Serum asymmetric dimethyl arginine level correlates with the progression and prognosis of amyotrophic lateral sclerosis

4 REIISUKE IKEIIAKA, TASUIIITO MAEUA, TUIT MOUA, SEITCIII MAYAITO, KEITA KAKU	4	Kakuda ¹ .
---	---	-----------------------

- 5 Harutsugu Tatebe^{4,5}, Naoki Atsuta^{6,7}, Daisuke Ito⁶, Cesar Aguirre¹, Yasuyoshi Kimura¹,
- 6 Kousuke Baba¹, Masahisa Katsuno⁶, Takahiko Tokuda^{4,5}, Kazunori Kimura³, Gen
- 7 Sobue^{8,9}, and Hideki Mochizuki¹
- 8
- ⁹ ¹ Department of Neurology, Osaka University Graduate School of Medicine, Suita,
- 10 Japan
- ¹¹ ²Center for Joint Research Facilities Support, Fujita Health University, Toyoake, Japan
- ³ Department of Hospital Pharmacy, Nagoya City University Graduate School of
- 13 Pharmaceutical Sciences, Nagoya, Japan
- ⁴ T & T Brothers Corporation, Chiba, Japan
- ⁵ National Institutes for Quantum and Radiological Science and Technology (QST),
- 16 Chiba, Japan
- ⁶Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya,
- 18 Japan

- ¹⁹ ⁷ Department of Neurology, Aichi Medical University School of Medicine, Nagakute,
- 20 Japan
- ⁸ Research Division of Dementia and Neurodegenerative Disease, Nagoya University
- 22 Graduate School of Medicine, Nagoya, Japan
- ⁹ Aichi Medical University, Nagakute, Japan
- 24
- 25 Corresponding Author:
- 26 Kensuke Ikenaka
- 27 Department of Neurology
- 28 Osaka University Graduate School of Medicine
- 29 **2-2** Yamadaoka, Suita 565-0871, Japan
- 30 Phone: +81-6-6879-3571
- 31 E-mail: ikenaka@neurol.med.osaka-u.ac.jp
- 32
- 33 Word count: 2167

34 Abstract

Objective: To investigate the association between serum asymmetric dimethylarginine (ADMA) levels and the progression and prognosis of amyotrophic lateral sclerosis (ALS), and to compare cerebrospinal fluid (CSF) and serum ADMA levels with other biomarkers of ALS.

Methods: Serum ADMA levels of patients with sporadic ALS (n = 68) and disease 39 40 control patients (n = 54) were measured using liquid chromatography-tandem mass spectrometry. Serum samples were obtained at the time of patient registration for 41 diagnosis. Correlations of ADMA level and other markers (nitric oxide [NO] and 42 neurofilament light chain [NFL] levels) were analyzed. Changes in the ALS Functional 43 Rating Scale-Revised (ALSFRS-R) score from the onset of disease (ALSFRS-R 44 45 preslope) was used to assess disease progression. Survival was evaluated using the Cox proportional hazards model and Kaplan-Meier analysis. 46

Results: The concentration of ADMA in CSF was substantially higher in patients with ALS than in disease controls. Serum ADMA level correlated with CSF ADMA level (r= 0.591, p < 0.0001), and was independently associated with the ALSFRS-R preslope (r= 0.505. p < 0.0001). Patients with higher serum ADMA levels had less favorable

prognoses. CSF ADMA level significantly correlated with CSF NfL level (r = 0.456, p

52 = 0.0002) but not with NO level (
$$r = 0.194, p = 0.219$$
)

53 **Conclusion:**

- 54 ADMA level is an independent biomarker of ALS disease progression and prognosis,
- and reflects the degree of motor neuron degeneration. The increased ADMA level in
- 56 ALS patients was not associated with the inhibition of NO production.

57 (247 words)

58

Abbreviations: ADL = activities of daily living; ADMA = asymmetric dimethyl
arginine; ALS = amyotrophic lateral sclerosis; ALSFRS-R = ALS Functional Rating
Scale-Revised; CI = confidence interval; CK = creatinine kinase; CSF = cerebrospinal
fluid; FVC = forced vital capacity; HR = hazard ratio; MMT = manual muscle testing;
NfL = neurofilament light chain; TPPV = tracheostomy positive pressure ventilation

64 Introduction

65	Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized
66	by the selective loss of upper and lower motor neurons. Despite decades of research into
67	the molecular mechanisms underlying the pathogenesis of ALS and the development of
68	molecular targeting therapy, to date, only a few drugs have been shown to be effective
69	for ALS. One of the difficulties in performing clinical trials for ALS patients is the large
70	variation in the clinical courses of the patients ^{1 2} , as evaluated by survival time or the
71	revised ALS Functional Rating Scale (ALSFRS-R). To obtain better patient
72	stratification and more reliable measures for monitoring the therapeutic effects of
73	potential treatments, it is imperative to develop biomarkers that accurately reflect the
74	pathophysiology and predict the progression and prognosis of ALS.
75	We recently reported that protein arginine dimethylation is upregulated in the spinal
76	cord of patients with amyotrophic lateral sclerosis (ALS), and that cerebrospinal fluid
77	(CSF) levels of asymmetric dimethylarginine (ADMA) can be a biomarker of ALS
78	disease progression and prognosis ³ . We hence hypothesized that increased CSF ADMA
79	levels might reflect the hypermethylation of RNA-binding proteins in the spinal motor
80	neurons and surrounding glial cells of ALS disease patients. Interestingly, recent reports
81	have shown that RNA-binding proteins that are targets of arginine dimethylation

82	demonstrate abnormal aggregation or mislocalization in the motor neurons of sporadic
83	ALS (SALS) patients ⁴⁻⁷ , indicating the involvement of abnormal arginine dimethylation
84	in the pathogenesis of ALS.
85	In this study, we analyzed the changes in serum ADMA levels in ALS patients
86	and the correlation of ADMA level with neurofilament light chain (NfL) level, to
87	understand how ADMA is associated with the pathology of ALS. We also analyzed the
88	correlation between ADMA and nitric oxide (NO) levels in the CSF to determine
89	whether increased ADMA affects ALS pathology through the suppression of NO
90	synthesis. Moreover, towards clinical application, we analyzed the usefulness of serum
91	ADMA level for predicting disease progression and prognosis.
92	

93 Materials and methods

94 Patient registry and follow-up

Patients who were diagnosed as having ALS at Osaka University between July 2016 and August 2020 were prospectively enrolled. The data were collected from the patients agreed to participate in the Osaka University Longitudinal Biomarker Study for Neuromuscular Diseases. In total, 68 ALS patients with definite, probable, probable laboratory-supported, or possible ALS according to the revised El Escorial criteria were

100	included. The included patients were registered in the Osaka University Longitudinal
101	Biomarker Study for Neuromuscular Diseases with written informed consent. The
102	clinical scores listed below were obtained for the diagnosis of ALS. Muscle strength
103	was manually tested and scored using the scale of the Medical Research Council
104	(manual muscle testing [MMT]). Disease onset was defined as when the patients
105	became initially aware of muscle weakness or the impairment of swallowing, speech, or
106	respiration. The Japanese version of the ALS Functional Rating Scale-Revised
107	(ALSFRS-R) 2 was used as a scale to evaluate ADL. The reliability of the Japanese
108	version of the ALSFRS-R has been confirmed previously ⁸ . To evaluate the functional
109	decline in the ALSFRS-R, we calculated the slope, defined as (decrease in the value
110	within a duration)/duration. The preslope was used to evaluate the decline in the
111	ALSFRS-R from the time of onset to diagnosis (registration), and was calculated as
112	ALSFRS-R preslope = $(ALSFRS-R \text{ at registration} - 48)/(duration from onset to$
113	diagnosis). The primary endpoint was defined as either the introduction of tracheostomy
114	positive pressure ventilation (TPPV) or death of the patient, and the time a patient
115	reached the primary endpoint was determined by telephone follow-up. TPPV-free
116	survival was defined as survival in the TPPV cases.

118 Clinical data of ALS and control patients

119	The average age at registration (ALS, 59.6 [46.9–72.3] years and controls, 62.0
120	[48.5-71.5] years) and sex ratio were not significantly different between patients with
121	ALS and controls; sex ratio [male: female]: ALS, 41: 27 and controls, 32: 22). The
122	average duration from onset to registration (months) in patients with ALS was 21.1
123	(5.12-37.1), the average ALSFRS-R at registration was 38.7 (32.5-44.9), and the
124	average %forced vital capacity (FVC) at registration was 84.9% (63.0%-106.8%),
125	which are consistent with previous studies ^{2,9-11} . At the end of this study, 23 patients
126	reached the primary endpoint, and the average duration from registration to the primary
127	endpoint was 18.9 months. Regarding disease form (initial symptoms), 13 patients
128	showed the bulbar form, and 55 patients showed the spinal form. The disease controls
129	included 54 patients with Parkinson disease ($n = 10$), Parkinson syndrome ($n = 9$),
130	polyneuropathy (n = 7), multiple sclerosis (n = 6), myositis (n = 6), brain infarction (n = $(n = 6)$)
131	5), dystonia (n = 3), and others (n = 8).

132

133 Measurement of arginine analogs

Arginine, NG, and NG-dimethyl L-arginine (ADMA) were used to construct standard
curves (Enzo Life Sciences). ADMA-d6 was prepared according to the method of

136	Kennedy et al. ¹² . ADMA was measured using a high-performance liquid
137	chromatography-tandem mass spectrometry system (Quattro Premier XE Mass
138	Spectrometer; Waters Corporation, Milford, MA, USA). A 5- μ L sample solution that
139	was deprote inated by methanol was injected into an Intrada Amino Acid column $(2\times50$
140	mm; Imtakt, Kyoto, Japan) at 40 °C. Chromatography was performed at a flow rate of
141	0.6 mL/min using a step gradient alternating between a mixture of acetonitrile:
142	tetrahydrofuran: 25 mmol/L aqueous ammonium formate: formic acid (9: 25: 16: 0.3)
143	and a mixture of 100 mmol/L aqueous ammonium formate: acetonitrile (80: 20). ADMA
144	was analyzed using the multiple reaction monitoring mode of tandem mass
145	spectrometry in positive ion mode. The cone voltage was 22-25 V, collision energy was
146	13–22, and transitions were m/z 203 \rightarrow 46 for ADMA.
147	

148 Quantification of plasma and CSF NfL concentrations

149 The concentrations of plasma and CSF NfL were quantified as previously described $^{13, 14}$,

- 150 using Simoa NF-light Advantage Kit and a Simoa HD-1 analyzer according to the
- 151 manufacturer's protocol (Quanterix, Lexington, MA, USA). All samples were analyzed
- in duplicate.
- 153

154 Measurement of NO concentration

155	The nitrite concentration in the CSF was measured using the nitrite assay kit following
156	the manufacturer's instructions (BioVision, Milpitas, CA, USA). Absorbance at 540 nm
157	was measured using a microplate reader.

158

159 Statistical analysis

160	Pearson's correlation analysis was performed to analyze the correlation between factors.
161	Survival time was defined as the time from disease onset to death or the introduction of
162	TPPV. The Kaplan-Meier method was used to estimate survival curves, and the survival
163	curves of the two groups were compared using the logrank test. The Cox proportional
164	hazard model, which included the ALSFRS-R slope at registration and serum ADMA
165	level (ng/mL), was applied to analyze the effects of these variables on survival time.
166	The hazard ratio (HR) and 95% confidence interval (CI) were estimated. Multivariate
167	regression analyses with stepwise variable selection (alpha = 0.05 for inclusion, and
168	alpha = 0.10 for exclusion) was also performed to analyze the effect of ADMA on
169	ALSFRS-R. Statistical Package for the Social Sciences 23.0J software (IBM Japan,
170	Tokyo, Japan) was used to perform statistical analyses.

171

172	Ethics	statement
-----	--------	-----------

173	This study was conducted in accordance with the Declaration of Helsinki and the
174	Ethical Guidelines for Medical and Health Research Involving Human Subjects
175	endorsed by the Japanese government. The Ethics Committee of Osaka University
176	Graduate School of Medicine approved the study (Approval number; 19089-3). All the
177	patients, including disease controls, were informed about this study and written consent
178	have been obtained.

179

180 **Results**

181 Serum ADMA level is increased in ALS patients and correlates with disease 182 progression

183	We first compared	ADMA levels	in the	serum and	CSF, a	and found	that serum	ADMA
-----	-------------------	-------------	--------	-----------	--------	-----------	------------	------

- level significantly correlated with CSF level (Figure 1A, r = 0.591, p < 0.032). Similarly
- to the increase in CSF ADMA level that we found in our previous study, serum ADMA
- level was also significantly higher in ALS patients than in disease controls (Figure 1B, p
- 187 = 0.002). Serum ADMA level more strongly correlated with disease progression
- 188 (ALSFRS-R preslope) (Figure 1C, r = 0.505. p < 0.0001) than disease severity at each

timepoint (ALSFRS-R) (Figure 1D,
$$r = -0.261$$
, $p = 0.032$). More importantly,

- 190 multivariate linear regression analysis demonstrated that among serum ADMA, age, sex,
- 191 MMT, %FVC, and ALSFRS-R, only serum ADMA was an independent factor that was
- associated with disease progression (Table 1).

Table 1. Multivariate linear regression analysis with stepwise variable selection;						
comparison among serum ADMA and clinical ALS parameters						
	ALSFRS-R preslope					
	Coefficient (95% CI)	<i>p</i> -value				
Serum ADMA	0.004 (0.000 – 0.006)	< 0.0001				
Age	-0.001 (-0.009 – 0.007)	0.775				
Sex	0.043 (-0.171 – 0.256)	0.692				
MMT	0.014 (-0.003 – 0.032)	0.102				
%FVC	-0.005 (-0.010 - 0.001)	0.110				
ALSFRS-R	-0.033 (-0.058 - 0.009)	0.009				

193

194 Associations between serum ADMA levels and other biomarkers

Moreover, we measured plasma NfL levels to analyze the degree of neurodegeneration in patients, and found that ADMA level strongly correlated with NfL level (Figure 2A, r= 0.430, p = 0.002). Interestingly, ADMA level did not correlate with NO level (Figure 2B, r = 0.270, p = 0.080), indicating that the increase in ADMA level was independent of NO dysregulation. Multivariate linear regression analysis demonstrated that among serum ADMA, creatinine, albumin, NO, and plasma NfL level, serum ADMA level was independently associated with disease progression (Table 2).

Table 2. Multivariate linear regression analysis with stepwise variable selection;		
comparison among serum AD	MA and other biomarkers.	
	ALSFRS-R preslope	
	Coefficient (95% CI)	<i>p</i> -value
Serum ADMA	0.006 (0.001–0.011)	0.024
Creatinine	-0.536 (-1.255 – 0.183)	0.139
Albumin	-0.30 (-0.429 – 3.69)	0.880
Nitric oxide	-0.003 (-0.048 - 0.041)	0.878
Plasma NfL	0.002 (0.000 - 0.004)	0.045

202

203 Serum ADMA is a prognostic marker for ALS

204 Next, we performed multivariate Cox regression analysis of survival time, and found

that serum ADMA level can predict the survival of patients independently of the

206 ALSFRS-R preslope (Table 3).

Table 3. Multivariate Cox regression analysis of the survival of ALS		
patients, with adjustments of covariates		
	Primary endpoint	
	HR (95% CI)	<i>p</i> -value
Serum ADMA	1.008 (1.000 - 1.016)	0.040
ALSFRS-R preslope	4.368 (1.771 – 10.771)	0.001
<pre>n = 68 (23 subjects reached the primary endpoint and 38 subjects were censored)</pre>		

207

208 We then analyzed the optimal cutoff score of ADMA level for predicting the prognosis

209	of ALS. When we used a cutoff of ADMA > 110.53 ng/mL, the HR was 4.289 (95% CI:
210	1.642–11.235, $p = 0.003$). We divided the registered patients into two categories using
211	this cutoff score. Figure 3A shows the Kaplan-Meier curves for the primary endpoint of
212	patients in the two categories. The difference between the curves was statistically
213	significant by the logrank test ($p = 0.001$).
214	

215 Discussion

In this study, we showed that serum ADMA level is well correlated with CSF ADMA 216 level and is useful for evaluating ALS disease progression and prognosis, similarly to 217 what we previously reported for CSF ADMA¹⁵. Interestingly, ADMA level correlates 218 219 more strongly with the ALSFRS-R slope than the ALSFRS-R. This suggests that unlike 220 the decrease in creatinine level, which simply reflects decreased muscle volume and is hence just a consequence of ALS symptoms, the increase in ADMA level more 221 222accurately reflects the disease state of patients. Indeed, we showed that serum ADMA 223level correlates with plasma NfL level, which reflects axonal degeneration and is a pathological biomarkers for ALS^{13, 14, 16-20}. 224

Here we showed that serum ADMA level is increased in ALS patients and is associated with disease progression score (ALSFRS-R slope) independently of several

227	clinical scores and blood biomarkers, including plasma NfL. Serum ADMA level also
228	predicts disease prognosis independently of the ALSFRS-R slope. We used the
229	ALSFRS-R slope only as a coanalysis factor, because the number of patients who
230	reached the primary endpoint (death or the use of an invasive respiratory machine) was
231	only 23 among the 68 participants. Nevertheless, considering that the ALSFRS-R slope
232	is one of the most reliable clinical predictors of prognosis at diagnosis, our data
233	demonstrated that serum ADMA level may be a useful biomarker to predict the
234	prognosis of ALS.

In our previous study, we mainly focused on the ADMA/L-arginine ratio, 235236considering that ADMA competes with nitric oxide synthase for binding to L-arginine 237and inhibits the production of NO. In the present study, we directly measured ADMA 238instead of its ratio with L-arginine, because we found that ADMA level did not correlate with CSF NO. Our findings suggested that a high ADMA level may reflect ALS 239240 pathology independently of the insufficient production of NO, and may shed light on the 241 importance of the hypermethylation of arginines within RNA-binding proteins in the 242 pathogenesis of SALS. Moreover, considering that serum ADMA level is about ten 243 times higher than that of CSF ADMA level, systemic hypermethylation could be the 244primary change and affects the pathology of the central nervous system in ALS patients.

245	This study has some limitations and bias. First, the number of patients who
246	reached the primary endpoint was small, so the analysis of prognosis was statistically
247	weak. Second, the pathomechanism by which an increased ADMA level affects disease
248	progression remains unclear. Further studies are required to confirm that arginine
249	hyperdemethylation is directly involved in the pathogenesis of ALS, and to determine
250	whether ADMA can be a useful biomarker for clinical applications.
251	
252	COMPETING INTERESTS: The authors have no conflicts of interest to declare.
253	
254	FUNDING: This work was supported by the Kanae Foundation for the Promotion of
255	Medical Science and Japan Agency for Medical Research and Development (grant no.
256	JP21wm0425013).
257	
258	Author contributions:
259	KI, NA, MK, HM, and GS designed the experiments. YM, YH, and KK performed the
260	arginine analysis by liquid chromatography-tandem mass spectrometry. HT and TT
261	performed the neurofilament light chain (NfL) measurements. KI, SN, YK, and KB
262	collected the blood and cerebrospinal fluid (CSF) samples and clinical data. KI

263 performed the statistical analysis. KI, NA, DI, CA, TT, MK, GS, and HM discussed the

results and wrote the manuscript. All authors read and approved the final manuscript.

265 **References**

- Chio A, Calvo A, Moglia C, Mazzini L, Mora G. Phenotypic heterogeneity of amyotrophic lateral sclerosis: a population based study. *Journal of neurology*, *neurosurgery, and psychiatry* 2011;82(7):740-6.
- 269 2. Watanabe H, Atsuta N, Hirakawa A, Nakamura R, Nakatochi M, Ishigaki S, et al. A
 270 rapid functional decline type of amyotrophic lateral sclerosis is linked to low
 271 expression of TTN. *Journal of neurology, neurosurgery, and psychiatry*272 2016;87(8):851-8.
- 3. Ikenaka K, Atsuta N, Maeda Y, Hotta Y, Nakamura R, Kawai K, et al. Increase of
 arginine dimethylation correlates with the progression and prognosis of ALS.
 Neurology 2019;92(16):e1868-e77.
- 4. Furukawa Y, Tokuda E. Aggregation of FET Proteins as a Pathological Change in
 Amyotrophic Lateral Sclerosis. *Advances in experimental medicine and biology* 2017;925:1-12.
- 5. Tanikawa C, Ueda K, Suzuki A, Iida A, Nakamura R, Atsuta N, et al. Citrullination
 of RGG Motifs in FET Proteins by PAD4 Regulates Protein Aggregation and
 ALS Susceptibility. *Cell reports* 2018;22(6):1473-83.
- 6. Tyzack GE, Luisier R, Taha DM, Neeves J, Modic M, Mitchell JS, et al. Widespread
 FUS mislocalization is a molecular hallmark of amyotrophic lateral sclerosis.
 Brain : a journal of neurology 2019;142(9):2572-80.
- 7. Ikenaka K, Ishigaki S, Iguchi Y, Kawai K, Fujioka Y, Yokoi S, et al. Characteristic
 Features of FUS Inclusions in Spinal Motor Neurons of Sporadic Amyotrophic
 Lateral Sclerosis. *Journal of neuropathology and experimental neurology* 2020;79(4):370-77.
- 8. Atsuta N, Watanabe H, Ito M, Nakamura R, Senda J, Kato S, et al. [Development of a telephone survey system for patients with amyotrophic lateral sclerosis using the ALSFRS-R (Japanese version) and application of this system in a longitudinal multicenter study]. *Brain and nerve = Shinkei kenkyu no shinpo* 2011;63(5):491-6.
- 9. Rosenbohm A, Nagel G, Peter RS, Brehme T, Koenig W, Dupuis L, et al.
 Association of Serum Retinol-Binding Protein 4 Concentration With Risk for
 and Prognosis of Amyotrophic Lateral Sclerosis. *JAMA neurology*2018;75(5):600-07.
- 298 10. Shimizu T, Bokuda K, Kimura H, Kamiyama T, Nakayama Y, Kawata A, et al.
 299 Sensory cortex hyperexcitability predicts short survival in amyotrophic lateral
 300 sclerosis. *Neurology* 2018;90(18):e1578-e87.

301	11. Nakamura R, Atsuta N, Wat	anabe H, Hira	kawa A, Ito M,	Senda J,	et al. Neck
302	weakness is a potent progr	nostic factor in	sporadic amyotro	ophic late	ral sclerosis
303	patients. Journal of	neurology,	neurosurgery,	and	psychiatry
304	2013;84(12):1365-71.				

- 305 12. Kennedy KJ, Simandan TL, Dix TA. A facile route to cyclic and acyclic
 306 alkyl-arginines. *Synthetic Commun* 1998;28(4):741-46.
- 307 13. Shinomoto M, Kasai T, Tatebe H, Kondo M, Ohmichi T, Morimoto M, et al. Plasma
 308 neurofilament light chain: A potential prognostic biomarker of dementia in adult
 309 Down syndrome patients. *PloS one* 2019;14(4):e0211575.
- 14. Kasai T, Kojima Y, Ohmichi T, Tatebe H, Tsuji Y, Noto YI, et al. Combined use of
 CSF NfL and CSF TDP-43 improves diagnostic performance in ALS. *Annals of clinical and translational neurology* 2019;6(12):2489-502.
- Ikenaka K, Atsuta N, Maeda Y, Hotta Y, Nakamura R, Kawai K, et al. Increase of
 arginine dimethylation correlates with the progression and prognosis of ALS.
 Neurology 2019.
- 316 16. Brettschneider J, Petzold A, Sussmuth SD, Ludolph AC, Tumani H. Axonal damage
 317 markers in cerebrospinal fluid are increased in ALS. *Neurology* 318 2006;66(6):852-6.
- Tortelli R, Ruggieri M, Cortese R, D'Errico E, Capozzo R, Leo A, et al. Elevated
 cerebrospinal fluid neurofilament light levels in patients with amyotrophic
 lateral sclerosis: a possible marker of disease severity and progression.
 European journal of neurology 2012;19(12):1561-7.
- 18. Gaiani A, Martinelli I, Bello L, Querin G, Puthenparampil M, Ruggero S, et al.
 Diagnostic and Prognostic Biomarkers in Amyotrophic Lateral Sclerosis:
 Neurofilament Light Chain Levels in Definite Subtypes of Disease. JAMA
 neurology 2017;74(5):525-32.
- Menke RA, Gray E, Lu CH, Kuhle J, Talbot K, Malaspina A, et al. CSF
 neurofilament light chain reflects corticospinal tract degeneration in ALS.
 Annals of clinical and translational neurology 2015;2(7):748-55.
- 20. Yamada S, Hashizume A, Hijikata Y, Ito D, Kishimoto Y, Iida M, et al. Ratio of
 urinary N-terminal titin fragment to urinary creatinine is a novel biomarker for
 amyotrophic lateral sclerosis. *Journal of neurology, neurosurgery, and psychiatry* 2021.
- 334

335

337 Figures and legends

338	Figure 1. Increased serum ADMA level in ALS patients and its association with disease
339	progression. (A) Correlation between CSF and serum ADMA levels ($n = 68$). (B)
340	ADMA concentrations of control patients (n = 54) and ALS patients (n = 68). ** p <
341	0.01, Student t-test. (C) Correlation of serum ADMA concentrations and disease
342	progression scores (ALSFRS-R preslope) or disease severity score (ALSFRS-R) ($n = 68$
343	for both analyses).
344	
345	Figure 2. Comparison between serum ADMA level and plasma NfL or CSF NO level.
346	(A) Correlation between serum ADMA concentration and plasma NfL level ($n = 51$).
347	(B) Correlation between serum ADMA level and plasma NfL level ($n = 43$).
348	
349	Figure 3. Serum ADMA level predicts the prognosis of ALS patients. (A) Kaplan-Meier
350	curve according to serum ADMA level (low: < 110.53 ng/mL, blue line; high: > 110.54,

test. There was a statistically significant difference between the curves (p = 0.001).

Figure 1

