Figure 3: Risk of bias of trials included in the network meta-analysis

<table>
<thead>
<tr>
<th>Author (if published)</th>
<th>Trial (trial registration)</th>
<th>Randomization</th>
<th>Deviation from the intended intervention</th>
<th>Missing outcome data</th>
<th>Measurement of outcome</th>
<th>Selection of the reported results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tocilizumab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low risk of bias</td>
</tr>
<tr>
<td>ARCHITECTS</td>
<td>(NCT04412772)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>CORIMUNO-TOCI-ICU</td>
<td>(NCT04331808)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>COV-AID</td>
<td>(NCT04330638)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>COVIDOSE2-SSA</td>
<td>(NCT04479358)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>COVIDSTORM</td>
<td>(NCT04577534)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>COVITOZ</td>
<td>(NCT04435717)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Tomazini, 2020</td>
<td>CoDEX (NCT04327401)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Corral-Gudino, 2020</td>
<td>GLUCCOVID (2020-001934-37)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Edalatfard, 2020</td>
<td>CAPECOCVID (NCT02517489)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Horby, 2020</td>
<td>RECOVERY (NCT04381936)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Jamaati, 2021</td>
<td>(IRCT20151227025726N17)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Jeronimo, 2020</td>
<td>Metocid (NCT04343729)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Tang, 2021</td>
<td>Tang_2 (NCT04273321)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Tomazini, 2020</td>
<td>CoDEX (NCT04327401)</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>
References

28. Rutgers AaW, Peter E. and van der Holt, Bronno and Postma, Simone and van Vonderen, Marit G.A. and Piersma, Djura P. and Postma, Douwe and van den Berge, Maarten and Jong, Eefje and de Vries, Marten and van der Burg, Leonie and Huugen, Dennis and van der Poel, Marjolein and Kampschreur, Linda M. and Nijland, Marcel and Strijbos, Jaap H. and Tamminga, Menno and Mutsaers, Pim G. N. J. and Schol-Gelok, Suzanne and Dijkstra-Tiekstra, Margriet and Sidorenkov, Grigory and Vincenten, Julien and van Geffen, Wouter H. and Knoester, Marjolein and Kosterink, Jos and Gans, Reinold and Stegeman, Coen and Huls, Erwin and van Meerten, Tom. Timely Administration of Tocilizumab Improves Survival of Hospitalized COVID-19 Patients. Available at SSRN: https://ssrn.com/abstract=3834311 or http://dx.doi.org/10.1101/2021.07.05.21259867; this version posted July 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.

