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Additional Details of the Construction of Subway Visit Volume by ZCTA of Origin 

Overlay of Census Block Groups on Zip Code Tabulation Areas 
Fig. A overlays several maps of a section of New York City comprising parts of 

Manhattan, Queens, and Brooklyn. The bottom layer, indicated by the blue subdivisions, shows 

the boundaries of individual census block groups (CBGs). The middle layer, indicated by the 

black subdivisions, shows the boundaries of zip code tabulation areas (ZCTAs). The top layer, 

indicated by the colored regions, identifies the Queens-Elmhurst hotspot ZCTAs shown in main 

text Figs. 2c and 2d. Most CBGs were fully contained within specific ZCTAs. In those cases 

where a CBG overlapped more than one ZCTA, we assigned the CBG to the ZCTA that 

contained the centroid of the CBG. 

 

 
 

Fig. A. Overlay of ZCTAs on CBGs in a section of Manhattan and Queens.  
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Temporal Evolution of Visits to Subway Station CBGs Originating from Four ZCTAs 
Fig. B shows the temporal evolution of visits to subway station CBGs originating from 

four specific ZCTAs: 10003 (Manhattan), 11201 (Brooklyn), 11205 (Brooklyn), and 11368 

(Queens). The volume of visits to subway station CBGs has been expressed as a percentage of 

the volume for the first week in March. The dispersion in subway visit volume can been seen 

along the vertical dashed line located at March 16. The specific percentages at that date are: 

23.38 for 10003; 35.28 for 11201; 40.92 for 11205; and 71.08 for 11368. 

 

 
 

Fig. B. Temporal evolution of visits to subway station CBGs originating from four ZCTAs. 
 

Contiguity in Geographic and Subway Space 

G-Contiguity 
We think of our map of ZCTAs in New York City as a finite set of  compact 

polygons in a two-dimensional plane, indexed by . No two ZCTAs share any interior 

points in common, but they can share boundary points. When ZCTAs i and j	do share boundary 

points, we say that they are geographically contiguous, or simply g-contiguous. By convention, 

we don’t allow a ZCTA to be g-contiguous with itself, so that g-contiguity, considered as a 

M > 0

i = 1,…,M
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binary relation, is symmetric, but it is neither reflexive nor transitive. To take a simple example, 

Fig. C shows three geographic areas, that is, . Area #1 is g-contiguous with area #2, but 

neither #1 nor #2 is g-contiguous with #3. 

 

 
 

Fig. C. Three geographic areas. Areas #2 and #3 are connected by a bidirectional subway line, 
which crosses a body of water. 

 
Geographic contiguity can be represented by an  symmetric square matrix G with 

binary elements, where element  if and only if area i is g-contiguous with area j, and 

where  otherwise. Since we do not allow an area to be g-contiguous with itself, the 

diagonal elements of G are all zeros. For the example of Fig. C, the g-contiguity matrix takes the 

form , where the rows and columns are ordered in accordance with labeling in 

the figure. 

S-Contiguity 
We say that two areas i and j are contiguous in subway space, or simply s-contiguous, 

when area j is the next stop after area i on some subway line in some direction. Once again, we 

don’t allow an area to be s-contiguous with itself. So long as subway trains run in both 

directions, s-contiguity is likewise a symmetric relation, though it is not reflexive or transitive. In 

Fig. C above, area #2 is s-contiguous with area #3, but these two areas are not g-contiguous. 

Fig. C helps us understand why g- and s-contiguity are distinct relations. The figure 

specifically captures the case where two areas are physically separated by a body of water. This 

is the case for a number of ZCTAs in Manhattan, which are connected by subway lines to stops 

in Brooklyn, Queens, and Staten Island. The other important case where g- and s-contiguity are 

divergent is where a subway line has express trains that skip over many local stops. 

M = 3

M × M

gij = 1

gij = 0

G =
0 1 0
1 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
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Subway contiguity can be analogously represented by a symmetric square matrix S, 

where element  if and only if area i is s-contiguous with area j, and  otherwise. By 

convention, the diagonal elements are all zero. For the example of Fig. C, the s-contiguity 

matrix takes the form . 

Compound Geographic Continuity 
In Fig. D below, we have removed the body of water separating areas #1 and #2 in Fig. 1, 

and have added area #4, which is both g- and s-contiguous with area #3. The respective g- and s-

contiguity matrices now take the form  and .  

 

 
 

Fig. D. Four geographic areas. Areas #2, #3, and #4 are connected by a bidirectional subway 
line. The body of water has been removed, so that area #1 is g-contiguous with area #2. 

 
Fig. D allows us to consider compound forms of contiguity. In particular, we say that two 

areas are g2-contiguous if one can travel from the first to the second in two steps, going through a 

third area that is a common geographic neighbor with both. In Fig. D, we can see that area #1 is 

g2-contiguous with area #3, and area #2 is g2-contiguous with area #4. 

Intuition suggests that the corresponding g2-contiguity matrix would be , that is, 

the matrix product of G with itself, but that is not exactly the case. For the configuration in Fig. 

D, we would have .  The problem is that the diagonal elements of  

count the number of ways one can travel in two steps back to the area where one started.  

sij = 1 sij = 0

sii

S =
0 0 0
0 0 1
0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

G =

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

S =

0 0 0 0
0 0 1 0
0 1 0 1
0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

G2 = GG

G2 =

1 0 1 0
0 2 0 1
1 0 2 0
0 1 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

G2
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To form the corresponding contiguity matrix, we first need to define a mapping 

 from the space  of  matrices onto itself with the following properties. For 

any matrix  with typical element , we have: (i) ; and (ii) for all , 

, where  equals 1 if z is strictly positive and 0 otherwise. Then the matrix 

representing the g2-contiguity relation in Fig. D is . 

We can use our matrix algebra to define other compound forms based upon the elemental 

relation of g-contiguity. For example, an element on row i and column j of the matrix  

is equal to 1 if and only if area i is either g-contiguous or g2-contiguous with area j. In that case, 

we would get the matrix . 

Compound Subway Continuity with Multiple Subway Lines 
It would seem natural to define s2-contiguity in a manner entirely analogous to g2-

contiguity. That is, area i would be s2-contiguous with area j if there is a distinct area k such that 

area i is s-contiguous with area k, and area k is s-contiguous with area j. But that approach runs 

into an ambiguity when there are multiple, disconnected subway lines. In Fig. E below, the green 

line continues to run from area #2 to area #3, just as in Fig. D, but a separate red line now runs 

from area #3 to area #4. Under our original definition, area #2 is s-contiguous with area #3, and 

area #3 is s-contiguous with area #4, and so area #2 would be s2-contiguous with area #4. 

 

 
 

Fig. E. Four geographic areas. Areas #2 and #3 are connected by the bidirectional green line, 
while areas #3 and #4 are separately connected by the bidirectional red line. 

 

b :Ω→Ω Ω M × M

Z ∈Ω zij b zii( ) = 0 i ≠ j

b zij( ) = sign zij( ) sign z( )

b G2( ) =
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

b G +G2( )

b G +G2( ) =
0 1 1 0
1 0 1 1
1 1 0 1
0 1 1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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To address this issue, we say that area i is s2-contiguous with area j if there exists a 

distinct area k such that area k is the next stop after i on some subway line and area j is the next 

stop after area k along the same or a connecting subway line. We use the term connecting to 

refer to cases where a rider can change to another line by transferring within the same station. 

Under this clarified definition, areas #2 and #4 are s2-contiguous in Fig. D, but the same two 

areas are not s2-contiguous in Fig. E. 

To formalize these notions, let T be an  square matrix, where  is the number 

of distinct, non-connected subway stations. The typical element  equals 1 if stations i and j are 

successive stops along the same or a connecting subway line. Otherwise, . Let R be an 

 matrix where typical element  equals 1 if subway station i is located in area j, and 

 otherwise. Then the  matrix representing s2-contiguity is . 

Fig. F below illustrates this formalism. In contrast to Fig. 4, we now have  subway 

stations: A, B and C on the green line, and D and E on the non-connecting red line. The 

corresponding matrix T showing the connected stations has the form  , 

where we’ve ordered the stations alphabetically. The  matrix R showing which stations 

belong to which areas assumes the form . We thus have 

. That is, only areas #1 and #3 are s2-contiguous. 

 

N × N N > 0

tij

tij = 0

N × M rij

rij = 0 M × M b ′R T 2R( )
N = 5

T =

0 1 0 0 0
1 0 1 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

5× 4

R =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

b ′R T 2R( ) =
0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Fig. F. Four geographic areas. Areas #1. #2 and #3 are connected by the bidirectional green 
line, while areas #3 and #4 are separately connected by the bidirectional red line. 

 
As in the case of g-contiguity, we can form other compound relations between areas. 

Thus, the element in row i and column j of the matrix  

equals 1 if area j can be reached from area i in one, two or three subway stops on the same or 

connected lines. This compound contiguity matrix is also symmetric. 

GS-Contiguity  
The distribution of blue-shaded census block groups in Fig. 3b in the main text 

demonstrates that individuals will travel from their ZCTA of origin to a g-contiguous ZCTA to 

enter a subway station, and then take the subway to work at another ZCTA. Motivated by this 

finding, we say that area i is gs-contiguous with area j when there exists a third, distinct area k 

such that area i is g-contiguous with area k and area k in turn is s-contiguous with area j. 

The binary relation defined by gs-contiguity is not symmetric. Thus, in Fig. C above, area 

#1 is gs-contiguous with area #3, inasmuch a resident of area #1 could travel to the subway 

station in area #2 and then take the subway one stop over to area #3. But none of the three areas 

can be gs-contiguous with area #1 because area #1 does not have its own subway stop. Put 

differently, the matrix  has binary elements and zeros along the main diagonal, but it is 

not symmetric.  

Still, we can formulate symmetric contiguity relations combining the two elemental 

relations. For example, taking advantage of the fact that , we can construct the 

symmetric contiguity matrix . The element in row i and column j of this matrix 

 equals 1 if the two areas are either gs-contiguous, or sg-contiguous. To take a more 

complex case, the element in row i and column j of the matrix , where 

, equals 1 if there is another area k such that area i is g-contiguous with 

b S + S 2 + S 3( ) = b ′R T +T 2 +T 3( )R( )

b GS( )

SG = GS( )′

b GS + SG( )
b GS + SG( )

b GZ( )
Z = ′R T +T 2 +T 3( )R
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area k and area k in turn is no more than three subway stops from area j. The symmetric matrix 

 combines the two relations in both directions. 

Non-Spatial Regressions 

Let y denote an  column vector of ZCTA-specific observations of incremental 

COVID-19 incidence during April 1–8, 2020. Let denote the corresponding ZCTA-specific 

column vector of observations on relative subway volume as of March 16, 2020. The fitted line 

in Fig. 3e in the main text represents the ordinary least squares (OLS) estimate of the bivariate 

non-spatial model , where the logarithm is assumed to operate separately on 

each coordinate of the vectors y and . The OLS estimates of the parameters for that model are 

shown in the row labeled Model 1 in Table A below.  

 
Table A. Non-spatial regressions relating incremental COVID-19 incidence during April 1–8, 
2020 (𝑦) to the cumulative incidence of COVID-19 through March 31, 2020 (𝑋!), relative 
subway volume as of March 16, 2020 (𝑋"), and the prevalence of at-risk multigenerational 
households (𝑋#).* 

Model 𝛼 𝛽! 𝛽" 𝛽# R2 

1 –3.318 
( 0.545) 

 1.727 
(0.135) 

 0.480 

2 –4.664 
( 0.460) 

0.757 
(0.079) 

1.346 
(0.116) 

 0.664 

3 –0.321 
( 0.024) 

 0.631 
(0.190) 

0.489 
(0.066) 

0.607 

4 –1.938 
( 0.517) 

0.694 
(0.068) 

0.423 
(0.151) 

0.426 
(0.053) 

0.756 

* All models entailed N = 176 observations. Standard errors are shown in parentheses below 
each parameter estimate. The estimate of  𝛼	in Model 3 was not significantly different from 0. 
Otherwise, all parameter estimates were significantly different from zero at the level p = 0.006 
or lower. 

 

We now let  denote the corresponding ZCTA-specific column vector of observations 

on the cumulative incidence of confirmed COVID-19 cases as of March 31, 2020, mapped in 

Fig. 2c. We further let  denote the corresponding ZCTA-specific column vector of 

observations on the prevalence of at-risk multigenerational households, mapped in Fig. 3f. Then 

b GZ + ZG( )

M ×1

X1

log y =α + β1 log X1

X1

X0

X2
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we can also estimate multivariable non-spatial models of the form , 

where some of the parameters  can be restricted to equal zero, or all can remain 

unconstrained. The OLS estimates of the parameters of these alternative non-spatial models are 

shown in the additional rows labeled Model 2 through 4 in Table A above. In every model, 

independent of any zero restrictions on the parameters, the estimates of  were all 

significantly different from zero. 

Construction of the independent variable 𝑋" relied on the volume of subway CBG visits 

on March 16, as noted in Fig. B and Fig. 3e in the main text. Varying this cutoff date between 

March 13 and March 17 did not materially affect our estimates. 

Spatial Regressions 

In addition to these basic cross-sectional, non-spatial models, we considered spatial 

regression models1 of the form , where W is an   

spatial weighting matrix that may premultiply each of the vectors , and . This approach 

accounts for the potential influence of the values of these exogenous variables in geographically 

or subway contiguous ZCTAs. For example, if we focused on (g+g2+g3)-contiguity, then 

coordinate i of the corresponding vector  would measure the population-weighted average 

subway volume among all ZCTAs within a geographic radius of 3 ZCTAs surrounding ZCTA i. 

We note that we have intentionally avoided the use of a spatially weighted dependent variable 

. Such an approach would amount essentially to correlating contemporaneous values of  

and , an exercise that runs into knotty problems of endogeneity and identification.1 2  

The spatial weighting matrix W is a population-weighted transform of the corresponding 

contiguity matrix. Let u denote an  column vector with coordinate  equal to the 

population of ZCTA i, as derived from the Census Bureau’s American Community Survey 5-

year estimates for 2015–2019,3 and let  denote the  diagonal matrix formed 

from the vector u. Consider the elemental case of geographic contiguity, represented by the 

contiguity matrix G. We compute , where coordinate 𝑛$ of the vector 𝑛 measures the total 

log y =α + βv log Xv
v=0

2

∑

βv{ }

βv{ }

log y =α + βv log Xv
v=0

2

∑ + γ v logWXv
v=0

2

∑ M × M

X0 X1 X2

WX1

Wy yi

y j

M ×1 ui

U = diag u( ) M × M

n = Gu
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population of all ZCTAs that are g-contiguous with ZCTA i, and let  denote the 

 diagonal matrix formed from the vector n. Then the corresponding spatial weighting 

matrix is . The same procedure would apply to any contiguity matrix other than G. 

Table B shows the results of a series of three models, where the radius of geographic 

contiguity was incrementally increased from 1 to 3. In each regression, we excluded three 

ZCTAs: 10044 (corresponding to Roosevelt Island); 11109 (a very small ZCTA in Queens for 

which we had no data on smartphone origins); and 99999 (a miscellaneous category that 

included Central Park, airports, and other non-residential areas). The results are show for the 

models , where . For both sets of covariates – 

cumulative incidence through March 31 ( ) and subway volume as of March 16 ( ) – the 

estimated spatial effect parameter increased as the contiguity radius was expanded. The 

estimated spatial effect parameters are graphed in Fig. 4d of the main text. 

 
Table B. Spatial Regression Results: Increasing Geographic Radius* 

 
 Model 

Parameter g g + g2 g + g2 + g3 
𝛽! 0.742 

(0.108) 
0.741 

(0.093) 
0.793 

(0.086) 
𝛾! 0.861 

(0.157) 
1.429 

(0.177) 
1.661 

(0.182) 
𝛽" 1.110 

(0.211) 
1.066 

(0.201) 
0.957 

(0.195) 
𝛾" 0.983 

(0.257) 
1.185 

(0.271) 
1.391 

(0.264) 
 
* Standard are errors shown in parentheses below each parameter estimate. All estimates were 
significantly different from zero at the level p < 0.001. All sample sizes N = 175. Three 
ZCTAs were excluded: 10044; 11109; and 99999. 

 
 

Table C below shows the comparable results of a series of six models, where the radius 

of spatial contiguity was incrementally increased. To ensure comparability with the results in 

Table B, all models included the alternative of g-contiguity. An analysis restricted solely to 

powers of S would have resulted in null values of  and  for those ZCTAs that did not 

contain subway stations. In contrast to Table B, we see a steep gradient only for the spatial effect 

N = diag n( )
M × M

W = N −1GU

log y =α + βv log Xv + γ v logWXv v = 0,1

X0 X1

γ v

WX0 WX1
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parameter  corresponding to subway volume on March 16, but not for the spatial effect 

parameter corresponding to cumulative incidence through March 31, 2020. The estimated 

spatial effect parameters are graphed in Fig. 4c of the main text. 

 

 
Table C. Spatial Regression Results: Increasing Spatial Radius* 

 
 Model 

Parameter g g + s g + s + s2 IV† V† VI† 
𝛽! 0.742 

(0.108) 
0.747 

(0.110) 
0.762 

(0.108) 
0.776 

(0.108) 
0.812 

(0.105) 
0.825 

(0.105) 
𝛾! 0.861 

(0.157) 
0.863 

(0.166) 
0.878 

(0.169) 
0.887 

(0.175) 
0.899 

(0.183) 
0.903 

(0.190) 
𝛽" 1.110 

(0.211) 
0.931 

(0.214) 
0.822 

(0.216) 
0.676 

(0.215) 
0.782 

(0.196) 
0.893 

(0.185) 
𝛾" 0.983 

(0.257) 
1.254 

(0.266) 
1.493 

(0.285) 
1.880 

(0.311) 
1.924 

(0.308) 
1.964 

(0.321) 
 
† IV = g + s + s2 + s3. V = g + s + s2 + s3 + s4. VI = g + s + s2 + s3 + s4 
* Standard are errors shown in parentheses below each parameter estimate. All estimates were 
significantly different from zero at the level p < 0.001 with the exception of  in Model G + 
S3 (p = 0.002). All sample sizes N = 175. Three ZCTAs were excluded: 10044; 11109; and 
99999. 

 
We obtained similar results when we included  as a covariate in our models (that is, 

, where ). We also obtained qualitatively 

similar results when we jointly regressed and  within the same spatial model (that is,

).  

Finally, we considered a more generalized sequence than that specified in Table C and 

main text Fig. 4c. This more generalized sequence allows one to transit first to a g-contiguous 

ZCTA and then take the subway up to a specified number of stops, or in reverse order. More 

concretely, relying on our matrix algebra above, we define , , 

, … We then considered the sequence of contiguity matrices specified by 

the rule G, , , , … The 

γ 1

γ 0

β1

X2

log y =α + βv log Xv + γ v logWXv + β2 log X2 v = 0,1

X0 X1

log y =α + β0 log X0 + γ 0 logWX0 + β1 log X1 + γ 1 logWX1

Z = ′R TR Z2 = ′R T +T 2( )R
Z3 = ′R T +T 2 +T 3( )R

b G + Z +GZ + ZG( ) b G + Z2 +GZ2 + Z2G( ) b G + Z3 +GZ3 + Z3G( )
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resulting relation between the radius of subway space and the estimated spatial effect parameters 

 and  is shown in Fig. G. The same differential response of the two covariates – cumulative 

incidence on March 31 ( ) and subway volume on March 16 ( ) – is once again noted. 

 

 
 

Fig. G. Relation between radius in subway space and estimated spatial effect parameters in a 
generalized version of the model of Table C and main text Fig. 4c. 
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