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Abstract  

The prompt rollout of the coronavirus disease (COVID-19) messenger RNA (mRNA) vaccine 

facilitated population immunity, which shall become more dominant than natural infection-induced 

immunity. At the beginning of the vaccine era, the initial epitope profile in naïve individuals will be 

the first step to build an optimal host defense system towards vaccine-based population immunity. In 

this study, the high-resolution linear epitope profiles between Pfizer-BioNTech COVID-19 mRNA 

vaccine recipients and COVID-19 patients were delineated by using microarrays mapped with 

overlapping peptides of the receptor binding domain (RBD) of severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) spike protein. The vaccine-induced antibodies targeting RBD had 

broader distribution across the RBD than that induced by the natural infection. The relatively lower 

neutralizing antibody titers observed in vaccine-induced sera could attribute to less efficient epitope 

selection and maturation of the vaccine-induced humoral immunity compared to the infection-

induced. Furthermore, additional mutation panel assays showed that the vaccine-induced rich epitope 

variety targeting the RBD may aid antibodies to escape rapid viral evolution, which could grant an 

advantage to the vaccine immunity.  

Introduction 

Messenger RNA (mRNA) vaccines have prevailed globally to mitigate the pandemic of the 

coronavirus disease 2019 (COVID-19). Due to the prompt progress of vaccine development and the 

rollout since the pandemic, it is likely that population immunity against severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2) will largely depend on vaccine-induced rather than the 
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infection-induced immunity. In this start of the COVID-19 vaccine era, the de novo repertoire in 

naïve individuals, the molecular dynamics of B-cell response to SARS-CoV-2, will be the first step 

to build an optimal host defense system towards vaccine-based population immunity. Currently, the 

efficacy of vaccine-induced immunity against SARS-CoV-2 in an individual is evaluated by 

potential surrogate markers such as half-maximal neutralization titers (NT50) using live/pseudo 

viruses and total antibodies titers against the receptor binding domain (RBD) of the spike protein of 

the virus (1–4). Understanding the epitope profile of both vaccine recipients and COVID-19 patients 

shall readily elucidate the molecular basis of these markers as surrogate. Moreover, the coevolution 

of vaccine-induced host immunity and the virus escape will be one of the most important elements to 

consider in the way of achieving herd immunity against COVID-19.  

The RBD of the spike glycoprotein of SARS-CoV-2 is widely considered as a key protein target for 

designing vaccines and developing neutralizing antibodies as therapeutic agents (5,6). As epitope 

profiles of naturally infected COVID-19 patients’ sera have identified several immunodominant 

regions in the spike protein, most linear epitopes are located outside the RBD of the spike protein, 

while anti-RBD antibodies consist minor proportion of the total anti-spike IgG epitopes (7–11). 

Nonetheless, the majority of the neutralizing monoclonal antibodies (NAbs) derived from 

convalescent sera target the RBD, which imposes its crucial role in virus neutralization (6,12–16). 

Based on the steric binding orientation of the anti-RBD NAbs, four different categories of NAbs 

have been proposed (17,18). While a growing number of individuals acquire vaccine immunity, 

detailed epitope profile of the humoral immune response to the mRNA vaccine is not fully 

understood (1,19,20).  

In this study, high resolution linear epitope profiling targeting the RBD was performed using sera of 

both mRNA vaccine recipients and COVID-19 patients. Comparing the detailed epitope profiling 

analysis and the serological markers, we sought to describe the humoral immune response elicited by 

mRNA vaccination and natural infection, which will be crucial in this post-vaccine era of the 
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COVID-19 pandemic. 

Materials and Methods 

Serum collection 

Two groups were analyzed in this study: (i) vaccine recipients, all received two doses of BNT162b2 

mRNA vaccine (Pfizer/BioNTech) with a three-week interval (N=21, age 20s–80s years old). Blood 

was obtained 17–28 days after the second dose. The first mRNA vaccine approved in Japan was 

Pfizer/BioNTech’s BNT162b2 and Moderna’s mRNA-1273 was the second. (ii) COVID-19 patients 

confirmed by nucleic amplification testing (N=20, age 20s–80s years old). The blood collection of 

the patients was performed between 10 and 63 days (median 39 days) after the onset. Detailed 

information of the subjects and severity of the disease of the patients can be found in Supplemental 

Table 1 (21).   

Blood samples were obtained by venipuncture in serum separator tubes and the serum fraction was 

store at – 80�. All subjects provided written consent before participating in this study. This study 

was approved by the institutional review board of Osaka City University (#2020-003) and the 

Graduate School of Life and Environmental sciences and the Graduate School of Sciences, Osaka 

Prefecture University. 

Anti-RBD IgG quantification by chemiluminescent immunoassay 

Anti-RBD IgG titers of both groups were quantitated by measuring the chemiluminescence generated 

in the reaction mix containing serum IgG-bound, RBD-coated microparticles and acridinium-labeled 

anti-human IgG (Abbott SARS-CoV-2 IgG II Quant assay, USA)(22). Antibodies targeting the viral 

nucleocapsid protein (Anti-N IgG) was also performed on vaccine recipients to screen unrecognized 

exposure to SARS-CoV-2 prior to the vaccination (Abbot SARS-CoV-2 IgG assay, USA) (23). 

Neutralization assay using live SARS-CoV-2 
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The neutralization assay was carried out as described previously (24), but with modifications. Heat-

inactivated (at 56˚C for 45 minutes) vaccine-recipients and patients’ sera and a SARS-CoV-2 

negative control serum were serially four-fold diluted with Dulbecco’s Modified Eagle Medium with 

2% fecal bovine serum (2% FBS DMEM) and incubated with a pre-titrated 150 focus-forming units 

of SARS-CoV-2 JPN/TY/WK521 strain live virus particles (National Institute of Infectious Diseases, 

Japan) at 37˚C for 1 hour. The monolayer of VeroE6 cells (National Institutes of Biomedical 

Innovation, Health and Nutrition, Japan) were then absorbed with the mixtures at 37˚C. After a 1-

hour incubation, the mixtures were replaced with fresh 2% FBS DMEM. After an 8-hour culture at 

37˚C, infection rates of the cells were determined by immunofluorescent staining, as follows. After 

fixation (4% paraformaldehyde, 15 minutes), cells were permeabilized (0.1% TritonX100, 15 

minutes) and incubated with rabbit anti-spike monoclonal antibodies (Sino biological, China) 

(1:1000, 1 hour at 37˚C). Cells were then washed and incubated with Alexa488-conjugated goat anti-

rabbit IgG (Thermofisher scientific, USA) (1:500, 45 minutes at 37˚C). Antigen positive cells were 

counted under a fluorescent microscope and the percentage of neutralization was estimated as the 

viral infectivity under serum-treated conditions compared with that without serum.  

Epitope mapping of the RBD 

For precise linear epitope screening, overlapping 15-mer peptides (shfit by 3 amino acids) were 

sequentially synthesized according to the sequence of the RBD on cellulose membrane by MultiPep 

synthesizer (Intavis Bioanalytical Instruments, Germany) using SPOT technology (25,26). The 

sequence of the RBD was obtained by GenBank (accession: MN908947.3, S319–S541) Additional 

15-mer peptides containing single mutations of variants of concerns found within the RBD were 

designed. Single mutations included K417N, K417T, E484K and N501Y(27). Detailed peptide 

sequences used in this study can be found in Supplement Table 2. 

Synthesized arrays were probed with sera at a 1:400 dilution followed by incubation with horseradish 
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peroxidase conjugated goat anti-human IgA +IgG +IgM polyclonal antibody at a 1:30,000 dilution. 

The bound of the secondary antibody on each peptide was detected and quantified by enhanced 

chemiluminescence. The epitopes were detected by subjective visual inspection. 

Data processing 

Chemiluminescence signal intensities of the peptide arrays were standardized in two ways: relative 

values to the maximum signal level of each array as 100, and z-scores considering peptide signals of 

individual subjects as population. Half-maximal neutralization titers (NT50) of the neutralization 

assay were calculated using GraphPad Prism 9.1.0.221 and Microsoft Excel for Microsoft 365 MSO 

(16.0.14026.20202). 

The sequence and conformational information of the RBD was obtained under the accession number 

6M0J (5) and 7A94 (28) at Protein Data Bank. The images to depict the recognized epitopes are 

shown using The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC. 

Results 

Total IgG titers targeting the RBD and neutralization assay using live SARS-CoV-2 

All vaccine recipients (N=21) and COVID-19 patients (N=20) revealed seropositivity to anti-RBD 

IgG according to the manufacturer’s threshold (>50 AU/mL) and the two groups did not show 

significant difference in their levels of titers (Figure 1a). However, the neutralization assay using live 

SARS-CoV-2 showed remarkably lower neutralizing titers in vaccine recipients’ sera than the 

patients (Figure 1b). Relative anti-RBD antibody titers to NT50 values in individuals were calculated 

and plotted in Figure 1c, which suggested a discrepancy in epitope profiles between vaccine 

recipients and COVID-19 patients. None of the vaccine recipients were seropositive to anti-N IgG, 

ensuring that they were naïve to SARS-CoV-2 infection (Supplement Table 1). 

Comparison of linear epitope profiles targeting the RBD of vaccine-elicited and infection-
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elicited sera  

Since the vaccine-elicited sera, although reactive to the RBD to similar extent, showed significantly 

reduced neutralization, we investigated the linear epitope profile of the anti-RBD antibodies elicited 

by the vaccination and the natural infection. Sera of five subjects from the vaccine recipients and ten 

from the patients were selected based on their anti-RBD antibody titers and NT50 (denoted as red 

dots in Figure 1). The sera were incubated with the designed microarrays arranged with 15-mer 

overlapping peptides of the RBD on the surface (Figure 2a). The designated array did not show any 

considerable unspecific binding of the secondary antibody.  

We generated a heatmap according to the relative signals of the overlapping peptides (Figure 2a). 

Our epitope detection criteria were visually detectable as a significant peak in a graph depicting a 

mostly minimum of 0.5 z-score of the mean peptide signals (Figure 3) and/or regions previously 

reported as neutralizing antibodies in the RBD(17,29). Comparing the epitope profiles of the two 

groups, two types of epitopes were identified: (1) epitopes recognized by both groups and (2) 

epitopes recognized only by vaccine-elicited sera. Overall, seven linear epitopes were recognized 

within the RBD, four within (1): T415–F42, peptide No.33; R457–S477, peptide No.47–49; V433–

N450, peptide No.39–40; V395-A411, peptide No.26–27 and three within (2): N334–A348, peptide 

No.6; S373–L390, peptide No.19,20; S514–F541, peptide No.66–71, respectively.  

(1) Epitopes recognized by both groups 

A total of four linear epitopes were recognized in both groups. Three (peptide No.33, No.39–40 and 

No.47–49) of them shared the epitope regions of the RBD with neutralizing monoclonal antibodies 

previously reported as class1 and class 3.  

Two linear epitopes were identified at peptide No. 33 and peptides No.47–49, which share the 

epitopes with class 1 neutralizing antibodies(17). Also, peptide No. 39–40 shares epitope residues 

very similar to human monoclonal antibody REGN10987, categorized as Class 3 neutralizing 
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antibody which sterically hinders angiotensin converting enzyme 2 (ACE2) interaction (17).  

Linear epitope (peptide No.26–27) was reactive at the highest level in most serum samples; sera of 

2/5 vaccine recipients and 7/10 patients had maximum reactivity to this peptide. The antibodies 

binding to this epitope do not seem to contribute to neutralizing the live virus, based on the findings 

we experienced. This peptide was found highly reactive in a serum of a COVID-19 patient who had 

undergone Rituximab treatment, whose neutralizing antibody titer was not sufficient (For details, see 

Supplement Figure 1)(30). In the RBD structure, No.27 peptide is located inside the core β sheets, 

which is not exposed to the surface of the RBD in either an “up” or “down” position. Judging from 

the structural composition, this linear epitope does not seem to affect ACE2 binding (Supplement 

Figure 1).  

(2) Epitopes recognized only by vaccine recipients’ sera 

Three linear epitopes of the RBD were uniquely found in vaccine recipients’ sera, two (peptide No.6 

and No.19,20) of them shared the epitope regions of the RBD with neutralizing monoclonal 

antibodies previously reported as class 3 and class 4.  

At the start of the RBD peptide, we identified an epitope region detected only in vaccine-induced 

sera broadly at peptide No.1–6. Especially, peptide No. 6 shall be the epitope, which class3 Nab 

S309 would recognize by sharing residues P337–A344 helix (31). The epitope is distinct from the 

receptor-binding motif and has a good accessibility both in up and down composition of the RBD 

(PDB, 7A49, Figure 5). 

Another identified epitope peptide No.19,20 shared epitope residues with a neutralizing monoclonal 

antibody CR3022, categorized as class 4, isolated from a SARS-CoV convalescent (32). This class 4 

neutralizing antibody attaches to RBD but distal from the ACE2 binding and is highly conserved 

between the species (18).  

The third epitope, located at peptide No.66–71, did not match any existing mAbs. Yi et al. detected 
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the same region of the peptide (V524–F541) reactive from COVID-19 convalescent serum, although 

it non-specifically interacted with control sera (11).  

Linear epitopes mapping with single mutations found in SARS-CoV-2 variants 

Single amino acid mutations in the RBD are reported in the variants of concerns: B.1.1.7, B.1.351 

and P.1 (PANGO lineage (33)). The mutation loci E484K and N501Y, which correspond to peptides 

No.52–61 in Figure 3, did not show any significant reactivity.    The peptides No.29-33 containing 

K417, considered as an escape mutation, was reactive to the class 1 NAb in both patients and vaccine 

recipients’ sera as mentioned above.  

Additional 15-mer peptides with substituting amino acid as mentioned in the method section were 

incubated with both vaccine recipients’ and patients’ sera. Interestingly, vaccine-induced sera 

showed consistent signal to the mutation peptides, whereas patients’ sera had almost no reaction 

(Figure 6).   

Discussion 

This study revealed the linear epitope profile targeting RBD elicited by mRNA vaccination and 

natural infection of SARS-CoV-2. Our principal finding was that the variation of linear epitopes was 

broader in vaccine-elicited antibodies than infection-elicited antibodies, which may contribute to the 

potent neutralization against the variants of concerns. 

Several NAbs against SARS-CoV-2 have been isolated from COVID-19 convalescent donors. Now, 

four categories of NAbs classes are proposed to characterize the mode of recognition and epitope 

specificity (17). Class 1 NAbs block several proximal sites in the receptor binding motif (RBM) of 

the RBD and block ACE2 binding; class 2 recognize both up and down formations of the RBDs and 

epitope overlapping or close to ACE2-binding site; class 3 recognize both up and down RBD and 

bind outside ACE2-binding site; class 4 bind only to up RBDs and do not block ACE2. Many of the 

human-isolated NAbs target RBD, while some target N-terminal domain of subunit 1 spike protein 
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(14,34).  

In our study, the linear epitopes of the RBD were outlined using both infection-induced sera and the 

vaccine-induced sera. Both groups recognized epitopes previously described as NAbs: peptide No.33 

and peptide No.47–49 were class 1 and peptide No.39–40 was class 3. In contrast, there were two 

classes of NAbs that were exclusively found in vaccine-elicited sera, class 3 Nab eliciting peptide 

No.6 and class 4 Nab eliciting No.19–20. The linear epitopes specifically identified in vaccine-

induced antibodies were found outside the ACE2-binding site (Figure 5), while both vaccine and 

infection-elicited linear epitopes were found close to the ACE2-binding site. 

Many of the NAbs targeting RBM, which correspond to class 1 and 2, revealed decreased 

neutralization against the virus variants (15,20,35). For example, antibodies recognizing the observed 

linear epitope peptide No.33 would possibly fail to neutralize variants with K417N mutation as 

previously described (15,20,35,36). The linear epitopes, peptide No.6 and No.19–20, found only in 

vaccine-elicited sera revealed corresponding epitopes of the human NAbs isolated from SAR-CoV 

convalescent (S309 and CR3022, respectively). These cross-neutralizing antibodies readily indicate 

that these linear epitopes were highly conserved among the species considering the RBD is one of 

the most variable regions. In this context, mRNA vaccine-induced immunity, which has found to 

harbor broader variety in epitope profiles including class 3 and class 4 NAbs epitopes, shall be less 

vulnerable to the virus escaping than with infection-induced immunity (37,38). These regions are 

reported more conserved and resistant to mutation escape (15,20). Vaccine recipients’ broader 

epitope profile across the RBD may give immunological flexibility against this evolving virus. 

Our mutation peptide panels showed a rather optimistic view for the efficacy of vaccine-induced 

immunity to capture the SARS-CoV-2 variants (Figure 6). However, the linear epitope profiles in the 

mutation loci were not dominant in either vaccine sera or patients’ sera (Figure 2b). Therefore, we 

conclude that the proportion of linear epitopes contributing to neutralization in these regions with 
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mutations is limited (10,11,14,19), contrary to the conformational epitopes found abundantly in 

NAbs around the RBM.  

The specificity of the linear epitope profile was higher in each patient than in the vaccine recipients, 

especially within neutralizing epitopes (Figure 4, Individual epitope distribution can be found in 

Supplement Figure 2). This phenomenon supports the idea that the infection-provoked repertoire 

maturation starts within as early as 10-20 days after onset, in concordance with proceeding reports 

noting immune repertoire change in COVID-19 patients even as early as 4–7 days after onset (39,40). 

This may indicate faster maturation of antibodies induced by natural infection when compared to 

vaccine-induced antibodies. Nevertheless, in this study, we captured the peak period of immune 

reaction in the host for both groups. Therefore, longitudinal evaluation of the epitope profile and 

serological markers is needed to assess the further host immune evolution of both infection and 

vaccine-induced epitopes.  

Moreover, these potentially neutralizing antibodies predominantly expressed in patients’ sera might 

be attributed to the higher neutralizing titers observed in this study compared to vaccine recipients’ 

sera which have broader variety in eliciting epitopes within RBD. Therefore, the discrepancy 

observed in serological markers, neutralizing antibody titers and anti-RBD IgG titers, between 

vaccine recipients and patients could be explained by the efficient epitope selection and maturation 

of the infection-induced humoral immunity. As for the potential use of anti-RBD antibody titers as a 

surrogate maker of the vaccine efficacy, the necessary anti-RBD antibody titers for vaccine-induced 

sera shall be higher than infection-induced sera to achieve the similar magnitude of neutralization 

power due to the apparent elevation of relative anti-RBD antibody titers to neutralizing titers (Figure 

1c).  

To conclude the study, we evaluated the similarity and difference in humoral immunity elicited by 

both vaccine and natural infection of SARS-CoV-2. High resolution linear epitope profiles revealed 
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the unique distribution of polyclonal antibodies across the RBD in vaccine recipients’ sera, which 

possibly accounted for the discrepancy observed in serological markers. Based on the multiple 

neutralizing epitopes observed in vaccine linear epitope profile, mRNA vaccine-elicited humoral 

immunity may be more powerful in escaping the rapidly evolving pathogen than infection-acquired 

immunity. 

Limitations 

There are several limitations in our study. The severity of the COVID-19 patients evaluated in this 

study was high (seven out of ten were critical) with comorbidities, whereas the vaccine recipients 

were relatively healthy without major comorbidities. The age was distributed in both groups. This 

analysis was focused exclusively on the linear epitope profile targeting RBD. Experimental 

observations on compositional epitopes nor epitopes outside the RBD region was not made in this 

study.  

Nonetheless, our results reporting the mRNA vaccine’s broader RBD epitope variety are in 

concordance with preceding reports. This result was consistent with the recently reported immune 

profile of Moderna vaccines (37). 
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Figure 1. Total antibody titers targeting the RBD and neutralization of live SARS-CoV-2. (a) 

Anti-RBD IgG titers of vaccine (BNT162b2) recipients (N=21) and COVID-19 patients (N=19) were 

depicted. No significant difference in level of total anti-RBD IgG titers was observed. (b) The half-

maximal neutralization titers were remarkably lower in the vaccinated group than in patients. (c) 

Anti-RBD IgG/NT50 ratio was plotted in both groups. For detailed information on subjects, see 

Supplement Table1. 

Figure 2. High resolution linear epitope mapping of the receptor binding domain (RBD) of the 

SARS-CoV-2 spike protein. (a) Overlapping 15-mer peptides (shift by 3 amino acids) of the RBD 

was sequentially synthesized on cellulose membrane. Sera of vaccine recipients and COVID-19 

patients were incubated with the microarray, followed by the procedure mentioned in the 

methodology section to detect the reactive peptides.  

(b) Heat map identifying peptides recognized by IgG, IgA, and IgM in sera of vaccine recipients 

(Sample A–E) and COVID-19 patients (sample F–O). Signal of each peptide was calculated to 

relative value to the maximum signal of each subject as 100. Legend shows the darker the blue gets; 

the more signal was observed at the designated peptide.  

Figure 3. Comparison of epitope profiles between two groups: Pfizer vaccine recipients (N=5) 

and COVID-19 patients (N=10). (a) Thin red lines denote peptide signals of individuals. Bold red 

lines depict the mean values of the peptide signals of the COVID-19 patients’ sera (N=10). (b) Thin 
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grey lines denote peptide signals of individuals. Bold black lines denote the mean values of the 

peptide signals of the vaccine recipients’ sera (N=5).  (c) Red arrows denote epitopes recognized in 

the sera of both groups. Black arrows denote epitopes identified only in the vaccine recipients’ sera. 

Designated peptide numbers are shown above the arrows.  

Figure 4. Linear epitopes in the receptor binding domain (RBD) identified in both groups of 

vaccine recipients and COVID-19 patients. Angiotensin converting enzyme2 (ACE2); green, the 

RBD; tint blue, (a) linear epitope T415-F429 (peptide No.33); cyan (b) linear epitope R457-S477 

(peptide No.47-49); yellow (c) linear epitope A433-S450 (peptide No.39-40); blue. 

Figure 5. Linear epitopes in the receptor binding domain (RBD) identified only in vaccine 

recipients’ sera. Angiotensin converting enzyme2 (ACE2) is shown in green. (a) The RBD is shown 

in tint blue. Linear epitope R334-S348 (peptide No.6); magenta. (b) SARS-CoV-2 spike trimer in 

one open, two closed (one RBD up, two RBD up) composition. Spike subunit 2 and N-terminal 

domain are in the same color, light blue, yellow, and tint blue. Up RBD is in dark blue, Down RBDs 

are in yellow. Linear epitope R334-S348 has good accessibility in both up and down composition of 

the RBD. (c) The RBD; green. Linear epitope S373-L390 (peptide No.19-20); orange.  

Figure 6.  Mutation peptide panels showed more reactivity to vaccine recipients’ sera than to 

patients’ sera. Heat maps identifying peptides containing singe mutations recognized by IgG, IgA, 

and IgM in sera of vaccine recipients (Sample A–E) and COVID-19 patients (sample F–O). Signal of 

each peptide was calculated to relative value to the maximum signal of each subject as 100.  

Supplement Figure 1. Epitope profile of a COVID-19 patient who had received Rituximab 

treatment. Peptide No. 27 was dominant in the epitope profile, which showed limited neutralization 

compared to COVID-19 positive serum sample. Graphic shows the ACE2-RBD complex. The 

position of peptide No.27 is depicted in dark gray. 

Supplement Figure 2. Epitope profile of individual subjects. Z-scores of each peptide signal was 
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calculated. Vaccine-induced sera had more variety in recognizing epitopes than infection-induced 

sera.  

 

Supplement Table 1. Detailed information of the subjects included in this study. 

Supplement Table 2. Sequence of the peptides on microarrays used in this study. 

Supplement Table 3. Raw signal of the microarrays. 
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